1 #include "llvm/Transforms/Utils/VNCoercion.h"
2 #include "llvm/Analysis/AliasAnalysis.h"
3 #include "llvm/Analysis/ConstantFolding.h"
4 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
5 #include "llvm/Analysis/ValueTracking.h"
6 #include "llvm/IR/IRBuilder.h"
7 #include "llvm/IR/IntrinsicInst.h"
8 #include "llvm/Support/Debug.h"
9
10 #define DEBUG_TYPE "vncoerce"
11 namespace llvm {
12 namespace VNCoercion {
13
14 /// Return true if coerceAvailableValueToLoadType will succeed.
canCoerceMustAliasedValueToLoad(Value * StoredVal,Type * LoadTy,const DataLayout & DL)15 bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
16 const DataLayout &DL) {
17 // If the loaded or stored value is an first class array or struct, don't try
18 // to transform them. We need to be able to bitcast to integer.
19 if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
20 StoredVal->getType()->isStructTy() || StoredVal->getType()->isArrayTy())
21 return false;
22
23 uint64_t StoreSize = DL.getTypeSizeInBits(StoredVal->getType());
24
25 // The store size must be byte-aligned to support future type casts.
26 if (llvm::alignTo(StoreSize, 8) != StoreSize)
27 return false;
28
29 // The store has to be at least as big as the load.
30 if (StoreSize < DL.getTypeSizeInBits(LoadTy))
31 return false;
32
33 // Don't coerce non-integral pointers to integers or vice versa.
34 if (DL.isNonIntegralPointerType(StoredVal->getType()) !=
35 DL.isNonIntegralPointerType(LoadTy))
36 return false;
37
38 return true;
39 }
40
41 template <class T, class HelperClass>
coerceAvailableValueToLoadTypeHelper(T * StoredVal,Type * LoadedTy,HelperClass & Helper,const DataLayout & DL)42 static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
43 HelperClass &Helper,
44 const DataLayout &DL) {
45 assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
46 "precondition violation - materialization can't fail");
47 if (auto *C = dyn_cast<Constant>(StoredVal))
48 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
49 StoredVal = FoldedStoredVal;
50
51 // If this is already the right type, just return it.
52 Type *StoredValTy = StoredVal->getType();
53
54 uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
55 uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
56
57 // If the store and reload are the same size, we can always reuse it.
58 if (StoredValSize == LoadedValSize) {
59 // Pointer to Pointer -> use bitcast.
60 if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
61 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
62 } else {
63 // Convert source pointers to integers, which can be bitcast.
64 if (StoredValTy->isPtrOrPtrVectorTy()) {
65 StoredValTy = DL.getIntPtrType(StoredValTy);
66 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
67 }
68
69 Type *TypeToCastTo = LoadedTy;
70 if (TypeToCastTo->isPtrOrPtrVectorTy())
71 TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
72
73 if (StoredValTy != TypeToCastTo)
74 StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
75
76 // Cast to pointer if the load needs a pointer type.
77 if (LoadedTy->isPtrOrPtrVectorTy())
78 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
79 }
80
81 if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
82 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
83 StoredVal = FoldedStoredVal;
84
85 return StoredVal;
86 }
87 // If the loaded value is smaller than the available value, then we can
88 // extract out a piece from it. If the available value is too small, then we
89 // can't do anything.
90 assert(StoredValSize >= LoadedValSize &&
91 "canCoerceMustAliasedValueToLoad fail");
92
93 // Convert source pointers to integers, which can be manipulated.
94 if (StoredValTy->isPtrOrPtrVectorTy()) {
95 StoredValTy = DL.getIntPtrType(StoredValTy);
96 StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
97 }
98
99 // Convert vectors and fp to integer, which can be manipulated.
100 if (!StoredValTy->isIntegerTy()) {
101 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
102 StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
103 }
104
105 // If this is a big-endian system, we need to shift the value down to the low
106 // bits so that a truncate will work.
107 if (DL.isBigEndian()) {
108 uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
109 DL.getTypeStoreSizeInBits(LoadedTy);
110 StoredVal = Helper.CreateLShr(
111 StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
112 }
113
114 // Truncate the integer to the right size now.
115 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
116 StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
117
118 if (LoadedTy != NewIntTy) {
119 // If the result is a pointer, inttoptr.
120 if (LoadedTy->isPtrOrPtrVectorTy())
121 StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
122 else
123 // Otherwise, bitcast.
124 StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
125 }
126
127 if (auto *C = dyn_cast<Constant>(StoredVal))
128 if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
129 StoredVal = FoldedStoredVal;
130
131 return StoredVal;
132 }
133
134 /// If we saw a store of a value to memory, and
135 /// then a load from a must-aliased pointer of a different type, try to coerce
136 /// the stored value. LoadedTy is the type of the load we want to replace.
137 /// IRB is IRBuilder used to insert new instructions.
138 ///
139 /// If we can't do it, return null.
coerceAvailableValueToLoadType(Value * StoredVal,Type * LoadedTy,IRBuilder<> & IRB,const DataLayout & DL)140 Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
141 IRBuilder<> &IRB, const DataLayout &DL) {
142 return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
143 }
144
145 /// This function is called when we have a memdep query of a load that ends up
146 /// being a clobbering memory write (store, memset, memcpy, memmove). This
147 /// means that the write *may* provide bits used by the load but we can't be
148 /// sure because the pointers don't must-alias.
149 ///
150 /// Check this case to see if there is anything more we can do before we give
151 /// up. This returns -1 if we have to give up, or a byte number in the stored
152 /// value of the piece that feeds the load.
analyzeLoadFromClobberingWrite(Type * LoadTy,Value * LoadPtr,Value * WritePtr,uint64_t WriteSizeInBits,const DataLayout & DL)153 static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
154 Value *WritePtr,
155 uint64_t WriteSizeInBits,
156 const DataLayout &DL) {
157 // If the loaded or stored value is a first class array or struct, don't try
158 // to transform them. We need to be able to bitcast to integer.
159 if (LoadTy->isStructTy() || LoadTy->isArrayTy())
160 return -1;
161
162 int64_t StoreOffset = 0, LoadOffset = 0;
163 Value *StoreBase =
164 GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
165 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
166 if (StoreBase != LoadBase)
167 return -1;
168
169 // If the load and store are to the exact same address, they should have been
170 // a must alias. AA must have gotten confused.
171 // FIXME: Study to see if/when this happens. One case is forwarding a memset
172 // to a load from the base of the memset.
173
174 // If the load and store don't overlap at all, the store doesn't provide
175 // anything to the load. In this case, they really don't alias at all, AA
176 // must have gotten confused.
177 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
178
179 if ((WriteSizeInBits & 7) | (LoadSize & 7))
180 return -1;
181 uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
182 LoadSize /= 8;
183
184 bool isAAFailure = false;
185 if (StoreOffset < LoadOffset)
186 isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset;
187 else
188 isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset;
189
190 if (isAAFailure)
191 return -1;
192
193 // If the Load isn't completely contained within the stored bits, we don't
194 // have all the bits to feed it. We could do something crazy in the future
195 // (issue a smaller load then merge the bits in) but this seems unlikely to be
196 // valuable.
197 if (StoreOffset > LoadOffset ||
198 StoreOffset + StoreSize < LoadOffset + LoadSize)
199 return -1;
200
201 // Okay, we can do this transformation. Return the number of bytes into the
202 // store that the load is.
203 return LoadOffset - StoreOffset;
204 }
205
206 /// This function is called when we have a
207 /// memdep query of a load that ends up being a clobbering store.
analyzeLoadFromClobberingStore(Type * LoadTy,Value * LoadPtr,StoreInst * DepSI,const DataLayout & DL)208 int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
209 StoreInst *DepSI, const DataLayout &DL) {
210 // Cannot handle reading from store of first-class aggregate yet.
211 if (DepSI->getValueOperand()->getType()->isStructTy() ||
212 DepSI->getValueOperand()->getType()->isArrayTy())
213 return -1;
214
215 Value *StorePtr = DepSI->getPointerOperand();
216 uint64_t StoreSize =
217 DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
218 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
219 DL);
220 }
221
222 /// This function is called when we have a
223 /// memdep query of a load that ends up being clobbered by another load. See if
224 /// the other load can feed into the second load.
analyzeLoadFromClobberingLoad(Type * LoadTy,Value * LoadPtr,LoadInst * DepLI,const DataLayout & DL)225 int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
226 const DataLayout &DL) {
227 // Cannot handle reading from store of first-class aggregate yet.
228 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
229 return -1;
230
231 Value *DepPtr = DepLI->getPointerOperand();
232 uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
233 int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
234 if (R != -1)
235 return R;
236
237 // If we have a load/load clobber an DepLI can be widened to cover this load,
238 // then we should widen it!
239 int64_t LoadOffs = 0;
240 const Value *LoadBase =
241 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
242 unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
243
244 unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
245 LoadBase, LoadOffs, LoadSize, DepLI);
246 if (Size == 0)
247 return -1;
248
249 // Check non-obvious conditions enforced by MDA which we rely on for being
250 // able to materialize this potentially available value
251 assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
252 assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
253
254 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
255 }
256
analyzeLoadFromClobberingMemInst(Type * LoadTy,Value * LoadPtr,MemIntrinsic * MI,const DataLayout & DL)257 int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
258 MemIntrinsic *MI, const DataLayout &DL) {
259 // If the mem operation is a non-constant size, we can't handle it.
260 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
261 if (!SizeCst)
262 return -1;
263 uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
264
265 // If this is memset, we just need to see if the offset is valid in the size
266 // of the memset..
267 if (MI->getIntrinsicID() == Intrinsic::memset)
268 return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
269 MemSizeInBits, DL);
270
271 // If we have a memcpy/memmove, the only case we can handle is if this is a
272 // copy from constant memory. In that case, we can read directly from the
273 // constant memory.
274 MemTransferInst *MTI = cast<MemTransferInst>(MI);
275
276 Constant *Src = dyn_cast<Constant>(MTI->getSource());
277 if (!Src)
278 return -1;
279
280 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
281 if (!GV || !GV->isConstant())
282 return -1;
283
284 // See if the access is within the bounds of the transfer.
285 int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
286 MemSizeInBits, DL);
287 if (Offset == -1)
288 return Offset;
289
290 unsigned AS = Src->getType()->getPointerAddressSpace();
291 // Otherwise, see if we can constant fold a load from the constant with the
292 // offset applied as appropriate.
293 Src =
294 ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
295 Constant *OffsetCst =
296 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
297 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
298 OffsetCst);
299 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
300 if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
301 return Offset;
302 return -1;
303 }
304
305 template <class T, class HelperClass>
getStoreValueForLoadHelper(T * SrcVal,unsigned Offset,Type * LoadTy,HelperClass & Helper,const DataLayout & DL)306 static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
307 HelperClass &Helper,
308 const DataLayout &DL) {
309 LLVMContext &Ctx = SrcVal->getType()->getContext();
310
311 // If two pointers are in the same address space, they have the same size,
312 // so we don't need to do any truncation, etc. This avoids introducing
313 // ptrtoint instructions for pointers that may be non-integral.
314 if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
315 cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
316 cast<PointerType>(LoadTy)->getAddressSpace()) {
317 return SrcVal;
318 }
319
320 uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
321 uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
322 // Compute which bits of the stored value are being used by the load. Convert
323 // to an integer type to start with.
324 if (SrcVal->getType()->isPtrOrPtrVectorTy())
325 SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
326 if (!SrcVal->getType()->isIntegerTy())
327 SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
328
329 // Shift the bits to the least significant depending on endianness.
330 unsigned ShiftAmt;
331 if (DL.isLittleEndian())
332 ShiftAmt = Offset * 8;
333 else
334 ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
335 if (ShiftAmt)
336 SrcVal = Helper.CreateLShr(SrcVal,
337 ConstantInt::get(SrcVal->getType(), ShiftAmt));
338
339 if (LoadSize != StoreSize)
340 SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
341 IntegerType::get(Ctx, LoadSize * 8));
342 return SrcVal;
343 }
344
345 /// This function is called when we have a memdep query of a load that ends up
346 /// being a clobbering store. This means that the store provides bits used by
347 /// the load but the pointers don't must-alias. Check this case to see if
348 /// there is anything more we can do before we give up.
getStoreValueForLoad(Value * SrcVal,unsigned Offset,Type * LoadTy,Instruction * InsertPt,const DataLayout & DL)349 Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
350 Instruction *InsertPt, const DataLayout &DL) {
351
352 IRBuilder<> Builder(InsertPt);
353 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
354 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
355 }
356
getConstantStoreValueForLoad(Constant * SrcVal,unsigned Offset,Type * LoadTy,const DataLayout & DL)357 Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
358 Type *LoadTy, const DataLayout &DL) {
359 ConstantFolder F;
360 SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
361 return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
362 }
363
364 /// This function is called when we have a memdep query of a load that ends up
365 /// being a clobbering load. This means that the load *may* provide bits used
366 /// by the load but we can't be sure because the pointers don't must-alias.
367 /// Check this case to see if there is anything more we can do before we give
368 /// up.
getLoadValueForLoad(LoadInst * SrcVal,unsigned Offset,Type * LoadTy,Instruction * InsertPt,const DataLayout & DL)369 Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
370 Instruction *InsertPt, const DataLayout &DL) {
371 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
372 // widen SrcVal out to a larger load.
373 unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
374 unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
375 if (Offset + LoadSize > SrcValStoreSize) {
376 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
377 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
378 // If we have a load/load clobber an DepLI can be widened to cover this
379 // load, then we should widen it to the next power of 2 size big enough!
380 unsigned NewLoadSize = Offset + LoadSize;
381 if (!isPowerOf2_32(NewLoadSize))
382 NewLoadSize = NextPowerOf2(NewLoadSize);
383
384 Value *PtrVal = SrcVal->getPointerOperand();
385 // Insert the new load after the old load. This ensures that subsequent
386 // memdep queries will find the new load. We can't easily remove the old
387 // load completely because it is already in the value numbering table.
388 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
389 Type *DestPTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
390 DestPTy =
391 PointerType::get(DestPTy, PtrVal->getType()->getPointerAddressSpace());
392 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
393 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
394 LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
395 NewLoad->takeName(SrcVal);
396 NewLoad->setAlignment(SrcVal->getAlignment());
397
398 LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
399 LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
400
401 // Replace uses of the original load with the wider load. On a big endian
402 // system, we need to shift down to get the relevant bits.
403 Value *RV = NewLoad;
404 if (DL.isBigEndian())
405 RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
406 RV = Builder.CreateTrunc(RV, SrcVal->getType());
407 SrcVal->replaceAllUsesWith(RV);
408
409 SrcVal = NewLoad;
410 }
411
412 return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
413 }
414
getConstantLoadValueForLoad(Constant * SrcVal,unsigned Offset,Type * LoadTy,const DataLayout & DL)415 Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
416 Type *LoadTy, const DataLayout &DL) {
417 unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
418 unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
419 if (Offset + LoadSize > SrcValStoreSize)
420 return nullptr;
421 return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
422 }
423
424 template <class T, class HelperClass>
getMemInstValueForLoadHelper(MemIntrinsic * SrcInst,unsigned Offset,Type * LoadTy,HelperClass & Helper,const DataLayout & DL)425 T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
426 Type *LoadTy, HelperClass &Helper,
427 const DataLayout &DL) {
428 LLVMContext &Ctx = LoadTy->getContext();
429 uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8;
430
431 // We know that this method is only called when the mem transfer fully
432 // provides the bits for the load.
433 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
434 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
435 // independently of what the offset is.
436 T *Val = cast<T>(MSI->getValue());
437 if (LoadSize != 1)
438 Val =
439 Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
440 T *OneElt = Val;
441
442 // Splat the value out to the right number of bits.
443 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
444 // If we can double the number of bytes set, do it.
445 if (NumBytesSet * 2 <= LoadSize) {
446 T *ShVal = Helper.CreateShl(
447 Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
448 Val = Helper.CreateOr(Val, ShVal);
449 NumBytesSet <<= 1;
450 continue;
451 }
452
453 // Otherwise insert one byte at a time.
454 T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
455 Val = Helper.CreateOr(OneElt, ShVal);
456 ++NumBytesSet;
457 }
458
459 return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
460 }
461
462 // Otherwise, this is a memcpy/memmove from a constant global.
463 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
464 Constant *Src = cast<Constant>(MTI->getSource());
465 unsigned AS = Src->getType()->getPointerAddressSpace();
466
467 // Otherwise, see if we can constant fold a load from the constant with the
468 // offset applied as appropriate.
469 Src =
470 ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
471 Constant *OffsetCst =
472 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
473 Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
474 OffsetCst);
475 Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
476 return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
477 }
478
479 /// This function is called when we have a
480 /// memdep query of a load that ends up being a clobbering mem intrinsic.
getMemInstValueForLoad(MemIntrinsic * SrcInst,unsigned Offset,Type * LoadTy,Instruction * InsertPt,const DataLayout & DL)481 Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
482 Type *LoadTy, Instruction *InsertPt,
483 const DataLayout &DL) {
484 IRBuilder<> Builder(InsertPt);
485 return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
486 LoadTy, Builder, DL);
487 }
488
getConstantMemInstValueForLoad(MemIntrinsic * SrcInst,unsigned Offset,Type * LoadTy,const DataLayout & DL)489 Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
490 Type *LoadTy, const DataLayout &DL) {
491 // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
492 // constant is when it's a memset of a non-constant.
493 if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
494 if (!isa<Constant>(MSI->getValue()))
495 return nullptr;
496 ConstantFolder F;
497 return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
498 LoadTy, F, DL);
499 }
500 } // namespace VNCoercion
501 } // namespace llvm
502