1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef LIBTEXTCLASSIFIER_ANNOTATOR_TYPES_H_
18 #define LIBTEXTCLASSIFIER_ANNOTATOR_TYPES_H_
19
20 #include <time.h>
21 #include <algorithm>
22 #include <cmath>
23 #include <functional>
24 #include <map>
25 #include <set>
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "annotator/entity-data_generated.h"
31 #include "utils/base/integral_types.h"
32 #include "utils/base/logging.h"
33 #include "utils/flatbuffers.h"
34 #include "utils/variant.h"
35
36 namespace libtextclassifier3 {
37
38 constexpr int kInvalidIndex = -1;
39
40 // Index for a 0-based array of tokens.
41 using TokenIndex = int;
42
43 // Index for a 0-based array of codepoints.
44 using CodepointIndex = int;
45
46 // Marks a span in a sequence of codepoints. The first element is the index of
47 // the first codepoint of the span, and the second element is the index of the
48 // codepoint one past the end of the span.
49 // TODO(b/71982294): Make it a struct.
50 using CodepointSpan = std::pair<CodepointIndex, CodepointIndex>;
51
SpansOverlap(const CodepointSpan & a,const CodepointSpan & b)52 inline bool SpansOverlap(const CodepointSpan& a, const CodepointSpan& b) {
53 return a.first < b.second && b.first < a.second;
54 }
55
ValidNonEmptySpan(const CodepointSpan & span)56 inline bool ValidNonEmptySpan(const CodepointSpan& span) {
57 return span.first < span.second && span.first >= 0 && span.second >= 0;
58 }
59
60 template <typename T>
DoesCandidateConflict(const int considered_candidate,const std::vector<T> & candidates,const std::set<int,std::function<bool (int,int)>> & chosen_indices_set)61 bool DoesCandidateConflict(
62 const int considered_candidate, const std::vector<T>& candidates,
63 const std::set<int, std::function<bool(int, int)>>& chosen_indices_set) {
64 if (chosen_indices_set.empty()) {
65 return false;
66 }
67
68 auto conflicting_it = chosen_indices_set.lower_bound(considered_candidate);
69 // Check conflict on the right.
70 if (conflicting_it != chosen_indices_set.end() &&
71 SpansOverlap(candidates[considered_candidate].span,
72 candidates[*conflicting_it].span)) {
73 return true;
74 }
75
76 // Check conflict on the left.
77 // If we can't go more left, there can't be a conflict:
78 if (conflicting_it == chosen_indices_set.begin()) {
79 return false;
80 }
81 // Otherwise move one span left and insert if it doesn't overlap with the
82 // candidate.
83 --conflicting_it;
84 if (!SpansOverlap(candidates[considered_candidate].span,
85 candidates[*conflicting_it].span)) {
86 return false;
87 }
88
89 return true;
90 }
91
92 // Marks a span in a sequence of tokens. The first element is the index of the
93 // first token in the span, and the second element is the index of the token one
94 // past the end of the span.
95 // TODO(b/71982294): Make it a struct.
96 using TokenSpan = std::pair<TokenIndex, TokenIndex>;
97
98 // Returns the size of the token span. Assumes that the span is valid.
TokenSpanSize(const TokenSpan & token_span)99 inline int TokenSpanSize(const TokenSpan& token_span) {
100 return token_span.second - token_span.first;
101 }
102
103 // Returns a token span consisting of one token.
SingleTokenSpan(int token_index)104 inline TokenSpan SingleTokenSpan(int token_index) {
105 return {token_index, token_index + 1};
106 }
107
108 // Returns an intersection of two token spans. Assumes that both spans are valid
109 // and overlapping.
IntersectTokenSpans(const TokenSpan & token_span1,const TokenSpan & token_span2)110 inline TokenSpan IntersectTokenSpans(const TokenSpan& token_span1,
111 const TokenSpan& token_span2) {
112 return {std::max(token_span1.first, token_span2.first),
113 std::min(token_span1.second, token_span2.second)};
114 }
115
116 // Returns and expanded token span by adding a certain number of tokens on its
117 // left and on its right.
ExpandTokenSpan(const TokenSpan & token_span,int num_tokens_left,int num_tokens_right)118 inline TokenSpan ExpandTokenSpan(const TokenSpan& token_span,
119 int num_tokens_left, int num_tokens_right) {
120 return {token_span.first - num_tokens_left,
121 token_span.second + num_tokens_right};
122 }
123
124 // Token holds a token, its position in the original string and whether it was
125 // part of the input span.
126 struct Token {
127 std::string value;
128 CodepointIndex start;
129 CodepointIndex end;
130
131 // Whether the token is a padding token.
132 bool is_padding;
133
134 // Default constructor constructs the padding-token.
TokenToken135 Token()
136 : value(""), start(kInvalidIndex), end(kInvalidIndex), is_padding(true) {}
137
TokenToken138 Token(const std::string& arg_value, CodepointIndex arg_start,
139 CodepointIndex arg_end)
140 : value(arg_value), start(arg_start), end(arg_end), is_padding(false) {}
141
142 bool operator==(const Token& other) const {
143 return value == other.value && start == other.start && end == other.end &&
144 is_padding == other.is_padding;
145 }
146
IsContainedInSpanToken147 bool IsContainedInSpan(CodepointSpan span) const {
148 return start >= span.first && end <= span.second;
149 }
150 };
151
152 // Pretty-printing function for Token.
153 logging::LoggingStringStream& operator<<(logging::LoggingStringStream& stream,
154 const Token& token);
155
156 enum DatetimeGranularity {
157 GRANULARITY_UNKNOWN = -1, // GRANULARITY_UNKNOWN is used as a proxy for this
158 // structure being uninitialized.
159 GRANULARITY_YEAR = 0,
160 GRANULARITY_MONTH = 1,
161 GRANULARITY_WEEK = 2,
162 GRANULARITY_DAY = 3,
163 GRANULARITY_HOUR = 4,
164 GRANULARITY_MINUTE = 5,
165 GRANULARITY_SECOND = 6
166 };
167
168 struct DatetimeParseResult {
169 // The absolute time in milliseconds since the epoch in UTC.
170 int64 time_ms_utc;
171
172 // The precision of the estimate then in to calculating the milliseconds
173 DatetimeGranularity granularity;
174
DatetimeParseResultDatetimeParseResult175 DatetimeParseResult() : time_ms_utc(0), granularity(GRANULARITY_UNKNOWN) {}
176
DatetimeParseResultDatetimeParseResult177 DatetimeParseResult(int64 arg_time_ms_utc,
178 DatetimeGranularity arg_granularity)
179 : time_ms_utc(arg_time_ms_utc), granularity(arg_granularity) {}
180
IsSetDatetimeParseResult181 bool IsSet() const { return granularity != GRANULARITY_UNKNOWN; }
182
183 bool operator==(const DatetimeParseResult& other) const {
184 return granularity == other.granularity && time_ms_utc == other.time_ms_utc;
185 }
186 };
187
188 const float kFloatCompareEpsilon = 1e-5;
189
190 struct DatetimeParseResultSpan {
191 CodepointSpan span;
192 std::vector<DatetimeParseResult> data;
193 float target_classification_score;
194 float priority_score;
195
196 bool operator==(const DatetimeParseResultSpan& other) const {
197 return span == other.span && data == other.data &&
198 std::abs(target_classification_score -
199 other.target_classification_score) < kFloatCompareEpsilon &&
200 std::abs(priority_score - other.priority_score) <
201 kFloatCompareEpsilon;
202 }
203 };
204
205 // Pretty-printing function for DatetimeParseResultSpan.
206 logging::LoggingStringStream& operator<<(logging::LoggingStringStream& stream,
207 const DatetimeParseResultSpan& value);
208
209 struct ClassificationResult {
210 std::string collection;
211 float score;
212 DatetimeParseResult datetime_parse_result;
213 std::string serialized_knowledge_result;
214 std::string contact_name, contact_given_name, contact_nickname,
215 contact_email_address, contact_phone_number, contact_id;
216 std::string app_name, app_package_name;
217 int64 numeric_value;
218
219 // Length of the parsed duration in milliseconds.
220 int64 duration_ms;
221
222 // Internal score used for conflict resolution.
223 float priority_score;
224
225
226 // Entity data information.
227 std::string serialized_entity_data;
entity_dataClassificationResult228 const EntityData* entity_data() {
229 return LoadAndVerifyFlatbuffer<EntityData>(serialized_entity_data.data(),
230 serialized_entity_data.size());
231 }
232
ClassificationResultClassificationResult233 explicit ClassificationResult() : score(-1.0f), priority_score(-1.0) {}
234
ClassificationResultClassificationResult235 ClassificationResult(const std::string& arg_collection, float arg_score)
236 : collection(arg_collection),
237 score(arg_score),
238 priority_score(arg_score) {}
239
ClassificationResultClassificationResult240 ClassificationResult(const std::string& arg_collection, float arg_score,
241 float arg_priority_score)
242 : collection(arg_collection),
243 score(arg_score),
244 priority_score(arg_priority_score) {}
245 };
246
247 // Pretty-printing function for ClassificationResult.
248 logging::LoggingStringStream& operator<<(logging::LoggingStringStream& stream,
249 const ClassificationResult& result);
250
251 // Pretty-printing function for std::vector<ClassificationResult>.
252 logging::LoggingStringStream& operator<<(
253 logging::LoggingStringStream& stream,
254 const std::vector<ClassificationResult>& results);
255
256 // Represents a result of Annotate call.
257 struct AnnotatedSpan {
258 enum class Source { OTHER, KNOWLEDGE, DURATION, DATETIME };
259
260 // Unicode codepoint indices in the input string.
261 CodepointSpan span = {kInvalidIndex, kInvalidIndex};
262
263 // Classification result for the span.
264 std::vector<ClassificationResult> classification;
265
266 // The source of the annotation, used in conflict resolution.
267 Source source = Source::OTHER;
268
269 AnnotatedSpan() = default;
270
AnnotatedSpanAnnotatedSpan271 AnnotatedSpan(CodepointSpan arg_span,
272 std::vector<ClassificationResult> arg_classification)
273 : span(arg_span), classification(std::move(arg_classification)) {}
274 };
275
276 // Pretty-printing function for AnnotatedSpan.
277 logging::LoggingStringStream& operator<<(logging::LoggingStringStream& stream,
278 const AnnotatedSpan& span);
279
280 // StringPiece analogue for std::vector<T>.
281 template <class T>
282 class VectorSpan {
283 public:
VectorSpan()284 VectorSpan() : begin_(), end_() {}
VectorSpan(const std::vector<T> & v)285 VectorSpan(const std::vector<T>& v) // NOLINT(runtime/explicit)
286 : begin_(v.begin()), end_(v.end()) {}
VectorSpan(typename std::vector<T>::const_iterator begin,typename std::vector<T>::const_iterator end)287 VectorSpan(typename std::vector<T>::const_iterator begin,
288 typename std::vector<T>::const_iterator end)
289 : begin_(begin), end_(end) {}
290
291 const T& operator[](typename std::vector<T>::size_type i) const {
292 return *(begin_ + i);
293 }
294
size()295 int size() const { return end_ - begin_; }
begin()296 typename std::vector<T>::const_iterator begin() const { return begin_; }
end()297 typename std::vector<T>::const_iterator end() const { return end_; }
data()298 const float* data() const { return &(*begin_); }
299
300 private:
301 typename std::vector<T>::const_iterator begin_;
302 typename std::vector<T>::const_iterator end_;
303 };
304
305 struct DateParseData {
306 enum class Relation {
307 UNSPECIFIED = 0,
308 NEXT = 1,
309 NEXT_OR_SAME = 2,
310 LAST = 3,
311 NOW = 4,
312 TOMORROW = 5,
313 YESTERDAY = 6,
314 PAST = 7,
315 FUTURE = 8
316 };
317
318 enum class RelationType {
319 UNSPECIFIED = 0,
320 SUNDAY = 1,
321 MONDAY = 2,
322 TUESDAY = 3,
323 WEDNESDAY = 4,
324 THURSDAY = 5,
325 FRIDAY = 6,
326 SATURDAY = 7,
327 DAY = 8,
328 WEEK = 9,
329 MONTH = 10,
330 YEAR = 11,
331 HOUR = 12,
332 MINUTE = 13,
333 SECOND = 14,
334 };
335
336 enum Fields {
337 YEAR_FIELD = 1 << 0,
338 MONTH_FIELD = 1 << 1,
339 DAY_FIELD = 1 << 2,
340 HOUR_FIELD = 1 << 3,
341 MINUTE_FIELD = 1 << 4,
342 SECOND_FIELD = 1 << 5,
343 AMPM_FIELD = 1 << 6,
344 ZONE_OFFSET_FIELD = 1 << 7,
345 DST_OFFSET_FIELD = 1 << 8,
346 RELATION_FIELD = 1 << 9,
347 RELATION_TYPE_FIELD = 1 << 10,
348 RELATION_DISTANCE_FIELD = 1 << 11
349 };
350
351 enum class AMPM { AM = 0, PM = 1 };
352
353 enum class TimeUnit {
354 DAYS = 1,
355 WEEKS = 2,
356 MONTHS = 3,
357 HOURS = 4,
358 MINUTES = 5,
359 SECONDS = 6,
360 YEARS = 7
361 };
362
363 // Bit mask of fields which have been set on the struct
364 int field_set_mask = 0;
365
366 // Fields describing absolute date fields.
367 // Year of the date seen in the text match.
368 int year = 0;
369 // Month of the year starting with January = 1.
370 int month = 0;
371 // Day of the month starting with 1.
372 int day_of_month = 0;
373 // Hour of the day with a range of 0-23,
374 // values less than 12 need the AMPM field below or heuristics
375 // to definitively determine the time.
376 int hour = 0;
377 // Hour of the day with a range of 0-59.
378 int minute = 0;
379 // Hour of the day with a range of 0-59.
380 int second = 0;
381 // 0 == AM, 1 == PM
382 AMPM ampm = AMPM::AM;
383 // Number of hours offset from UTC this date time is in.
384 int zone_offset = 0;
385 // Number of hours offest for DST
386 int dst_offset = 0;
387
388 // The permutation from now that was made to find the date time.
389 Relation relation = Relation::UNSPECIFIED;
390 // The unit of measure of the change to the date time.
391 RelationType relation_type = RelationType::UNSPECIFIED;
392 // The number of units of change that were made.
393 int relation_distance = 0;
394
395 DateParseData() = default;
396
DateParseDataDateParseData397 DateParseData(int field_set_mask, int year, int month, int day_of_month,
398 int hour, int minute, int second, AMPM ampm, int zone_offset,
399 int dst_offset, Relation relation, RelationType relation_type,
400 int relation_distance) {
401 this->field_set_mask = field_set_mask;
402 this->year = year;
403 this->month = month;
404 this->day_of_month = day_of_month;
405 this->hour = hour;
406 this->minute = minute;
407 this->second = second;
408 this->ampm = ampm;
409 this->zone_offset = zone_offset;
410 this->dst_offset = dst_offset;
411 this->relation = relation;
412 this->relation_type = relation_type;
413 this->relation_distance = relation_distance;
414 }
415 };
416
417 // Pretty-printing function for DateParseData.
418 logging::LoggingStringStream& operator<<(logging::LoggingStringStream& stream,
419 const DateParseData& data);
420
421 } // namespace libtextclassifier3
422
423 #endif // LIBTEXTCLASSIFIER_ANNOTATOR_TYPES_H_
424