• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 The Chromium OS Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <brillo/backoff_entry.h>
6 
7 #include <algorithm>
8 #include <cmath>
9 #include <limits>
10 
11 #include <base/logging.h>
12 #include <base/numerics/safe_math.h>
13 #include <base/rand_util.h>
14 
15 namespace brillo {
16 
BackoffEntry(const BackoffEntry::Policy * const policy)17 BackoffEntry::BackoffEntry(const BackoffEntry::Policy* const policy)
18     : policy_(policy) {
19   DCHECK(policy_);
20   Reset();
21 }
22 
InformOfRequest(bool succeeded)23 void BackoffEntry::InformOfRequest(bool succeeded) {
24   if (!succeeded) {
25     ++failure_count_;
26     exponential_backoff_release_time_ = CalculateReleaseTime();
27   } else {
28     // We slowly decay the number of times delayed instead of
29     // resetting it to 0 in order to stay stable if we receive
30     // successes interleaved between lots of failures.  Note that in
31     // the normal case, the calculated release time (in the next
32     // statement) will be in the past once the method returns.
33     if (failure_count_ > 0)
34       --failure_count_;
35 
36     // The reason why we are not just cutting the release time to
37     // ImplGetTimeNow() is on the one hand, it would unset a release
38     // time set by SetCustomReleaseTime and on the other we would like
39     // to push every request up to our "horizon" when dealing with
40     // multiple in-flight requests. Ex: If we send three requests and
41     // we receive 2 failures and 1 success. The success that follows
42     // those failures will not reset the release time, further
43     // requests will then need to wait the delay caused by the 2
44     // failures.
45     base::TimeDelta delay;
46     if (policy_->always_use_initial_delay)
47       delay = base::TimeDelta::FromMilliseconds(policy_->initial_delay_ms);
48     exponential_backoff_release_time_ = std::max(
49         ImplGetTimeNow() + delay, exponential_backoff_release_time_);
50   }
51 }
52 
ShouldRejectRequest() const53 bool BackoffEntry::ShouldRejectRequest() const {
54   return exponential_backoff_release_time_ > ImplGetTimeNow();
55 }
56 
GetTimeUntilRelease() const57 base::TimeDelta BackoffEntry::GetTimeUntilRelease() const {
58   base::TimeTicks now = ImplGetTimeNow();
59   if (exponential_backoff_release_time_ <= now)
60     return base::TimeDelta();
61   return exponential_backoff_release_time_ - now;
62 }
63 
GetReleaseTime() const64 base::TimeTicks BackoffEntry::GetReleaseTime() const {
65   return exponential_backoff_release_time_;
66 }
67 
SetCustomReleaseTime(const base::TimeTicks & release_time)68 void BackoffEntry::SetCustomReleaseTime(const base::TimeTicks& release_time) {
69   exponential_backoff_release_time_ = release_time;
70 }
71 
CanDiscard() const72 bool BackoffEntry::CanDiscard() const {
73   if (policy_->entry_lifetime_ms == -1)
74     return false;
75 
76   base::TimeTicks now = ImplGetTimeNow();
77 
78   int64_t unused_since_ms =
79       (now - exponential_backoff_release_time_).InMilliseconds();
80 
81   // Release time is further than now, we are managing it.
82   if (unused_since_ms < 0)
83     return false;
84 
85   if (failure_count_ > 0) {
86     // Need to keep track of failures until maximum back-off period
87     // has passed (since further failures can add to back-off).
88     return unused_since_ms >= std::max(policy_->maximum_backoff_ms,
89                                        policy_->entry_lifetime_ms);
90   }
91 
92   // Otherwise, consider the entry is outdated if it hasn't been used for the
93   // specified lifetime period.
94   return unused_since_ms >= policy_->entry_lifetime_ms;
95 }
96 
Reset()97 void BackoffEntry::Reset() {
98   failure_count_ = 0;
99 
100   // We leave exponential_backoff_release_time_ unset, meaning 0. We could
101   // initialize to ImplGetTimeNow() but because it's a virtual method it's
102   // not safe to call in the constructor (and the constructor calls Reset()).
103   // The effects are the same, i.e. ShouldRejectRequest() will return false
104   // right after Reset().
105   exponential_backoff_release_time_ = base::TimeTicks();
106 }
107 
ImplGetTimeNow() const108 base::TimeTicks BackoffEntry::ImplGetTimeNow() const {
109   return base::TimeTicks::Now();
110 }
111 
CalculateReleaseTime() const112 base::TimeTicks BackoffEntry::CalculateReleaseTime() const {
113   int effective_failure_count =
114       std::max(0, failure_count_ - policy_->num_errors_to_ignore);
115 
116   // If always_use_initial_delay is true, it's equivalent to
117   // the effective_failure_count always being one greater than when it's false.
118   if (policy_->always_use_initial_delay)
119     ++effective_failure_count;
120 
121   if (effective_failure_count == 0) {
122     // Never reduce previously set release horizon, e.g. due to Retry-After
123     // header.
124     return std::max(ImplGetTimeNow(), exponential_backoff_release_time_);
125   }
126 
127   // The delay is calculated with this formula:
128   // delay = initial_backoff * multiply_factor^(
129   //     effective_failure_count - 1) * Uniform(1 - jitter_factor, 1]
130   // Note: if the failure count is too high, |delay_ms| will become infinity
131   // after the exponential calculation, and then NaN after the jitter is
132   // accounted for. Both cases are handled by using CheckedNumeric<int64_t> to
133   // perform the conversion to integers.
134   double delay_ms = policy_->initial_delay_ms;
135   delay_ms *= pow(policy_->multiply_factor, effective_failure_count - 1);
136   delay_ms -= base::RandDouble() * policy_->jitter_factor * delay_ms;
137 
138   // Do overflow checking in microseconds, the internal unit of TimeTicks.
139   const int64_t kTimeTicksNowUs =
140       (ImplGetTimeNow() - base::TimeTicks()).InMicroseconds();
141   base::internal::CheckedNumeric<int64_t> calculated_release_time_us =
142       delay_ms + 0.5;
143   calculated_release_time_us *= base::Time::kMicrosecondsPerMillisecond;
144   calculated_release_time_us += kTimeTicksNowUs;
145 
146   const int64_t kMaxTime = std::numeric_limits<int64_t>::max();
147   base::internal::CheckedNumeric<int64_t> maximum_release_time_us = kMaxTime;
148   if (policy_->maximum_backoff_ms >= 0) {
149     maximum_release_time_us = policy_->maximum_backoff_ms;
150     maximum_release_time_us *= base::Time::kMicrosecondsPerMillisecond;
151     maximum_release_time_us += kTimeTicksNowUs;
152   }
153 
154   // Decide between maximum release time and calculated release time, accounting
155   // for overflow with both.
156   int64_t release_time_us = std::min(
157       calculated_release_time_us.ValueOrDefault(kMaxTime),
158       maximum_release_time_us.ValueOrDefault(kMaxTime));
159 
160   // Never reduce previously set release horizon, e.g. due to Retry-After
161   // header.
162   return std::max(
163       base::TimeTicks() + base::TimeDelta::FromMicroseconds(release_time_us),
164       exponential_backoff_release_time_);
165 }
166 
167 }  // namespace brillo
168