1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file implements a pass that converts X86 cmov instructions into
12 /// branches when profitable. This pass is conservative. It transforms if and
13 /// only if it can guarantee a gain with high confidence.
14 ///
15 /// Thus, the optimization applies under the following conditions:
16 /// 1. Consider as candidates only CMOVs in innermost loops (assume that
17 /// most hotspots are represented by these loops).
18 /// 2. Given a group of CMOV instructions that are using the same EFLAGS def
19 /// instruction:
20 /// a. Consider them as candidates only if all have the same code condition
21 /// or the opposite one to prevent generating more than one conditional
22 /// jump per EFLAGS def instruction.
23 /// b. Consider them as candidates only if all are profitable to be
24 /// converted (assume that one bad conversion may cause a degradation).
25 /// 3. Apply conversion only for loops that are found profitable and only for
26 /// CMOV candidates that were found profitable.
27 /// a. A loop is considered profitable only if conversion will reduce its
28 /// depth cost by some threshold.
29 /// b. CMOV is considered profitable if the cost of its condition is higher
30 /// than the average cost of its true-value and false-value by 25% of
31 /// branch-misprediction-penalty. This assures no degradation even with
32 /// 25% branch misprediction.
33 ///
34 /// Note: This pass is assumed to run on SSA machine code.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // External interfaces:
39 // FunctionPass *llvm::createX86CmovConverterPass();
40 // bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
41 //
42 //===----------------------------------------------------------------------===//
43
44 #include "X86.h"
45 #include "X86InstrInfo.h"
46 #include "llvm/ADT/ArrayRef.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/STLExtras.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/CodeGen/MachineBasicBlock.h"
53 #include "llvm/CodeGen/MachineFunction.h"
54 #include "llvm/CodeGen/MachineFunctionPass.h"
55 #include "llvm/CodeGen/MachineInstr.h"
56 #include "llvm/CodeGen/MachineInstrBuilder.h"
57 #include "llvm/CodeGen/MachineLoopInfo.h"
58 #include "llvm/CodeGen/MachineOperand.h"
59 #include "llvm/CodeGen/MachineRegisterInfo.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSchedule.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/IR/DebugLoc.h"
65 #include "llvm/MC/MCSchedule.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <iterator>
73 #include <utility>
74
75 using namespace llvm;
76
77 #define DEBUG_TYPE "x86-cmov-conversion"
78
79 STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
80 STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
81 STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
82 STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
83
84 namespace llvm {
85
86 void initializeX86CmovConverterPassPass(PassRegistry &);
87
88 } // end namespace llvm
89
90 // This internal switch can be used to turn off the cmov/branch optimization.
91 static cl::opt<bool>
92 EnableCmovConverter("x86-cmov-converter",
93 cl::desc("Enable the X86 cmov-to-branch optimization."),
94 cl::init(true), cl::Hidden);
95
96 static cl::opt<unsigned>
97 GainCycleThreshold("x86-cmov-converter-threshold",
98 cl::desc("Minimum gain per loop (in cycles) threshold."),
99 cl::init(4), cl::Hidden);
100
101 static cl::opt<bool> ForceMemOperand(
102 "x86-cmov-converter-force-mem-operand",
103 cl::desc("Convert cmovs to branches whenever they have memory operands."),
104 cl::init(true), cl::Hidden);
105
106 namespace {
107
108 /// Converts X86 cmov instructions into branches when profitable.
109 class X86CmovConverterPass : public MachineFunctionPass {
110 public:
X86CmovConverterPass()111 X86CmovConverterPass() : MachineFunctionPass(ID) {
112 initializeX86CmovConverterPassPass(*PassRegistry::getPassRegistry());
113 }
114
getPassName() const115 StringRef getPassName() const override { return "X86 cmov Conversion"; }
116 bool runOnMachineFunction(MachineFunction &MF) override;
117 void getAnalysisUsage(AnalysisUsage &AU) const override;
118
119 /// Pass identification, replacement for typeid.
120 static char ID;
121
122 private:
123 MachineRegisterInfo *MRI;
124 const TargetInstrInfo *TII;
125 const TargetRegisterInfo *TRI;
126 TargetSchedModel TSchedModel;
127
128 /// List of consecutive CMOV instructions.
129 using CmovGroup = SmallVector<MachineInstr *, 2>;
130 using CmovGroups = SmallVector<CmovGroup, 2>;
131
132 /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
133 /// CmovInstGroups accordingly.
134 ///
135 /// \param Blocks List of blocks to process.
136 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
137 /// \returns true iff it found any CMOV-group-candidate.
138 bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
139 CmovGroups &CmovInstGroups,
140 bool IncludeLoads = false);
141
142 /// Check if it is profitable to transform each CMOV-group-candidates into
143 /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
144 ///
145 /// \param Blocks List of blocks to process.
146 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
147 /// \returns true iff any CMOV-group-candidate remain.
148 bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
149 CmovGroups &CmovInstGroups);
150
151 /// Convert the given list of consecutive CMOV instructions into a branch.
152 ///
153 /// \param Group Consecutive CMOV instructions to be converted into branch.
154 void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
155 };
156
157 } // end anonymous namespace
158
159 char X86CmovConverterPass::ID = 0;
160
getAnalysisUsage(AnalysisUsage & AU) const161 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
162 MachineFunctionPass::getAnalysisUsage(AU);
163 AU.addRequired<MachineLoopInfo>();
164 }
165
runOnMachineFunction(MachineFunction & MF)166 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
167 if (skipFunction(MF.getFunction()))
168 return false;
169 if (!EnableCmovConverter)
170 return false;
171
172 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
173 << "**********\n");
174
175 bool Changed = false;
176 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
177 const TargetSubtargetInfo &STI = MF.getSubtarget();
178 MRI = &MF.getRegInfo();
179 TII = STI.getInstrInfo();
180 TRI = STI.getRegisterInfo();
181 TSchedModel.init(&STI);
182
183 // Before we handle the more subtle cases of register-register CMOVs inside
184 // of potentially hot loops, we want to quickly remove all CMOVs with
185 // a memory operand. The CMOV will risk a stall waiting for the load to
186 // complete that speculative execution behind a branch is better suited to
187 // handle on modern x86 chips.
188 if (ForceMemOperand) {
189 CmovGroups AllCmovGroups;
190 SmallVector<MachineBasicBlock *, 4> Blocks;
191 for (auto &MBB : MF)
192 Blocks.push_back(&MBB);
193 if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) {
194 for (auto &Group : AllCmovGroups) {
195 // Skip any group that doesn't do at least one memory operand cmov.
196 if (!llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad(); }))
197 continue;
198
199 // For CMOV groups which we can rewrite and which contain a memory load,
200 // always rewrite them. On x86, a CMOV will dramatically amplify any
201 // memory latency by blocking speculative execution.
202 Changed = true;
203 convertCmovInstsToBranches(Group);
204 }
205 }
206 }
207
208 //===--------------------------------------------------------------------===//
209 // Register-operand Conversion Algorithm
210 // ---------
211 // For each inner most loop
212 // collectCmovCandidates() {
213 // Find all CMOV-group-candidates.
214 // }
215 //
216 // checkForProfitableCmovCandidates() {
217 // * Calculate both loop-depth and optimized-loop-depth.
218 // * Use these depth to check for loop transformation profitability.
219 // * Check for CMOV-group-candidate transformation profitability.
220 // }
221 //
222 // For each profitable CMOV-group-candidate
223 // convertCmovInstsToBranches() {
224 // * Create FalseBB, SinkBB, Conditional branch to SinkBB.
225 // * Replace each CMOV instruction with a PHI instruction in SinkBB.
226 // }
227 //
228 // Note: For more details, see each function description.
229 //===--------------------------------------------------------------------===//
230
231 // Build up the loops in pre-order.
232 SmallVector<MachineLoop *, 4> Loops(MLI.begin(), MLI.end());
233 // Note that we need to check size on each iteration as we accumulate child
234 // loops.
235 for (int i = 0; i < (int)Loops.size(); ++i)
236 for (MachineLoop *Child : Loops[i]->getSubLoops())
237 Loops.push_back(Child);
238
239 for (MachineLoop *CurrLoop : Loops) {
240 // Optimize only inner most loops.
241 if (!CurrLoop->getSubLoops().empty())
242 continue;
243
244 // List of consecutive CMOV instructions to be processed.
245 CmovGroups CmovInstGroups;
246
247 if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups))
248 continue;
249
250 if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(),
251 CmovInstGroups))
252 continue;
253
254 Changed = true;
255 for (auto &Group : CmovInstGroups)
256 convertCmovInstsToBranches(Group);
257 }
258
259 return Changed;
260 }
261
collectCmovCandidates(ArrayRef<MachineBasicBlock * > Blocks,CmovGroups & CmovInstGroups,bool IncludeLoads)262 bool X86CmovConverterPass::collectCmovCandidates(
263 ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups,
264 bool IncludeLoads) {
265 //===--------------------------------------------------------------------===//
266 // Collect all CMOV-group-candidates and add them into CmovInstGroups.
267 //
268 // CMOV-group:
269 // CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
270 //
271 // CMOV-group-candidate:
272 // CMOV-group where all the CMOV instructions are
273 // 1. consecutive.
274 // 2. have same condition code or opposite one.
275 // 3. have only operand registers (X86::CMOVrr).
276 //===--------------------------------------------------------------------===//
277 // List of possible improvement (TODO's):
278 // --------------------------------------
279 // TODO: Add support for X86::CMOVrm instructions.
280 // TODO: Add support for X86::SETcc instructions.
281 // TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
282 //===--------------------------------------------------------------------===//
283
284 // Current processed CMOV-Group.
285 CmovGroup Group;
286 for (auto *MBB : Blocks) {
287 Group.clear();
288 // Condition code of first CMOV instruction current processed range and its
289 // opposite condition code.
290 X86::CondCode FirstCC, FirstOppCC, MemOpCC;
291 // Indicator of a non CMOVrr instruction in the current processed range.
292 bool FoundNonCMOVInst = false;
293 // Indicator for current processed CMOV-group if it should be skipped.
294 bool SkipGroup = false;
295
296 for (auto &I : *MBB) {
297 // Skip debug instructions.
298 if (I.isDebugInstr())
299 continue;
300 X86::CondCode CC = X86::getCondFromCMovOpc(I.getOpcode());
301 // Check if we found a X86::CMOVrr instruction.
302 if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) {
303 if (Group.empty()) {
304 // We found first CMOV in the range, reset flags.
305 FirstCC = CC;
306 FirstOppCC = X86::GetOppositeBranchCondition(CC);
307 // Clear out the prior group's memory operand CC.
308 MemOpCC = X86::COND_INVALID;
309 FoundNonCMOVInst = false;
310 SkipGroup = false;
311 }
312 Group.push_back(&I);
313 // Check if it is a non-consecutive CMOV instruction or it has different
314 // condition code than FirstCC or FirstOppCC.
315 if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
316 // Mark the SKipGroup indicator to skip current processed CMOV-Group.
317 SkipGroup = true;
318 if (I.mayLoad()) {
319 if (MemOpCC == X86::COND_INVALID)
320 // The first memory operand CMOV.
321 MemOpCC = CC;
322 else if (CC != MemOpCC)
323 // Can't handle mixed conditions with memory operands.
324 SkipGroup = true;
325 }
326 // Check if we were relying on zero-extending behavior of the CMOV.
327 if (!SkipGroup &&
328 llvm::any_of(
329 MRI->use_nodbg_instructions(I.defs().begin()->getReg()),
330 [&](MachineInstr &UseI) {
331 return UseI.getOpcode() == X86::SUBREG_TO_REG;
332 }))
333 // FIXME: We should model the cost of using an explicit MOV to handle
334 // the zero-extension rather than just refusing to handle this.
335 SkipGroup = true;
336 continue;
337 }
338 // If Group is empty, keep looking for first CMOV in the range.
339 if (Group.empty())
340 continue;
341
342 // We found a non X86::CMOVrr instruction.
343 FoundNonCMOVInst = true;
344 // Check if this instruction define EFLAGS, to determine end of processed
345 // range, as there would be no more instructions using current EFLAGS def.
346 if (I.definesRegister(X86::EFLAGS)) {
347 // Check if current processed CMOV-group should not be skipped and add
348 // it as a CMOV-group-candidate.
349 if (!SkipGroup)
350 CmovInstGroups.push_back(Group);
351 else
352 ++NumOfSkippedCmovGroups;
353 Group.clear();
354 }
355 }
356 // End of basic block is considered end of range, check if current processed
357 // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
358 if (Group.empty())
359 continue;
360 if (!SkipGroup)
361 CmovInstGroups.push_back(Group);
362 else
363 ++NumOfSkippedCmovGroups;
364 }
365
366 NumOfCmovGroupCandidate += CmovInstGroups.size();
367 return !CmovInstGroups.empty();
368 }
369
370 /// \returns Depth of CMOV instruction as if it was converted into branch.
371 /// \param TrueOpDepth depth cost of CMOV true value operand.
372 /// \param FalseOpDepth depth cost of CMOV false value operand.
getDepthOfOptCmov(unsigned TrueOpDepth,unsigned FalseOpDepth)373 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
374 //===--------------------------------------------------------------------===//
375 // With no info about branch weight, we assume 50% for each value operand.
376 // Thus, depth of optimized CMOV instruction is the rounded up average of
377 // its True-Operand-Value-Depth and False-Operand-Value-Depth.
378 //===--------------------------------------------------------------------===//
379 return (TrueOpDepth + FalseOpDepth + 1) / 2;
380 }
381
checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock * > Blocks,CmovGroups & CmovInstGroups)382 bool X86CmovConverterPass::checkForProfitableCmovCandidates(
383 ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) {
384 struct DepthInfo {
385 /// Depth of original loop.
386 unsigned Depth;
387 /// Depth of optimized loop.
388 unsigned OptDepth;
389 };
390 /// Number of loop iterations to calculate depth for ?!
391 static const unsigned LoopIterations = 2;
392 DenseMap<MachineInstr *, DepthInfo> DepthMap;
393 DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
394 enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
395 /// For each register type maps the register to its last def instruction.
396 DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
397 /// Maps register operand to its def instruction, which can be nullptr if it
398 /// is unknown (e.g., operand is defined outside the loop).
399 DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
400
401 // Set depth of unknown instruction (i.e., nullptr) to zero.
402 DepthMap[nullptr] = {0, 0};
403
404 SmallPtrSet<MachineInstr *, 4> CmovInstructions;
405 for (auto &Group : CmovInstGroups)
406 CmovInstructions.insert(Group.begin(), Group.end());
407
408 //===--------------------------------------------------------------------===//
409 // Step 1: Calculate instruction depth and loop depth.
410 // Optimized-Loop:
411 // loop with CMOV-group-candidates converted into branches.
412 //
413 // Instruction-Depth:
414 // instruction latency + max operand depth.
415 // * For CMOV instruction in optimized loop the depth is calculated as:
416 // CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
417 // TODO: Find a better way to estimate the latency of the branch instruction
418 // rather than using the CMOV latency.
419 //
420 // Loop-Depth:
421 // max instruction depth of all instructions in the loop.
422 // Note: instruction with max depth represents the critical-path in the loop.
423 //
424 // Loop-Depth[i]:
425 // Loop-Depth calculated for first `i` iterations.
426 // Note: it is enough to calculate depth for up to two iterations.
427 //
428 // Depth-Diff[i]:
429 // Number of cycles saved in first 'i` iterations by optimizing the loop.
430 //===--------------------------------------------------------------------===//
431 for (unsigned I = 0; I < LoopIterations; ++I) {
432 DepthInfo &MaxDepth = LoopDepth[I];
433 for (auto *MBB : Blocks) {
434 // Clear physical registers Def map.
435 RegDefMaps[PhyRegType].clear();
436 for (MachineInstr &MI : *MBB) {
437 // Skip debug instructions.
438 if (MI.isDebugInstr())
439 continue;
440 unsigned MIDepth = 0;
441 unsigned MIDepthOpt = 0;
442 bool IsCMOV = CmovInstructions.count(&MI);
443 for (auto &MO : MI.uses()) {
444 // Checks for "isUse()" as "uses()" returns also implicit definitions.
445 if (!MO.isReg() || !MO.isUse())
446 continue;
447 unsigned Reg = MO.getReg();
448 auto &RDM = RegDefMaps[TargetRegisterInfo::isVirtualRegister(Reg)];
449 if (MachineInstr *DefMI = RDM.lookup(Reg)) {
450 OperandToDefMap[&MO] = DefMI;
451 DepthInfo Info = DepthMap.lookup(DefMI);
452 MIDepth = std::max(MIDepth, Info.Depth);
453 if (!IsCMOV)
454 MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
455 }
456 }
457
458 if (IsCMOV)
459 MIDepthOpt = getDepthOfOptCmov(
460 DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
461 DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
462
463 // Iterates over all operands to handle implicit definitions as well.
464 for (auto &MO : MI.operands()) {
465 if (!MO.isReg() || !MO.isDef())
466 continue;
467 unsigned Reg = MO.getReg();
468 RegDefMaps[TargetRegisterInfo::isVirtualRegister(Reg)][Reg] = &MI;
469 }
470
471 unsigned Latency = TSchedModel.computeInstrLatency(&MI);
472 DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
473 MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
474 MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
475 }
476 }
477 }
478
479 unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
480 LoopDepth[1].Depth - LoopDepth[1].OptDepth};
481
482 //===--------------------------------------------------------------------===//
483 // Step 2: Check if Loop worth to be optimized.
484 // Worth-Optimize-Loop:
485 // case 1: Diff[1] == Diff[0]
486 // Critical-path is iteration independent - there is no dependency
487 // of critical-path instructions on critical-path instructions of
488 // previous iteration.
489 // Thus, it is enough to check gain percent of 1st iteration -
490 // To be conservative, the optimized loop need to have a depth of
491 // 12.5% cycles less than original loop, per iteration.
492 //
493 // case 2: Diff[1] > Diff[0]
494 // Critical-path is iteration dependent - there is dependency of
495 // critical-path instructions on critical-path instructions of
496 // previous iteration.
497 // Thus, check the gain percent of the 2nd iteration (similar to the
498 // previous case), but it is also required to check the gradient of
499 // the gain - the change in Depth-Diff compared to the change in
500 // Loop-Depth between 1st and 2nd iterations.
501 // To be conservative, the gradient need to be at least 50%.
502 //
503 // In addition, In order not to optimize loops with very small gain, the
504 // gain (in cycles) after 2nd iteration should not be less than a given
505 // threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
506 //
507 // If loop is not worth optimizing, remove all CMOV-group-candidates.
508 //===--------------------------------------------------------------------===//
509 if (Diff[1] < GainCycleThreshold)
510 return false;
511
512 bool WorthOptLoop = false;
513 if (Diff[1] == Diff[0])
514 WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
515 else if (Diff[1] > Diff[0])
516 WorthOptLoop =
517 (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
518 (Diff[1] * 8 >= LoopDepth[1].Depth);
519
520 if (!WorthOptLoop)
521 return false;
522
523 ++NumOfLoopCandidate;
524
525 //===--------------------------------------------------------------------===//
526 // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
527 // Worth-Optimize-Group:
528 // Iff it worths to optimize all CMOV instructions in the group.
529 //
530 // Worth-Optimize-CMOV:
531 // Predicted branch is faster than CMOV by the difference between depth of
532 // condition operand and depth of taken (predicted) value operand.
533 // To be conservative, the gain of such CMOV transformation should cover at
534 // at least 25% of branch-misprediction-penalty.
535 //===--------------------------------------------------------------------===//
536 unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
537 CmovGroups TempGroups;
538 std::swap(TempGroups, CmovInstGroups);
539 for (auto &Group : TempGroups) {
540 bool WorthOpGroup = true;
541 for (auto *MI : Group) {
542 // Avoid CMOV instruction which value is used as a pointer to load from.
543 // This is another conservative check to avoid converting CMOV instruction
544 // used with tree-search like algorithm, where the branch is unpredicted.
545 auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
546 if (UIs.begin() != UIs.end() && ++UIs.begin() == UIs.end()) {
547 unsigned Op = UIs.begin()->getOpcode();
548 if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
549 WorthOpGroup = false;
550 break;
551 }
552 }
553
554 unsigned CondCost =
555 DepthMap[OperandToDefMap.lookup(&MI->getOperand(3))].Depth;
556 unsigned ValCost = getDepthOfOptCmov(
557 DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
558 DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
559 if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
560 WorthOpGroup = false;
561 break;
562 }
563 }
564
565 if (WorthOpGroup)
566 CmovInstGroups.push_back(Group);
567 }
568
569 return !CmovInstGroups.empty();
570 }
571
checkEFLAGSLive(MachineInstr * MI)572 static bool checkEFLAGSLive(MachineInstr *MI) {
573 if (MI->killsRegister(X86::EFLAGS))
574 return false;
575
576 // The EFLAGS operand of MI might be missing a kill marker.
577 // Figure out whether EFLAGS operand should LIVE after MI instruction.
578 MachineBasicBlock *BB = MI->getParent();
579 MachineBasicBlock::iterator ItrMI = MI;
580
581 // Scan forward through BB for a use/def of EFLAGS.
582 for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
583 if (I->readsRegister(X86::EFLAGS))
584 return true;
585 if (I->definesRegister(X86::EFLAGS))
586 return false;
587 }
588
589 // We hit the end of the block, check whether EFLAGS is live into a successor.
590 for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) {
591 if ((*I)->isLiveIn(X86::EFLAGS))
592 return true;
593 }
594
595 return false;
596 }
597
598 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
599 /// group of CMOV instructions, which may contain debug instructions in between,
600 /// move all debug instructions to after the last CMOV instruction, making the
601 /// CMOV group consecutive.
packCmovGroup(MachineInstr * First,MachineInstr * Last)602 static void packCmovGroup(MachineInstr *First, MachineInstr *Last) {
603 assert(X86::getCondFromCMovOpc(Last->getOpcode()) != X86::COND_INVALID &&
604 "Last instruction in a CMOV group must be a CMOV instruction");
605
606 SmallVector<MachineInstr *, 2> DBGInstructions;
607 for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) {
608 if (I->isDebugInstr())
609 DBGInstructions.push_back(&*I);
610 }
611
612 // Splice the debug instruction after the cmov group.
613 MachineBasicBlock *MBB = First->getParent();
614 for (auto *MI : DBGInstructions)
615 MBB->insertAfter(Last, MI->removeFromParent());
616 }
617
convertCmovInstsToBranches(SmallVectorImpl<MachineInstr * > & Group) const618 void X86CmovConverterPass::convertCmovInstsToBranches(
619 SmallVectorImpl<MachineInstr *> &Group) const {
620 assert(!Group.empty() && "No CMOV instructions to convert");
621 ++NumOfOptimizedCmovGroups;
622
623 // If the CMOV group is not packed, e.g., there are debug instructions between
624 // first CMOV and last CMOV, then pack the group and make the CMOV instruction
625 // consecutive by moving the debug instructions to after the last CMOV.
626 packCmovGroup(Group.front(), Group.back());
627
628 // To convert a CMOVcc instruction, we actually have to insert the diamond
629 // control-flow pattern. The incoming instruction knows the destination vreg
630 // to set, the condition code register to branch on, the true/false values to
631 // select between, and a branch opcode to use.
632
633 // Before
634 // -----
635 // MBB:
636 // cond = cmp ...
637 // v1 = CMOVge t1, f1, cond
638 // v2 = CMOVlt t2, f2, cond
639 // v3 = CMOVge v1, f3, cond
640 //
641 // After
642 // -----
643 // MBB:
644 // cond = cmp ...
645 // jge %SinkMBB
646 //
647 // FalseMBB:
648 // jmp %SinkMBB
649 //
650 // SinkMBB:
651 // %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
652 // %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
653 // ; true-value with false-value
654 // %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
655 // ; previous Phi instruction result
656
657 MachineInstr &MI = *Group.front();
658 MachineInstr *LastCMOV = Group.back();
659 DebugLoc DL = MI.getDebugLoc();
660
661 X86::CondCode CC = X86::CondCode(X86::getCondFromCMovOpc(MI.getOpcode()));
662 X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
663 // Potentially swap the condition codes so that any memory operand to a CMOV
664 // is in the *false* position instead of the *true* position. We can invert
665 // any non-memory operand CMOV instructions to cope with this and we ensure
666 // memory operand CMOVs are only included with a single condition code.
667 if (llvm::any_of(Group, [&](MachineInstr *I) {
668 return I->mayLoad() && X86::getCondFromCMovOpc(I->getOpcode()) == CC;
669 }))
670 std::swap(CC, OppCC);
671
672 MachineBasicBlock *MBB = MI.getParent();
673 MachineFunction::iterator It = ++MBB->getIterator();
674 MachineFunction *F = MBB->getParent();
675 const BasicBlock *BB = MBB->getBasicBlock();
676
677 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
678 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
679 F->insert(It, FalseMBB);
680 F->insert(It, SinkMBB);
681
682 // If the EFLAGS register isn't dead in the terminator, then claim that it's
683 // live into the sink and copy blocks.
684 if (checkEFLAGSLive(LastCMOV)) {
685 FalseMBB->addLiveIn(X86::EFLAGS);
686 SinkMBB->addLiveIn(X86::EFLAGS);
687 }
688
689 // Transfer the remainder of BB and its successor edges to SinkMBB.
690 SinkMBB->splice(SinkMBB->begin(), MBB,
691 std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
692 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
693
694 // Add the false and sink blocks as its successors.
695 MBB->addSuccessor(FalseMBB);
696 MBB->addSuccessor(SinkMBB);
697
698 // Create the conditional branch instruction.
699 BuildMI(MBB, DL, TII->get(X86::GetCondBranchFromCond(CC))).addMBB(SinkMBB);
700
701 // Add the sink block to the false block successors.
702 FalseMBB->addSuccessor(SinkMBB);
703
704 MachineInstrBuilder MIB;
705 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
706 MachineBasicBlock::iterator MIItEnd =
707 std::next(MachineBasicBlock::iterator(LastCMOV));
708 MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin();
709 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
710
711 // First we need to insert an explicit load on the false path for any memory
712 // operand. We also need to potentially do register rewriting here, but it is
713 // simpler as the memory operands are always on the false path so we can
714 // simply take that input, whatever it is.
715 DenseMap<unsigned, unsigned> FalseBBRegRewriteTable;
716 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) {
717 auto &MI = *MIIt++;
718 // Skip any CMOVs in this group which don't load from memory.
719 if (!MI.mayLoad()) {
720 // Remember the false-side register input.
721 unsigned FalseReg =
722 MI.getOperand(X86::getCondFromCMovOpc(MI.getOpcode()) == CC ? 1 : 2)
723 .getReg();
724 // Walk back through any intermediate cmovs referenced.
725 while (true) {
726 auto FRIt = FalseBBRegRewriteTable.find(FalseReg);
727 if (FRIt == FalseBBRegRewriteTable.end())
728 break;
729 FalseReg = FRIt->second;
730 }
731 FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg;
732 continue;
733 }
734
735 // The condition must be the *opposite* of the one we've decided to branch
736 // on as the branch will go *around* the load and the load should happen
737 // when the CMOV condition is false.
738 assert(X86::getCondFromCMovOpc(MI.getOpcode()) == OppCC &&
739 "Can only handle memory-operand cmov instructions with a condition "
740 "opposite to the selected branch direction.");
741
742 // The goal is to rewrite the cmov from:
743 //
744 // MBB:
745 // %A = CMOVcc %B (tied), (mem)
746 //
747 // to
748 //
749 // MBB:
750 // %A = CMOVcc %B (tied), %C
751 // FalseMBB:
752 // %C = MOV (mem)
753 //
754 // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
755 //
756 // MBB:
757 // JMP!cc SinkMBB
758 // FalseMBB:
759 // %C = MOV (mem)
760 // SinkMBB:
761 // %A = PHI [ %C, FalseMBB ], [ %B, MBB]
762
763 // Get a fresh register to use as the destination of the MOV.
764 const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg());
765 unsigned TmpReg = MRI->createVirtualRegister(RC);
766
767 SmallVector<MachineInstr *, 4> NewMIs;
768 bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg,
769 /*UnfoldLoad*/ true,
770 /*UnfoldStore*/ false, NewMIs);
771 (void)Unfolded;
772 assert(Unfolded && "Should never fail to unfold a loading cmov!");
773
774 // Move the new CMOV to just before the old one and reset any impacted
775 // iterator.
776 auto *NewCMOV = NewMIs.pop_back_val();
777 assert(X86::getCondFromCMovOpc(NewCMOV->getOpcode()) == OppCC &&
778 "Last new instruction isn't the expected CMOV!");
779 LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump());
780 MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV);
781 if (&*MIItBegin == &MI)
782 MIItBegin = MachineBasicBlock::iterator(NewCMOV);
783
784 // Sink whatever instructions were needed to produce the unfolded operand
785 // into the false block.
786 for (auto *NewMI : NewMIs) {
787 LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump());
788 FalseMBB->insert(FalseInsertionPoint, NewMI);
789 // Re-map any operands that are from other cmovs to the inputs for this block.
790 for (auto &MOp : NewMI->uses()) {
791 if (!MOp.isReg())
792 continue;
793 auto It = FalseBBRegRewriteTable.find(MOp.getReg());
794 if (It == FalseBBRegRewriteTable.end())
795 continue;
796
797 MOp.setReg(It->second);
798 // This might have been a kill when it referenced the cmov result, but
799 // it won't necessarily be once rewritten.
800 // FIXME: We could potentially improve this by tracking whether the
801 // operand to the cmov was also a kill, and then skipping the PHI node
802 // construction below.
803 MOp.setIsKill(false);
804 }
805 }
806 MBB->erase(MachineBasicBlock::iterator(MI),
807 std::next(MachineBasicBlock::iterator(MI)));
808
809 // Add this PHI to the rewrite table.
810 FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg;
811 }
812
813 // As we are creating the PHIs, we have to be careful if there is more than
814 // one. Later CMOVs may reference the results of earlier CMOVs, but later
815 // PHIs have to reference the individual true/false inputs from earlier PHIs.
816 // That also means that PHI construction must work forward from earlier to
817 // later, and that the code must maintain a mapping from earlier PHI's
818 // destination registers, and the registers that went into the PHI.
819 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
820
821 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
822 unsigned DestReg = MIIt->getOperand(0).getReg();
823 unsigned Op1Reg = MIIt->getOperand(1).getReg();
824 unsigned Op2Reg = MIIt->getOperand(2).getReg();
825
826 // If this CMOV we are processing is the opposite condition from the jump we
827 // generated, then we have to swap the operands for the PHI that is going to
828 // be generated.
829 if (X86::getCondFromCMovOpc(MIIt->getOpcode()) == OppCC)
830 std::swap(Op1Reg, Op2Reg);
831
832 auto Op1Itr = RegRewriteTable.find(Op1Reg);
833 if (Op1Itr != RegRewriteTable.end())
834 Op1Reg = Op1Itr->second.first;
835
836 auto Op2Itr = RegRewriteTable.find(Op2Reg);
837 if (Op2Itr != RegRewriteTable.end())
838 Op2Reg = Op2Itr->second.second;
839
840 // SinkMBB:
841 // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
842 // ...
843 MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
844 .addReg(Op1Reg)
845 .addMBB(FalseMBB)
846 .addReg(Op2Reg)
847 .addMBB(MBB);
848 (void)MIB;
849 LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
850 LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump());
851
852 // Add this PHI to the rewrite table.
853 RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
854 }
855
856 // Now remove the CMOV(s).
857 MBB->erase(MIItBegin, MIItEnd);
858 }
859
860 INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
861 false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)862 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
863 INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
864 false, false)
865
866 FunctionPass *llvm::createX86CmovConverterPass() {
867 return new X86CmovConverterPass();
868 }
869