1 /* 2 * libjingle 3 * Copyright 2015 Google Inc. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright notice, 11 * this list of conditions and the following disclaimer in the documentation 12 * and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 package org.webrtc; 29 30 import android.graphics.Point; 31 import android.opengl.GLES20; 32 import android.opengl.Matrix; 33 34 import java.nio.ByteBuffer; 35 36 /** 37 * Static helper functions for renderer implementations. 38 */ 39 public class RendererCommon { 40 /** Interface for reporting rendering events. */ 41 public static interface RendererEvents { 42 /** 43 * Callback fired once first frame is rendered. 44 */ onFirstFrameRendered()45 public void onFirstFrameRendered(); 46 47 /** 48 * Callback fired when rendered frame resolution or rotation has changed. 49 */ onFrameResolutionChanged(int videoWidth, int videoHeight, int rotation)50 public void onFrameResolutionChanged(int videoWidth, int videoHeight, int rotation); 51 } 52 53 /** Interface for rendering frames on an EGLSurface. */ 54 public static interface GlDrawer { 55 /** 56 * Functions for drawing frames with different sources. The rendering surface target is 57 * implied by the current EGL context of the calling thread and requires no explicit argument. 58 * The coordinates specify the viewport location on the surface target. 59 */ drawOes(int oesTextureId, float[] texMatrix, int x, int y, int width, int height)60 void drawOes(int oesTextureId, float[] texMatrix, int x, int y, int width, int height); drawRgb(int textureId, float[] texMatrix, int x, int y, int width, int height)61 void drawRgb(int textureId, float[] texMatrix, int x, int y, int width, int height); drawYuv(int[] yuvTextures, float[] texMatrix, int x, int y, int width, int height)62 void drawYuv(int[] yuvTextures, float[] texMatrix, int x, int y, int width, int height); 63 64 /** 65 * Release all GL resources. This needs to be done manually, otherwise resources may leak. 66 */ release()67 void release(); 68 } 69 70 /** 71 * Helper class for uploading YUV bytebuffer frames to textures that handles stride > width. This 72 * class keeps an internal ByteBuffer to avoid unnecessary allocations for intermediate copies. 73 */ 74 public static class YuvUploader { 75 // Intermediate copy buffer for uploading yuv frames that are not packed, i.e. stride > width. 76 // TODO(magjed): Investigate when GL_UNPACK_ROW_LENGTH is available, or make a custom shader 77 // that handles stride and compare performance with intermediate copy. 78 private ByteBuffer copyBuffer; 79 80 /** 81 * Upload |planes| into |outputYuvTextures|, taking stride into consideration. 82 * |outputYuvTextures| must have been generated in advance. 83 */ uploadYuvData( int[] outputYuvTextures, int width, int height, int[] strides, ByteBuffer[] planes)84 public void uploadYuvData( 85 int[] outputYuvTextures, int width, int height, int[] strides, ByteBuffer[] planes) { 86 final int[] planeWidths = new int[] {width, width / 2, width / 2}; 87 final int[] planeHeights = new int[] {height, height / 2, height / 2}; 88 // Make a first pass to see if we need a temporary copy buffer. 89 int copyCapacityNeeded = 0; 90 for (int i = 0; i < 3; ++i) { 91 if (strides[i] > planeWidths[i]) { 92 copyCapacityNeeded = Math.max(copyCapacityNeeded, planeWidths[i] * planeHeights[i]); 93 } 94 } 95 // Allocate copy buffer if necessary. 96 if (copyCapacityNeeded > 0 97 && (copyBuffer == null || copyBuffer.capacity() < copyCapacityNeeded)) { 98 copyBuffer = ByteBuffer.allocateDirect(copyCapacityNeeded); 99 } 100 // Upload each plane. 101 for (int i = 0; i < 3; ++i) { 102 GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i); 103 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, outputYuvTextures[i]); 104 // GLES only accepts packed data, i.e. stride == planeWidth. 105 final ByteBuffer packedByteBuffer; 106 if (strides[i] == planeWidths[i]) { 107 // Input is packed already. 108 packedByteBuffer = planes[i]; 109 } else { 110 VideoRenderer.nativeCopyPlane( 111 planes[i], planeWidths[i], planeHeights[i], strides[i], copyBuffer, planeWidths[i]); 112 packedByteBuffer = copyBuffer; 113 } 114 GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_LUMINANCE, planeWidths[i], 115 planeHeights[i], 0, GLES20.GL_LUMINANCE, GLES20.GL_UNSIGNED_BYTE, packedByteBuffer); 116 } 117 } 118 } 119 120 // Types of video scaling: 121 // SCALE_ASPECT_FIT - video frame is scaled to fit the size of the view by 122 // maintaining the aspect ratio (black borders may be displayed). 123 // SCALE_ASPECT_FILL - video frame is scaled to fill the size of the view by 124 // maintaining the aspect ratio. Some portion of the video frame may be 125 // clipped. 126 // SCALE_ASPECT_BALANCED - Compromise between FIT and FILL. Video frame will fill as much as 127 // possible of the view while maintaining aspect ratio, under the constraint that at least 128 // |BALANCED_VISIBLE_FRACTION| of the frame content will be shown. 129 public static enum ScalingType { SCALE_ASPECT_FIT, SCALE_ASPECT_FILL, SCALE_ASPECT_BALANCED } 130 // The minimum fraction of the frame content that will be shown for |SCALE_ASPECT_BALANCED|. 131 // This limits excessive cropping when adjusting display size. 132 private static float BALANCED_VISIBLE_FRACTION = 0.5625f; identityMatrix()133 public static final float[] identityMatrix() { 134 return new float[] { 135 1, 0, 0, 0, 136 0, 1, 0, 0, 137 0, 0, 1, 0, 138 0, 0, 0, 1}; 139 } 140 // Matrix with transform y' = 1 - y. verticalFlipMatrix()141 public static final float[] verticalFlipMatrix() { 142 return new float[] { 143 1, 0, 0, 0, 144 0, -1, 0, 0, 145 0, 0, 1, 0, 146 0, 1, 0, 1}; 147 } 148 149 // Matrix with transform x' = 1 - x. horizontalFlipMatrix()150 public static final float[] horizontalFlipMatrix() { 151 return new float[] { 152 -1, 0, 0, 0, 153 0, 1, 0, 0, 154 0, 0, 1, 0, 155 1, 0, 0, 1}; 156 } 157 158 /** 159 * Returns texture matrix that will have the effect of rotating the frame |rotationDegree| 160 * clockwise when rendered. 161 */ rotateTextureMatrix(float[] textureMatrix, float rotationDegree)162 public static float[] rotateTextureMatrix(float[] textureMatrix, float rotationDegree) { 163 final float[] rotationMatrix = new float[16]; 164 Matrix.setRotateM(rotationMatrix, 0, rotationDegree, 0, 0, 1); 165 adjustOrigin(rotationMatrix); 166 return multiplyMatrices(textureMatrix, rotationMatrix); 167 } 168 169 /** 170 * Returns new matrix with the result of a * b. 171 */ multiplyMatrices(float[] a, float[] b)172 public static float[] multiplyMatrices(float[] a, float[] b) { 173 final float[] resultMatrix = new float[16]; 174 Matrix.multiplyMM(resultMatrix, 0, a, 0, b, 0); 175 return resultMatrix; 176 } 177 178 /** 179 * Returns layout transformation matrix that applies an optional mirror effect and compensates 180 * for video vs display aspect ratio. 181 */ getLayoutMatrix( boolean mirror, float videoAspectRatio, float displayAspectRatio)182 public static float[] getLayoutMatrix( 183 boolean mirror, float videoAspectRatio, float displayAspectRatio) { 184 float scaleX = 1; 185 float scaleY = 1; 186 // Scale X or Y dimension so that video and display size have same aspect ratio. 187 if (displayAspectRatio > videoAspectRatio) { 188 scaleY = videoAspectRatio / displayAspectRatio; 189 } else { 190 scaleX = displayAspectRatio / videoAspectRatio; 191 } 192 // Apply optional horizontal flip. 193 if (mirror) { 194 scaleX *= -1; 195 } 196 final float matrix[] = new float[16]; 197 Matrix.setIdentityM(matrix, 0); 198 Matrix.scaleM(matrix, 0, scaleX, scaleY, 1); 199 adjustOrigin(matrix); 200 return matrix; 201 } 202 203 /** 204 * Calculate display size based on scaling type, video aspect ratio, and maximum display size. 205 */ getDisplaySize(ScalingType scalingType, float videoAspectRatio, int maxDisplayWidth, int maxDisplayHeight)206 public static Point getDisplaySize(ScalingType scalingType, float videoAspectRatio, 207 int maxDisplayWidth, int maxDisplayHeight) { 208 return getDisplaySize(convertScalingTypeToVisibleFraction(scalingType), videoAspectRatio, 209 maxDisplayWidth, maxDisplayHeight); 210 } 211 212 /** 213 * Move |matrix| transformation origin to (0.5, 0.5). This is the origin for texture coordinates 214 * that are in the range 0 to 1. 215 */ adjustOrigin(float[] matrix)216 private static void adjustOrigin(float[] matrix) { 217 // Note that OpenGL is using column-major order. 218 // Pre translate with -0.5 to move coordinates to range [-0.5, 0.5]. 219 matrix[12] -= 0.5f * (matrix[0] + matrix[4]); 220 matrix[13] -= 0.5f * (matrix[1] + matrix[5]); 221 // Post translate with 0.5 to move coordinates to range [0, 1]. 222 matrix[12] += 0.5f; 223 matrix[13] += 0.5f; 224 } 225 226 /** 227 * Each scaling type has a one-to-one correspondence to a numeric minimum fraction of the video 228 * that must remain visible. 229 */ convertScalingTypeToVisibleFraction(ScalingType scalingType)230 private static float convertScalingTypeToVisibleFraction(ScalingType scalingType) { 231 switch (scalingType) { 232 case SCALE_ASPECT_FIT: 233 return 1.0f; 234 case SCALE_ASPECT_FILL: 235 return 0.0f; 236 case SCALE_ASPECT_BALANCED: 237 return BALANCED_VISIBLE_FRACTION; 238 default: 239 throw new IllegalArgumentException(); 240 } 241 } 242 243 /** 244 * Calculate display size based on minimum fraction of the video that must remain visible, 245 * video aspect ratio, and maximum display size. 246 */ getDisplaySize(float minVisibleFraction, float videoAspectRatio, int maxDisplayWidth, int maxDisplayHeight)247 private static Point getDisplaySize(float minVisibleFraction, float videoAspectRatio, 248 int maxDisplayWidth, int maxDisplayHeight) { 249 // If there is no constraint on the amount of cropping, fill the allowed display area. 250 if (minVisibleFraction == 0 || videoAspectRatio == 0) { 251 return new Point(maxDisplayWidth, maxDisplayHeight); 252 } 253 // Each dimension is constrained on max display size and how much we are allowed to crop. 254 final int width = Math.min(maxDisplayWidth, 255 Math.round(maxDisplayHeight / minVisibleFraction * videoAspectRatio)); 256 final int height = Math.min(maxDisplayHeight, 257 Math.round(maxDisplayWidth / minVisibleFraction / videoAspectRatio)); 258 return new Point(width, height); 259 } 260 } 261