1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109 #include <openssl/bn.h>
110
111 #include <assert.h>
112 #include <stdlib.h>
113 #include <string.h>
114
115 #include <openssl/cpu.h>
116 #include <openssl/err.h>
117 #include <openssl/mem.h>
118
119 #include "internal.h"
120 #include "rsaz_exp.h"
121
122
BN_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)123 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
124 int i, bits, ret = 0;
125 BIGNUM *v, *rr;
126
127 BN_CTX_start(ctx);
128 if (r == a || r == p) {
129 rr = BN_CTX_get(ctx);
130 } else {
131 rr = r;
132 }
133
134 v = BN_CTX_get(ctx);
135 if (rr == NULL || v == NULL) {
136 goto err;
137 }
138
139 if (BN_copy(v, a) == NULL) {
140 goto err;
141 }
142 bits = BN_num_bits(p);
143
144 if (BN_is_odd(p)) {
145 if (BN_copy(rr, a) == NULL) {
146 goto err;
147 }
148 } else {
149 if (!BN_one(rr)) {
150 goto err;
151 }
152 }
153
154 for (i = 1; i < bits; i++) {
155 if (!BN_sqr(v, v, ctx)) {
156 goto err;
157 }
158 if (BN_is_bit_set(p, i)) {
159 if (!BN_mul(rr, rr, v, ctx)) {
160 goto err;
161 }
162 }
163 }
164
165 if (r != rr && !BN_copy(r, rr)) {
166 goto err;
167 }
168 ret = 1;
169
170 err:
171 BN_CTX_end(ctx);
172 return ret;
173 }
174
175 typedef struct bn_recp_ctx_st {
176 BIGNUM N; // the divisor
177 BIGNUM Nr; // the reciprocal
178 int num_bits;
179 int shift;
180 int flags;
181 } BN_RECP_CTX;
182
BN_RECP_CTX_init(BN_RECP_CTX * recp)183 static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
184 BN_init(&recp->N);
185 BN_init(&recp->Nr);
186 recp->num_bits = 0;
187 recp->shift = 0;
188 recp->flags = 0;
189 }
190
BN_RECP_CTX_free(BN_RECP_CTX * recp)191 static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
192 if (recp == NULL) {
193 return;
194 }
195
196 BN_free(&recp->N);
197 BN_free(&recp->Nr);
198 }
199
BN_RECP_CTX_set(BN_RECP_CTX * recp,const BIGNUM * d,BN_CTX * ctx)200 static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
201 if (!BN_copy(&(recp->N), d)) {
202 return 0;
203 }
204 BN_zero(&recp->Nr);
205 recp->num_bits = BN_num_bits(d);
206 recp->shift = 0;
207
208 return 1;
209 }
210
211 // len is the expected size of the result We actually calculate with an extra
212 // word of precision, so we can do faster division if the remainder is not
213 // required.
214 // r := 2^len / m
BN_reciprocal(BIGNUM * r,const BIGNUM * m,int len,BN_CTX * ctx)215 static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
216 int ret = -1;
217 BIGNUM *t;
218
219 BN_CTX_start(ctx);
220 t = BN_CTX_get(ctx);
221 if (t == NULL) {
222 goto err;
223 }
224
225 if (!BN_set_bit(t, len)) {
226 goto err;
227 }
228
229 if (!BN_div(r, NULL, t, m, ctx)) {
230 goto err;
231 }
232
233 ret = len;
234
235 err:
236 BN_CTX_end(ctx);
237 return ret;
238 }
239
BN_div_recp(BIGNUM * dv,BIGNUM * rem,const BIGNUM * m,BN_RECP_CTX * recp,BN_CTX * ctx)240 static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
241 BN_RECP_CTX *recp, BN_CTX *ctx) {
242 int i, j, ret = 0;
243 BIGNUM *a, *b, *d, *r;
244
245 BN_CTX_start(ctx);
246 a = BN_CTX_get(ctx);
247 b = BN_CTX_get(ctx);
248 if (dv != NULL) {
249 d = dv;
250 } else {
251 d = BN_CTX_get(ctx);
252 }
253
254 if (rem != NULL) {
255 r = rem;
256 } else {
257 r = BN_CTX_get(ctx);
258 }
259
260 if (a == NULL || b == NULL || d == NULL || r == NULL) {
261 goto err;
262 }
263
264 if (BN_ucmp(m, &recp->N) < 0) {
265 BN_zero(d);
266 if (!BN_copy(r, m)) {
267 goto err;
268 }
269 BN_CTX_end(ctx);
270 return 1;
271 }
272
273 // We want the remainder
274 // Given input of ABCDEF / ab
275 // we need multiply ABCDEF by 3 digests of the reciprocal of ab
276
277 // i := max(BN_num_bits(m), 2*BN_num_bits(N))
278 i = BN_num_bits(m);
279 j = recp->num_bits << 1;
280 if (j > i) {
281 i = j;
282 }
283
284 // Nr := round(2^i / N)
285 if (i != recp->shift) {
286 recp->shift =
287 BN_reciprocal(&(recp->Nr), &(recp->N), i,
288 ctx); // BN_reciprocal returns i, or -1 for an error
289 }
290
291 if (recp->shift == -1) {
292 goto err;
293 }
294
295 // d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
296 // BN_num_bits(N)))|
297 // = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
298 // BN_num_bits(N)))|
299 // <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
300 // = |m/N|
301 if (!BN_rshift(a, m, recp->num_bits)) {
302 goto err;
303 }
304 if (!BN_mul(b, a, &(recp->Nr), ctx)) {
305 goto err;
306 }
307 if (!BN_rshift(d, b, i - recp->num_bits)) {
308 goto err;
309 }
310 d->neg = 0;
311
312 if (!BN_mul(b, &(recp->N), d, ctx)) {
313 goto err;
314 }
315 if (!BN_usub(r, m, b)) {
316 goto err;
317 }
318 r->neg = 0;
319
320 j = 0;
321 while (BN_ucmp(r, &(recp->N)) >= 0) {
322 if (j++ > 2) {
323 OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
324 goto err;
325 }
326 if (!BN_usub(r, r, &(recp->N))) {
327 goto err;
328 }
329 if (!BN_add_word(d, 1)) {
330 goto err;
331 }
332 }
333
334 r->neg = BN_is_zero(r) ? 0 : m->neg;
335 d->neg = m->neg ^ recp->N.neg;
336 ret = 1;
337
338 err:
339 BN_CTX_end(ctx);
340 return ret;
341 }
342
BN_mod_mul_reciprocal(BIGNUM * r,const BIGNUM * x,const BIGNUM * y,BN_RECP_CTX * recp,BN_CTX * ctx)343 static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
344 BN_RECP_CTX *recp, BN_CTX *ctx) {
345 int ret = 0;
346 BIGNUM *a;
347 const BIGNUM *ca;
348
349 BN_CTX_start(ctx);
350 a = BN_CTX_get(ctx);
351 if (a == NULL) {
352 goto err;
353 }
354
355 if (y != NULL) {
356 if (x == y) {
357 if (!BN_sqr(a, x, ctx)) {
358 goto err;
359 }
360 } else {
361 if (!BN_mul(a, x, y, ctx)) {
362 goto err;
363 }
364 }
365 ca = a;
366 } else {
367 ca = x; // Just do the mod
368 }
369
370 ret = BN_div_recp(NULL, r, ca, recp, ctx);
371
372 err:
373 BN_CTX_end(ctx);
374 return ret;
375 }
376
377 // BN_window_bits_for_exponent_size returns sliding window size for mod_exp with
378 // a |b| bit exponent.
379 //
380 // For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
381 // multiplications is a constant plus on average
382 //
383 // 2^(w-1) + (b-w)/(w+1);
384 //
385 // here 2^(w-1) is for precomputing the table (we actually need entries only
386 // for windows that have the lowest bit set), and (b-w)/(w+1) is an
387 // approximation for the expected number of w-bit windows, not counting the
388 // first one.
389 //
390 // Thus we should use
391 //
392 // w >= 6 if b > 671
393 // w = 5 if 671 > b > 239
394 // w = 4 if 239 > b > 79
395 // w = 3 if 79 > b > 23
396 // w <= 2 if 23 > b
397 //
398 // (with draws in between). Very small exponents are often selected
399 // with low Hamming weight, so we use w = 1 for b <= 23.
BN_window_bits_for_exponent_size(int b)400 static int BN_window_bits_for_exponent_size(int b) {
401 if (b > 671) {
402 return 6;
403 }
404 if (b > 239) {
405 return 5;
406 }
407 if (b > 79) {
408 return 4;
409 }
410 if (b > 23) {
411 return 3;
412 }
413 return 1;
414 }
415
416 // TABLE_SIZE is the maximum precomputation table size for *variable* sliding
417 // windows. This must be 2^(max_window - 1), where max_window is the largest
418 // value returned from |BN_window_bits_for_exponent_size|.
419 #define TABLE_SIZE 32
420
421 // TABLE_BITS_SMALL is the smallest value returned from
422 // |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| *
423 // |BN_SMALL_MAX_WORDS| words.
424 #define TABLE_BITS_SMALL 5
425
426 // TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most
427 // |BN_BITS2| * |BN_SMALL_MAX_WORDS|.
428 #define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1))
429
mod_exp_recp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)430 static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
431 const BIGNUM *m, BN_CTX *ctx) {
432 int i, j, ret = 0, wstart, window;
433 int start = 1;
434 BIGNUM *aa;
435 // Table of variables obtained from 'ctx'
436 BIGNUM *val[TABLE_SIZE];
437 BN_RECP_CTX recp;
438
439 // This function is only called on even moduli.
440 assert(!BN_is_odd(m));
441
442 int bits = BN_num_bits(p);
443 if (bits == 0) {
444 return BN_one(r);
445 }
446
447 BN_CTX_start(ctx);
448 aa = BN_CTX_get(ctx);
449 val[0] = BN_CTX_get(ctx);
450 if (!aa || !val[0]) {
451 goto err;
452 }
453
454 BN_RECP_CTX_init(&recp);
455 if (m->neg) {
456 // ignore sign of 'm'
457 if (!BN_copy(aa, m)) {
458 goto err;
459 }
460 aa->neg = 0;
461 if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
462 goto err;
463 }
464 } else {
465 if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
466 goto err;
467 }
468 }
469
470 if (!BN_nnmod(val[0], a, m, ctx)) {
471 goto err; // 1
472 }
473 if (BN_is_zero(val[0])) {
474 BN_zero(r);
475 ret = 1;
476 goto err;
477 }
478
479 window = BN_window_bits_for_exponent_size(bits);
480 if (window > 1) {
481 if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
482 goto err; // 2
483 }
484 j = 1 << (window - 1);
485 for (i = 1; i < j; i++) {
486 if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
487 !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
488 goto err;
489 }
490 }
491 }
492
493 start = 1; // This is used to avoid multiplication etc
494 // when there is only the value '1' in the
495 // buffer.
496 wstart = bits - 1; // The top bit of the window
497
498 if (!BN_one(r)) {
499 goto err;
500 }
501
502 for (;;) {
503 int wvalue; // The 'value' of the window
504 int wend; // The bottom bit of the window
505
506 if (!BN_is_bit_set(p, wstart)) {
507 if (!start) {
508 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
509 goto err;
510 }
511 }
512 if (wstart == 0) {
513 break;
514 }
515 wstart--;
516 continue;
517 }
518
519 // We now have wstart on a 'set' bit, we now need to work out
520 // how bit a window to do. To do this we need to scan
521 // forward until the last set bit before the end of the
522 // window
523 wvalue = 1;
524 wend = 0;
525 for (i = 1; i < window; i++) {
526 if (wstart - i < 0) {
527 break;
528 }
529 if (BN_is_bit_set(p, wstart - i)) {
530 wvalue <<= (i - wend);
531 wvalue |= 1;
532 wend = i;
533 }
534 }
535
536 // wend is the size of the current window
537 j = wend + 1;
538 // add the 'bytes above'
539 if (!start) {
540 for (i = 0; i < j; i++) {
541 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
542 goto err;
543 }
544 }
545 }
546
547 // wvalue will be an odd number < 2^window
548 if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
549 goto err;
550 }
551
552 // move the 'window' down further
553 wstart -= wend + 1;
554 start = 0;
555 if (wstart < 0) {
556 break;
557 }
558 }
559 ret = 1;
560
561 err:
562 BN_CTX_end(ctx);
563 BN_RECP_CTX_free(&recp);
564 return ret;
565 }
566
BN_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)567 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
568 BN_CTX *ctx) {
569 if (m->neg) {
570 OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
571 return 0;
572 }
573 if (a->neg || BN_ucmp(a, m) >= 0) {
574 if (!BN_nnmod(r, a, m, ctx)) {
575 return 0;
576 }
577 a = r;
578 }
579
580 if (BN_is_odd(m)) {
581 return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
582 }
583
584 return mod_exp_recp(r, a, p, m, ctx);
585 }
586
BN_mod_exp_mont(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)587 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
588 const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) {
589 if (!BN_is_odd(m)) {
590 OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
591 return 0;
592 }
593 if (m->neg) {
594 OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
595 return 0;
596 }
597 if (a->neg || BN_ucmp(a, m) >= 0) {
598 OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
599 return 0;
600 }
601
602 int bits = BN_num_bits(p);
603 if (bits == 0) {
604 // x**0 mod 1 is still zero.
605 if (BN_abs_is_word(m, 1)) {
606 BN_zero(rr);
607 return 1;
608 }
609 return BN_one(rr);
610 }
611
612 int ret = 0;
613 BIGNUM *val[TABLE_SIZE];
614 BN_MONT_CTX *new_mont = NULL;
615
616 BN_CTX_start(ctx);
617 BIGNUM *r = BN_CTX_get(ctx);
618 val[0] = BN_CTX_get(ctx);
619 if (r == NULL || val[0] == NULL) {
620 goto err;
621 }
622
623 // Allocate a montgomery context if it was not supplied by the caller.
624 if (mont == NULL) {
625 new_mont = BN_MONT_CTX_new_consttime(m, ctx);
626 if (new_mont == NULL) {
627 goto err;
628 }
629 mont = new_mont;
630 }
631
632 // We exponentiate by looking at sliding windows of the exponent and
633 // precomputing powers of |a|. Windows may be shifted so they always end on a
634 // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1)
635 // for i = 0 to 2^(window-1), all in Montgomery form.
636 int window = BN_window_bits_for_exponent_size(bits);
637 if (!BN_to_montgomery(val[0], a, mont, ctx)) {
638 goto err;
639 }
640 if (window > 1) {
641 BIGNUM *d = BN_CTX_get(ctx);
642 if (d == NULL ||
643 !BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
644 goto err;
645 }
646 for (int i = 1; i < 1 << (window - 1); i++) {
647 val[i] = BN_CTX_get(ctx);
648 if (val[i] == NULL ||
649 !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
650 goto err;
651 }
652 }
653 }
654
655 // |p| is non-zero, so at least one window is non-zero. To save some
656 // multiplications, defer initializing |r| until then.
657 int r_is_one = 1;
658 int wstart = bits - 1; // The top bit of the window.
659 for (;;) {
660 if (!BN_is_bit_set(p, wstart)) {
661 if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
662 goto err;
663 }
664 if (wstart == 0) {
665 break;
666 }
667 wstart--;
668 continue;
669 }
670
671 // We now have wstart on a set bit. Find the largest window we can use.
672 int wvalue = 1;
673 int wsize = 0;
674 for (int i = 1; i < window && i <= wstart; i++) {
675 if (BN_is_bit_set(p, wstart - i)) {
676 wvalue <<= (i - wsize);
677 wvalue |= 1;
678 wsize = i;
679 }
680 }
681
682 // Shift |r| to the end of the window.
683 if (!r_is_one) {
684 for (int i = 0; i < wsize + 1; i++) {
685 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
686 goto err;
687 }
688 }
689 }
690
691 assert(wvalue & 1);
692 assert(wvalue < (1 << window));
693 if (r_is_one) {
694 if (!BN_copy(r, val[wvalue >> 1])) {
695 goto err;
696 }
697 } else if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
698 goto err;
699 }
700
701 r_is_one = 0;
702 if (wstart == wsize) {
703 break;
704 }
705 wstart -= wsize + 1;
706 }
707
708 // |p| is non-zero, so |r_is_one| must be cleared at some point.
709 assert(!r_is_one);
710
711 if (!BN_from_montgomery(rr, r, mont, ctx)) {
712 goto err;
713 }
714 ret = 1;
715
716 err:
717 BN_MONT_CTX_free(new_mont);
718 BN_CTX_end(ctx);
719 return ret;
720 }
721
bn_mod_exp_mont_small(BN_ULONG * r,const BN_ULONG * a,size_t num,const BN_ULONG * p,size_t num_p,const BN_MONT_CTX * mont)722 void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
723 const BN_ULONG *p, size_t num_p,
724 const BN_MONT_CTX *mont) {
725 if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) {
726 abort();
727 }
728 assert(BN_is_odd(&mont->N));
729
730 // Count the number of bits in |p|. Note this function treats |p| as public.
731 while (num_p != 0 && p[num_p - 1] == 0) {
732 num_p--;
733 }
734 if (num_p == 0) {
735 bn_from_montgomery_small(r, mont->RR.d, num, mont);
736 return;
737 }
738 unsigned bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2;
739 assert(bits != 0);
740
741 // We exponentiate by looking at sliding windows of the exponent and
742 // precomputing powers of |a|. Windows may be shifted so they always end on a
743 // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for
744 // i = 0 to 2^(window-1), all in Montgomery form.
745 unsigned window = BN_window_bits_for_exponent_size(bits);
746 if (window > TABLE_BITS_SMALL) {
747 window = TABLE_BITS_SMALL; // Tolerate excessively large |p|.
748 }
749 BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS];
750 OPENSSL_memcpy(val[0], a, num * sizeof(BN_ULONG));
751 if (window > 1) {
752 BN_ULONG d[BN_SMALL_MAX_WORDS];
753 bn_mod_mul_montgomery_small(d, val[0], val[0], num, mont);
754 for (unsigned i = 1; i < 1u << (window - 1); i++) {
755 bn_mod_mul_montgomery_small(val[i], val[i - 1], d, num, mont);
756 }
757 }
758
759 // |p| is non-zero, so at least one window is non-zero. To save some
760 // multiplications, defer initializing |r| until then.
761 int r_is_one = 1;
762 unsigned wstart = bits - 1; // The top bit of the window.
763 for (;;) {
764 if (!bn_is_bit_set_words(p, num_p, wstart)) {
765 if (!r_is_one) {
766 bn_mod_mul_montgomery_small(r, r, r, num, mont);
767 }
768 if (wstart == 0) {
769 break;
770 }
771 wstart--;
772 continue;
773 }
774
775 // We now have wstart on a set bit. Find the largest window we can use.
776 unsigned wvalue = 1;
777 unsigned wsize = 0;
778 for (unsigned i = 1; i < window && i <= wstart; i++) {
779 if (bn_is_bit_set_words(p, num_p, wstart - i)) {
780 wvalue <<= (i - wsize);
781 wvalue |= 1;
782 wsize = i;
783 }
784 }
785
786 // Shift |r| to the end of the window.
787 if (!r_is_one) {
788 for (unsigned i = 0; i < wsize + 1; i++) {
789 bn_mod_mul_montgomery_small(r, r, r, num, mont);
790 }
791 }
792
793 assert(wvalue & 1);
794 assert(wvalue < (1u << window));
795 if (r_is_one) {
796 OPENSSL_memcpy(r, val[wvalue >> 1], num * sizeof(BN_ULONG));
797 } else {
798 bn_mod_mul_montgomery_small(r, r, val[wvalue >> 1], num, mont);
799 }
800 r_is_one = 0;
801 if (wstart == wsize) {
802 break;
803 }
804 wstart -= wsize + 1;
805 }
806
807 // |p| is non-zero, so |r_is_one| must be cleared at some point.
808 assert(!r_is_one);
809 OPENSSL_cleanse(val, sizeof(val));
810 }
811
bn_mod_inverse_prime_mont_small(BN_ULONG * r,const BN_ULONG * a,size_t num,const BN_MONT_CTX * mont)812 void bn_mod_inverse_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
813 const BN_MONT_CTX *mont) {
814 if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) {
815 abort();
816 }
817
818 // Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime.
819 BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS];
820 const BN_ULONG *p = mont->N.d;
821 OPENSSL_memcpy(p_minus_two, p, num * sizeof(BN_ULONG));
822 if (p_minus_two[0] >= 2) {
823 p_minus_two[0] -= 2;
824 } else {
825 p_minus_two[0] -= 2;
826 for (size_t i = 1; i < num; i++) {
827 if (p_minus_two[i]-- != 0) {
828 break;
829 }
830 }
831 }
832
833 bn_mod_exp_mont_small(r, a, num, p_minus_two, num, mont);
834 }
835
copy_to_prebuf(const BIGNUM * b,int top,BN_ULONG * table,int idx,int window)836 static void copy_to_prebuf(const BIGNUM *b, int top, BN_ULONG *table, int idx,
837 int window) {
838 int ret = bn_copy_words(table + idx * top, top, b);
839 assert(ret); // |b| is guaranteed to fit.
840 (void)ret;
841 }
842
copy_from_prebuf(BIGNUM * b,int top,const BN_ULONG * table,int idx,int window)843 static int copy_from_prebuf(BIGNUM *b, int top, const BN_ULONG *table, int idx,
844 int window) {
845 if (!bn_wexpand(b, top)) {
846 return 0;
847 }
848
849 OPENSSL_memset(b->d, 0, sizeof(BN_ULONG) * top);
850 const int width = 1 << window;
851 for (int i = 0; i < width; i++, table += top) {
852 BN_ULONG mask = constant_time_eq_int(i, idx);
853 for (int j = 0; j < top; j++) {
854 b->d[j] |= table[j] & mask;
855 }
856 }
857
858 b->width = top;
859 return 1;
860 }
861
862 #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
863 (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
864
865 // Window sizes optimized for fixed window size modular exponentiation
866 // algorithm (BN_mod_exp_mont_consttime).
867 //
868 // To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
869 // size of the window must not exceed
870 // log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
871 //
872 // Window size thresholds are defined for cache line sizes of 32 and 64, cache
873 // line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
874 // 7 should only be used on processors that have a 128 byte or greater cache
875 // line size.
876 #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
877
878 #define BN_window_bits_for_ctime_exponent_size(b) \
879 ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
880 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
881
882 #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
883
884 #define BN_window_bits_for_ctime_exponent_size(b) \
885 ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
886 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
887
888 #endif
889
890 // Given a pointer value, compute the next address that is a cache line
891 // multiple.
892 #define MOD_EXP_CTIME_ALIGN(x_) \
893 ((unsigned char *)(x_) + \
894 (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
895 (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
896
897 // This variant of |BN_mod_exp_mont| uses fixed windows and fixed memory access
898 // patterns to protect secret exponents (cf. the hyper-threading timing attacks
899 // pointed out by Colin Percival,
900 // http://www.daemonology.net/hyperthreading-considered-harmful/)
BN_mod_exp_mont_consttime(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)901 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
902 const BIGNUM *m, BN_CTX *ctx,
903 const BN_MONT_CTX *mont) {
904 int i, ret = 0, window, wvalue;
905 BN_MONT_CTX *new_mont = NULL;
906
907 int numPowers;
908 unsigned char *powerbufFree = NULL;
909 int powerbufLen = 0;
910 BN_ULONG *powerbuf = NULL;
911 BIGNUM tmp, am;
912
913 if (!BN_is_odd(m)) {
914 OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
915 return 0;
916 }
917 if (m->neg) {
918 OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
919 return 0;
920 }
921 if (a->neg || BN_ucmp(a, m) >= 0) {
922 OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
923 return 0;
924 }
925
926 // Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
927 // whether the top bits are zero.
928 int max_bits = p->width * BN_BITS2;
929 int bits = max_bits;
930 if (bits == 0) {
931 // x**0 mod 1 is still zero.
932 if (BN_abs_is_word(m, 1)) {
933 BN_zero(rr);
934 return 1;
935 }
936 return BN_one(rr);
937 }
938
939 // Allocate a montgomery context if it was not supplied by the caller.
940 if (mont == NULL) {
941 new_mont = BN_MONT_CTX_new_consttime(m, ctx);
942 if (new_mont == NULL) {
943 goto err;
944 }
945 mont = new_mont;
946 }
947
948 // Use the width in |mont->N|, rather than the copy in |m|. The assembly
949 // implementation assumes it can use |top| to size R.
950 int top = mont->N.width;
951
952 #if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED)
953 // Share one large stack-allocated buffer between the RSAZ and non-RSAZ code
954 // paths. If we were to use separate static buffers for each then there is
955 // some chance that both large buffers would be allocated on the stack,
956 // causing the stack space requirement to be truly huge (~10KB).
957 alignas(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH) BN_ULONG
958 storage[MOD_EXP_CTIME_STORAGE_LEN];
959 #endif
960 #if defined(RSAZ_ENABLED)
961 // If the size of the operands allow it, perform the optimized RSAZ
962 // exponentiation. For further information see crypto/fipsmodule/bn/rsaz_exp.c
963 // and accompanying assembly modules.
964 if (a->width == 16 && p->width == 16 && BN_num_bits(m) == 1024 &&
965 rsaz_avx2_preferred()) {
966 if (!bn_wexpand(rr, 16)) {
967 goto err;
968 }
969 RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0],
970 storage);
971 rr->width = 16;
972 rr->neg = 0;
973 ret = 1;
974 goto err;
975 }
976 #endif
977
978 // Get the window size to use with size of p.
979 window = BN_window_bits_for_ctime_exponent_size(bits);
980 #if defined(OPENSSL_BN_ASM_MONT5)
981 if (window >= 5) {
982 window = 5; // ~5% improvement for RSA2048 sign, and even for RSA4096
983 // reserve space for mont->N.d[] copy
984 powerbufLen += top * sizeof(mont->N.d[0]);
985 }
986 #endif
987
988 // Allocate a buffer large enough to hold all of the pre-computed
989 // powers of am, am itself and tmp.
990 numPowers = 1 << window;
991 powerbufLen +=
992 sizeof(m->d[0]) *
993 (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
994
995 #if defined(OPENSSL_BN_ASM_MONT5)
996 if ((size_t)powerbufLen <= sizeof(storage)) {
997 powerbuf = storage;
998 }
999 // |storage| is more than large enough to handle 1024-bit inputs.
1000 assert(powerbuf != NULL || top * BN_BITS2 > 1024);
1001 #endif
1002 if (powerbuf == NULL) {
1003 powerbufFree =
1004 OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
1005 if (powerbufFree == NULL) {
1006 goto err;
1007 }
1008 powerbuf = (BN_ULONG *)MOD_EXP_CTIME_ALIGN(powerbufFree);
1009 }
1010 OPENSSL_memset(powerbuf, 0, powerbufLen);
1011
1012 // lay down tmp and am right after powers table
1013 tmp.d = powerbuf + top * numPowers;
1014 am.d = tmp.d + top;
1015 tmp.width = am.width = 0;
1016 tmp.dmax = am.dmax = top;
1017 tmp.neg = am.neg = 0;
1018 tmp.flags = am.flags = BN_FLG_STATIC_DATA;
1019
1020 if (!bn_one_to_montgomery(&tmp, mont, ctx)) {
1021 goto err;
1022 }
1023
1024 // prepare a^1 in Montgomery domain
1025 assert(!a->neg);
1026 assert(BN_ucmp(a, m) < 0);
1027 if (!BN_to_montgomery(&am, a, mont, ctx)) {
1028 goto err;
1029 }
1030
1031 #if defined(OPENSSL_BN_ASM_MONT5)
1032 // This optimization uses ideas from http://eprint.iacr.org/2011/239,
1033 // specifically optimization of cache-timing attack countermeasures
1034 // and pre-computation optimization.
1035
1036 // Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
1037 // 512-bit RSA is hardly relevant, we omit it to spare size...
1038 if (window == 5 && top > 1) {
1039 const BN_ULONG *n0 = mont->n0;
1040 BN_ULONG *np;
1041
1042 // BN_to_montgomery can contaminate words above .top
1043 // [in BN_DEBUG[_DEBUG] build]...
1044 for (i = am.width; i < top; i++) {
1045 am.d[i] = 0;
1046 }
1047 for (i = tmp.width; i < top; i++) {
1048 tmp.d[i] = 0;
1049 }
1050
1051 // copy mont->N.d[] to improve cache locality
1052 for (np = am.d + top, i = 0; i < top; i++) {
1053 np[i] = mont->N.d[i];
1054 }
1055
1056 bn_scatter5(tmp.d, top, powerbuf, 0);
1057 bn_scatter5(am.d, am.width, powerbuf, 1);
1058 bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
1059 bn_scatter5(tmp.d, top, powerbuf, 2);
1060
1061 // same as above, but uses squaring for 1/2 of operations
1062 for (i = 4; i < 32; i *= 2) {
1063 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1064 bn_scatter5(tmp.d, top, powerbuf, i);
1065 }
1066 for (i = 3; i < 8; i += 2) {
1067 int j;
1068 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1069 bn_scatter5(tmp.d, top, powerbuf, i);
1070 for (j = 2 * i; j < 32; j *= 2) {
1071 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1072 bn_scatter5(tmp.d, top, powerbuf, j);
1073 }
1074 }
1075 for (; i < 16; i += 2) {
1076 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1077 bn_scatter5(tmp.d, top, powerbuf, i);
1078 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1079 bn_scatter5(tmp.d, top, powerbuf, 2 * i);
1080 }
1081 for (; i < 32; i += 2) {
1082 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
1083 bn_scatter5(tmp.d, top, powerbuf, i);
1084 }
1085
1086 bits--;
1087 for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
1088 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1089 }
1090 bn_gather5(tmp.d, top, powerbuf, wvalue);
1091
1092 // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
1093 // that has not been read yet.)
1094 assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
1095
1096 // Scan the exponent one window at a time starting from the most
1097 // significant bits.
1098 if (top & 7) {
1099 while (bits >= 0) {
1100 for (wvalue = 0, i = 0; i < 5; i++, bits--) {
1101 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1102 }
1103
1104 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1105 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1106 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1107 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1108 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1109 bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1110 }
1111 } else {
1112 const uint8_t *p_bytes = (const uint8_t *)p->d;
1113 assert(bits < max_bits);
1114 // |p = 0| has been handled as a special case, so |max_bits| is at least
1115 // one word.
1116 assert(max_bits >= 64);
1117
1118 // If the first bit to be read lands in the last byte, unroll the first
1119 // iteration to avoid reading past the bounds of |p->d|. (After the first
1120 // iteration, we are guaranteed to be past the last byte.) Note |bits|
1121 // here is the top bit, inclusive.
1122 if (bits - 4 >= max_bits - 8) {
1123 // Read five bits from |bits-4| through |bits|, inclusive.
1124 wvalue = p_bytes[p->width * BN_BYTES - 1];
1125 wvalue >>= (bits - 4) & 7;
1126 wvalue &= 0x1f;
1127 bits -= 5;
1128 bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1129 }
1130 while (bits >= 0) {
1131 // Read five bits from |bits-4| through |bits|, inclusive.
1132 int first_bit = bits - 4;
1133 uint16_t val;
1134 OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val));
1135 val >>= first_bit & 7;
1136 val &= 0x1f;
1137 bits -= 5;
1138 bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val);
1139 }
1140 }
1141
1142 ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
1143 tmp.width = top;
1144 if (ret) {
1145 if (!BN_copy(rr, &tmp)) {
1146 ret = 0;
1147 }
1148 goto err; // non-zero ret means it's not error
1149 }
1150 } else
1151 #endif
1152 {
1153 copy_to_prebuf(&tmp, top, powerbuf, 0, window);
1154 copy_to_prebuf(&am, top, powerbuf, 1, window);
1155
1156 // If the window size is greater than 1, then calculate
1157 // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
1158 // (even powers could instead be computed as (a^(i/2))^2
1159 // to use the slight performance advantage of sqr over mul).
1160 if (window > 1) {
1161 if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) {
1162 goto err;
1163 }
1164
1165 copy_to_prebuf(&tmp, top, powerbuf, 2, window);
1166
1167 for (i = 3; i < numPowers; i++) {
1168 // Calculate a^i = a^(i-1) * a
1169 if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) {
1170 goto err;
1171 }
1172
1173 copy_to_prebuf(&tmp, top, powerbuf, i, window);
1174 }
1175 }
1176
1177 bits--;
1178 for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
1179 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1180 }
1181 if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) {
1182 goto err;
1183 }
1184
1185 // Scan the exponent one window at a time starting from the most
1186 // significant bits.
1187 while (bits >= 0) {
1188 wvalue = 0; // The 'value' of the window
1189
1190 // Scan the window, squaring the result as we go
1191 for (i = 0; i < window; i++, bits--) {
1192 if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
1193 goto err;
1194 }
1195 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1196 }
1197
1198 // Fetch the appropriate pre-computed value from the pre-buf
1199 if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) {
1200 goto err;
1201 }
1202
1203 // Multiply the result into the intermediate result
1204 if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
1205 goto err;
1206 }
1207 }
1208 }
1209
1210 // Convert the final result from montgomery to standard format
1211 if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
1212 goto err;
1213 }
1214 ret = 1;
1215
1216 err:
1217 BN_MONT_CTX_free(new_mont);
1218 if (powerbuf != NULL && powerbufFree == NULL) {
1219 OPENSSL_cleanse(powerbuf, powerbufLen);
1220 }
1221 OPENSSL_free(powerbufFree);
1222 return (ret);
1223 }
1224
BN_mod_exp_mont_word(BIGNUM * rr,BN_ULONG a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)1225 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1226 const BIGNUM *m, BN_CTX *ctx,
1227 const BN_MONT_CTX *mont) {
1228 BIGNUM a_bignum;
1229 BN_init(&a_bignum);
1230
1231 int ret = 0;
1232
1233 // BN_mod_exp_mont requires reduced inputs.
1234 if (bn_minimal_width(m) == 1) {
1235 a %= m->d[0];
1236 }
1237
1238 if (!BN_set_word(&a_bignum, a)) {
1239 OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
1240 goto err;
1241 }
1242
1243 ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont);
1244
1245 err:
1246 BN_free(&a_bignum);
1247
1248 return ret;
1249 }
1250
1251 #define TABLE_SIZE 32
1252
BN_mod_exp2_mont(BIGNUM * rr,const BIGNUM * a1,const BIGNUM * p1,const BIGNUM * a2,const BIGNUM * p2,const BIGNUM * m,BN_CTX * ctx,const BN_MONT_CTX * mont)1253 int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
1254 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
1255 BN_CTX *ctx, const BN_MONT_CTX *mont) {
1256 BIGNUM tmp;
1257 BN_init(&tmp);
1258
1259 int ret = 0;
1260 BN_MONT_CTX *new_mont = NULL;
1261
1262 // Allocate a montgomery context if it was not supplied by the caller.
1263 if (mont == NULL) {
1264 new_mont = BN_MONT_CTX_new_for_modulus(m, ctx);
1265 if (new_mont == NULL) {
1266 goto err;
1267 }
1268 mont = new_mont;
1269 }
1270
1271 // BN_mod_mul_montgomery removes one Montgomery factor, so passing one
1272 // Montgomery-encoded and one non-Montgomery-encoded value gives a
1273 // non-Montgomery-encoded result.
1274 if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) ||
1275 !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) ||
1276 !BN_to_montgomery(rr, rr, mont, ctx) ||
1277 !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) {
1278 goto err;
1279 }
1280
1281 ret = 1;
1282
1283 err:
1284 BN_MONT_CTX_free(new_mont);
1285 BN_free(&tmp);
1286
1287 return ret;
1288 }
1289