1 /* Copyright 2016 Brian Smith.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include <openssl/bn.h>
16
17 #include <assert.h>
18
19 #include "internal.h"
20 #include "../../internal.h"
21
22
23 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n);
24
25 OPENSSL_STATIC_ASSERT(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2,
26 "BN_MONT_CTX_N0_LIMBS value is invalid");
27 OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS ==
28 sizeof(uint64_t),
29 "uint64_t is insufficient precision for n0");
30
31 // LG_LITTLE_R is log_2(r).
32 #define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2)
33
bn_mont_n0(const BIGNUM * n)34 uint64_t bn_mont_n0(const BIGNUM *n) {
35 // These conditions are checked by the caller, |BN_MONT_CTX_set| or
36 // |BN_MONT_CTX_new_consttime|.
37 assert(!BN_is_zero(n));
38 assert(!BN_is_negative(n));
39 assert(BN_is_odd(n));
40
41 // r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This
42 // ensures that we can do integer division by |r| by simply ignoring
43 // |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo
44 // |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is
45 // what makes Montgomery multiplication efficient.
46 //
47 // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
48 // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
49 // multi-limb Montgomery multiplication of |a * b (mod n)|, given the
50 // unreduced product |t == a * b|, we repeatedly calculate:
51 //
52 // t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph).
53 // t2 := t1*n0*n
54 // t3 := t + t2
55 // t := t3 / r copy all limbs of |t3| except the lowest to |t|.
56 //
57 // In the last step, it would only make sense to ignore the lowest limb of
58 // |t3| if it were zero. The middle steps ensure that this is the case:
59 //
60 // t3 == 0 (mod r)
61 // t + t2 == 0 (mod r)
62 // t + t1*n0*n == 0 (mod r)
63 // t1*n0*n == -t (mod r)
64 // t*n0*n == -t (mod r)
65 // n0*n == -1 (mod r)
66 // n0 == -1/n (mod r)
67 //
68 // Thus, in each iteration of the loop, we multiply by the constant factor
69 // |n0|, the negative inverse of n (mod r).
70
71 // n_mod_r = n % r. As explained above, this is done by taking the lowest
72 // |BN_MONT_CTX_N0_LIMBS| limbs of |n|.
73 uint64_t n_mod_r = n->d[0];
74 #if BN_MONT_CTX_N0_LIMBS == 2
75 if (n->width > 1) {
76 n_mod_r |= (uint64_t)n->d[1] << BN_BITS2;
77 }
78 #endif
79
80 return bn_neg_inv_mod_r_u64(n_mod_r);
81 }
82
83 // bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v|
84 // such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n|
85 // must be odd.
86 //
87 // This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery
88 // Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf).
89 // It is very similar to the MODULAR-INVERSE function in Stephen R. Dussé's and
90 // Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000"
91 // (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21).
92 //
93 // This is inspired by Joppe W. Bos's "Constant Time Modular Inversion"
94 // (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is
95 // constant-time with respect to |n|. We assume uint64_t additions,
96 // subtractions, shifts, and bitwise operations are all constant time, which
97 // may be a large leap of faith on 32-bit targets. We avoid division and
98 // multiplication, which tend to be the most problematic in terms of timing
99 // leaks.
100 //
101 // Most GCD implementations return values such that |u*r + v*n == 1|, so the
102 // caller would have to negate the resultant |v| for the purpose of Montgomery
103 // multiplication. This implementation does the negation implicitly by doing
104 // the computations as a difference instead of a sum.
bn_neg_inv_mod_r_u64(uint64_t n)105 static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) {
106 assert(n % 2 == 1);
107
108 // alpha == 2**(lg r - 1) == r / 2.
109 static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1);
110
111 const uint64_t beta = n;
112
113 uint64_t u = 1;
114 uint64_t v = 0;
115
116 // The invariant maintained from here on is:
117 // 2**(lg r - i) == u*2*alpha - v*beta.
118 for (size_t i = 0; i < LG_LITTLE_R; ++i) {
119 #if BN_BITS2 == 64 && defined(BN_ULLONG)
120 assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) ==
121 ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
122 #endif
123
124 // Delete a common factor of 2 in u and v if |u| is even. Otherwise, set
125 // |u = (u + beta) / 2| and |v = (v / 2) + alpha|.
126
127 uint64_t u_is_odd = UINT64_C(0) - (u & 1); // Either 0xff..ff or 0.
128
129 // The addition can overflow, so use Dietz's method for it.
130 //
131 // Dietz calculates (x+y)/2 by (x⊕y)>>1 + x&y. This is valid for all
132 // (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values
133 // (embedded in 64 bits to so that overflow can be ignored):
134 //
135 // (declare-fun x () (_ BitVec 64))
136 // (declare-fun y () (_ BitVec 64))
137 // (assert (let (
138 // (one (_ bv1 64))
139 // (thirtyTwo (_ bv32 64)))
140 // (and
141 // (bvult x (bvshl one thirtyTwo))
142 // (bvult y (bvshl one thirtyTwo))
143 // (not (=
144 // (bvadd (bvlshr (bvxor x y) one) (bvand x y))
145 // (bvlshr (bvadd x y) one)))
146 // )))
147 // (check-sat)
148 uint64_t beta_if_u_is_odd = beta & u_is_odd; // Either |beta| or 0.
149 u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd);
150
151 uint64_t alpha_if_u_is_odd = alpha & u_is_odd; // Either |alpha| or 0.
152 v = (v >> 1) + alpha_if_u_is_odd;
153 }
154
155 // The invariant now shows that u*r - v*n == 1 since r == 2 * alpha.
156 #if BN_BITS2 == 64 && defined(BN_ULLONG)
157 assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
158 #endif
159
160 return v;
161 }
162
bn_mod_exp_base_2_consttime(BIGNUM * r,unsigned p,const BIGNUM * n,BN_CTX * ctx)163 int bn_mod_exp_base_2_consttime(BIGNUM *r, unsigned p, const BIGNUM *n,
164 BN_CTX *ctx) {
165 assert(!BN_is_zero(n));
166 assert(!BN_is_negative(n));
167 assert(BN_is_odd(n));
168
169 BN_zero(r);
170
171 unsigned n_bits = BN_num_bits(n);
172 assert(n_bits != 0);
173 assert(p > n_bits);
174 if (n_bits == 1) {
175 return 1;
176 }
177
178 // Set |r| to the larger power of two smaller than |n|, then shift with
179 // reductions the rest of the way.
180 if (!BN_set_bit(r, n_bits - 1) ||
181 !bn_mod_lshift_consttime(r, r, p - (n_bits - 1), n, ctx)) {
182 return 0;
183 }
184
185 return 1;
186 }
187