1 // Copyright (c) 2009 The Chromium OS Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef LIBBRILLO_BRILLO_GLIB_OBJECT_H_
6 #define LIBBRILLO_BRILLO_GLIB_OBJECT_H_
7
8 #include <glib-object.h>
9 #include <stdint.h>
10
11 #include <base/logging.h>
12 #include <base/macros.h>
13
14 #include <algorithm>
15 #include <cstddef>
16 #include <memory>
17 #include <string>
18
19 namespace brillo {
20
21 namespace details { // NOLINT
22
23 // \brief ResetHelper is a private class for use with Resetter().
24 //
25 // ResetHelper passes ownership of a pointer to a scoped pointer type with reset
26 // on destruction.
27
28 template <typename T> // T models ScopedPtr
29 class ResetHelper {
30 public:
31 typedef typename T::element_type element_type;
32
ResetHelper(T * x)33 explicit ResetHelper(T* x)
34 : ptr_(nullptr),
35 scoped_(x) {
36 }
~ResetHelper()37 ~ResetHelper() {
38 scoped_->reset(ptr_);
39 }
lvalue()40 element_type*& lvalue() {
41 return ptr_;
42 }
43
44 private:
45 element_type* ptr_;
46 T* scoped_;
47 };
48
49 } // namespace details
50
51 // \brief Resetter() is a utility function for passing pointers to
52 // scoped pointers.
53 //
54 // The Resetter() function return a temporary object containing an lvalue of
55 // \code T::element_type which can be assigned to. When the temporary object
56 // destructs, the associated scoped pointer is reset with the lvalue. It is of
57 // general use when a pointer is returned as an out-argument.
58 //
59 // \example
60 // void function(int** x) {
61 // *x = new int(10);
62 // }
63 // ...
64 // std::unique_ptr<int> x;
65 // function(Resetter(x).lvalue());
66 //
67 // \end_example
68
69 template <typename T> // T models ScopedPtr
Resetter(T * x)70 details::ResetHelper<T> Resetter(T* x) {
71 return details::ResetHelper<T>(x);
72 }
73
74 namespace glib {
75
76 // \brief type_to_gtypeid is a type function mapping from a canonical type to
77 // the GType typeid for the associated GType (see type_to_gtype).
78
79 template <typename T> ::GType type_to_gtypeid();
80
81 template < >
82 inline ::GType type_to_gtypeid<const char*>() {
83 return G_TYPE_STRING;
84 }
85 template < >
86 inline ::GType type_to_gtypeid<char*>() {
87 return G_TYPE_STRING;
88 }
89 template < >
90 inline ::GType type_to_gtypeid< ::uint8_t>() {
91 return G_TYPE_UCHAR;
92 }
93 template < >
94 inline ::GType type_to_gtypeid<double>() {
95 return G_TYPE_DOUBLE;
96 }
97 template < >
98 inline ::GType type_to_gtypeid<bool>() {
99 return G_TYPE_BOOLEAN;
100 }
101 class Value;
102 template < >
103 inline ::GType type_to_gtypeid<const Value*>() {
104 return G_TYPE_VALUE;
105 }
106
107 template < >
108 inline ::GType type_to_gtypeid< ::uint32_t>() {
109 // REVISIT (seanparent) : There currently isn't any G_TYPE_UINT32, this code
110 // assumes sizeof(guint) == sizeof(guint32). Need a static_assert to assert
111 // that.
112 return G_TYPE_UINT;
113 }
114
115 template < >
116 inline ::GType type_to_gtypeid< ::int64_t>() {
117 return G_TYPE_INT64;
118 }
119
120 template < >
121 inline ::GType type_to_gtypeid< ::int32_t>() {
122 return G_TYPE_INT;
123 }
124
125 // \brief Value (and Retrieve) support using std::string as well as const char*
126 // by promoting from const char* to the string. promote_from provides a mapping
127 // for this promotion (and possibly others in the future).
128
129 template <typename T> struct promotes_from {
130 typedef T type;
131 };
132 template < > struct promotes_from<std::string> {
133 typedef const char* type;
134 };
135
136 // \brief RawCast converts from a GValue to a value of a canonical type.
137 //
138 // RawCast is a low level function. Generally, use Cast() instead.
139 //
140 // \precondition \param x contains a value of type \param T.
141
142 template <typename T>
143 inline T RawCast(const ::GValue& x) {
144 // Use static_assert() to issue a meaningful compile-time error.
145 // To prevent this from happening for all references to RawCast, use sizeof(T)
146 // to make static_assert depend on type T and therefore prevent binding it
147 // unconditionally until the actual RawCast<T> instantiation happens.
148 static_assert(sizeof(T) == 0, "Using RawCast on unsupported type");
149 return T();
150 }
151
152 template < >
153 inline const char* RawCast<const char*>(const ::GValue& x) {
154 return static_cast<const char*>(::g_value_get_string(&x));
155 }
156 template < >
157 inline double RawCast<double>(const ::GValue& x) {
158 return static_cast<double>(::g_value_get_double(&x));
159 }
160 template < >
161 inline bool RawCast<bool>(const ::GValue& x) {
162 return static_cast<bool>(::g_value_get_boolean(&x));
163 }
164 template < >
165 inline ::uint32_t RawCast< ::uint32_t>(const ::GValue& x) {
166 return static_cast< ::uint32_t>(::g_value_get_uint(&x));
167 }
168 template < >
169 inline ::uint8_t RawCast< ::uint8_t>(const ::GValue& x) {
170 return static_cast< ::uint8_t>(::g_value_get_uchar(&x));
171 }
172 template < >
173 inline ::int64_t RawCast< ::int64_t>(const ::GValue& x) {
174 return static_cast< ::int64_t>(::g_value_get_int64(&x));
175 }
176 template < >
177 inline ::int32_t RawCast< ::int32_t>(const ::GValue& x) {
178 return static_cast< ::int32_t>(::g_value_get_int(&x));
179 }
180
181 inline void RawSet(GValue* x, const std::string& v) {
182 ::g_value_set_string(x, v.c_str());
183 }
184 inline void RawSet(GValue* x, const char* v) {
185 ::g_value_set_string(x, v);
186 }
187 inline void RawSet(GValue* x, double v) {
188 ::g_value_set_double(x, v);
189 }
190 inline void RawSet(GValue* x, bool v) {
191 ::g_value_set_boolean(x, v);
192 }
193 inline void RawSet(GValue* x, ::uint32_t v) {
194 ::g_value_set_uint(x, v);
195 }
196 inline void RawSet(GValue* x, ::uint8_t v) {
197 ::g_value_set_uchar(x, v);
198 }
199 inline void RawSet(GValue* x, ::int64_t v) {
200 ::g_value_set_int64(x, v);
201 }
202 inline void RawSet(GValue* x, ::int32_t v) {
203 ::g_value_set_int(x, v);
204 }
205
206 // \brief Value is a data type for managing GValues.
207 //
208 // A Value is a polymorphic container holding at most a single value.
209 //
210 // The Value wrapper ensures proper initialization, copies, and assignment of
211 // GValues.
212 //
213 // \note GValues are equationally incomplete and so can't support proper
214 // equality. The semantics of copy are verified with equality of retrieved
215 // values.
216
217 class Value : public ::GValue {
218 public:
219 Value()
220 : GValue() {
221 }
222 explicit Value(const ::GValue& x)
223 : GValue() {
224 *this = *static_cast<const Value*>(&x);
225 }
226 template <typename T>
227 explicit Value(T x)
228 : GValue() {
229 ::g_value_init(this,
230 type_to_gtypeid<typename promotes_from<T>::type>());
231 RawSet(this, x);
232 }
233 Value(const Value& x)
234 : GValue() {
235 if (x.empty())
236 return;
237 ::g_value_init(this, G_VALUE_TYPE(&x));
238 ::g_value_copy(&x, this);
239 }
240 ~Value() {
241 clear();
242 }
243 Value& operator=(const Value& x) {
244 if (this == &x)
245 return *this;
246 clear();
247 if (x.empty())
248 return *this;
249 ::g_value_init(this, G_VALUE_TYPE(&x));
250 ::g_value_copy(&x, this);
251 return *this;
252 }
253 template <typename T>
254 Value& operator=(const T& x) {
255 clear();
256 ::g_value_init(this,
257 type_to_gtypeid<typename promotes_from<T>::type>());
258 RawSet(this, x);
259 return *this;
260 }
261
262 // Lower-case names to follow STL container conventions.
263
264 void clear() {
265 if (!empty())
266 ::g_value_unset(this);
267 }
268
269 bool empty() const {
270 return G_VALUE_TYPE(this) == G_TYPE_INVALID;
271 }
272 };
273
274 template < >
275 inline const Value* RawCast<const Value*>(const ::GValue& x) {
276 return static_cast<const Value*>(&x);
277 }
278
279 // \brief Retrieve gets a value from a GValue.
280 //
281 // \postcondition If \param x contains a value of type \param T, then the
282 // value is copied to \param result and \true is returned. Otherwise, \param
283 // result is unchanged and \false is returned.
284 //
285 // \precondition \param result is not \nullptr.
286
287 template <typename T>
288 bool Retrieve(const ::GValue& x, T* result) {
289 if (!G_VALUE_HOLDS(&x, type_to_gtypeid<typename promotes_from<T>::type>())) {
290 LOG(WARNING) << "GValue retrieve failed. Expected: "
291 << g_type_name(type_to_gtypeid<typename promotes_from<T>::type>())
292 << ", Found: " << g_type_name(G_VALUE_TYPE(&x));
293 return false;
294 }
295
296 *result = RawCast<typename promotes_from<T>::type>(x);
297 return true;
298 }
299
300 inline bool Retrieve(const ::GValue& x, Value* result) {
301 *result = Value(x);
302 return true;
303 }
304
305 // \brief ScopedError holds a ::GError* and deletes it on destruction.
306
307 struct FreeError {
308 void operator()(::GError* x) const {
309 if (x)
310 ::g_error_free(x);
311 }
312 };
313
314 typedef std::unique_ptr< ::GError, FreeError> ScopedError;
315
316 // \brief ScopedArray holds a ::GArray* and deletes both the container and the
317 // segment containing the elements on destruction.
318
319 struct FreeArray {
320 void operator()(::GArray* x) const {
321 if (x)
322 ::g_array_free(x, TRUE);
323 }
324 };
325
326 typedef std::unique_ptr< ::GArray, FreeArray> ScopedArray;
327
328 // \brief ScopedPtrArray adapts ::GPtrArray* to conform to the standard
329 // container requirements.
330 //
331 // \note ScopedPtrArray is only partially implemented and is being fleshed out
332 // as needed.
333 //
334 // \models Random Access Container, Back Insertion Sequence, ScopedPtrArray is
335 // not copyable and equationally incomplete.
336
337 template <typename T> // T models pointer
338 class ScopedPtrArray {
339 public:
340 typedef ::GPtrArray element_type;
341
342 typedef T value_type;
343 typedef const value_type& const_reference;
344 typedef value_type* iterator;
345 typedef const value_type* const_iterator;
346
347 ScopedPtrArray()
348 : object_(0) {
349 }
350
351 explicit ScopedPtrArray(::GPtrArray* x)
352 : object_(x) {
353 }
354
355 ~ScopedPtrArray() {
356 clear();
357 }
358
359 iterator begin() {
360 return iterator(object_ ? object_->pdata : nullptr);
361 }
362 iterator end() {
363 return begin() + size();
364 }
365 const_iterator begin() const {
366 return const_iterator(object_ ? object_->pdata : nullptr);
367 }
368 const_iterator end() const {
369 return begin() + size();
370 }
371
372 // \precondition x is a pointer to an object allocated with g_new().
373
374 void push_back(T x) {
375 if (!object_)
376 object_ = ::g_ptr_array_sized_new(1);
377 ::g_ptr_array_add(object_, ::gpointer(x));
378 }
379
380 T& operator[](std::size_t n) {
381 DCHECK(!(size() < n)) << "ScopedPtrArray index out-of-bound.";
382 return *(begin() + n);
383 }
384
385 std::size_t size() const {
386 return object_ ? object_->len : 0;
387 }
388
389 void clear() {
390 if (object_) {
391 std::for_each(begin(), end(), FreeHelper());
392 ::g_ptr_array_free(object_, true);
393 object_ = nullptr;
394 }
395 }
396
397 void reset(::GPtrArray* p = nullptr) {
398 if (p != object_) {
399 clear();
400 object_ = p;
401 }
402 }
403
404 private:
405 struct FreeHelper {
406 void operator()(T x) const {
407 ::g_free(::gpointer(x));
408 }
409 };
410
411 template <typename U>
412 friend void swap(ScopedPtrArray<U>& x, ScopedPtrArray<U>& y);
413
414 ::GPtrArray* object_;
415
416 DISALLOW_COPY_AND_ASSIGN(ScopedPtrArray);
417 };
418
419 template <typename U>
420 inline void swap(ScopedPtrArray<U>& x, ScopedPtrArray<U>& y) {
421 std::swap(x.object_, y.object_);
422 }
423
424 // \brief ScopedHashTable manages the lifetime of a ::GHashTable* with an
425 // interface compatibitle with a scoped ptr.
426 //
427 // The ScopedHashTable is also the start of an adaptor to model a standard
428 // Container. The standard for an associative container would have an iterator
429 // returning a key value pair. However, that isn't possible with
430 // ::GHashTable because there is no interface returning a reference to the
431 // key value pair, only to retrieve the keys and values and individual elements.
432 //
433 // So the standard interface of find() wouldn't work. I considered implementing
434 // operator[] and count() - operator []. So retrieving a value would look like:
435 //
436 // if (table.count(key))
437 // success = Retrieve(table[key], &value);
438 //
439 // But that requires hashing the key twice.
440 // For now I implemented a Retrieve member function to follow the pattern
441 // developed elsewhere in the code.
442 //
443 // bool success = Retrieve(key, &x);
444 //
445 // This is also a template to retrieve the corect type from the stored GValue
446 // type.
447 //
448 // I may revisit this and use scoped_ptr_malloc and a non-member function
449 // Retrieve() in the future. The Retrieve pattern is becoming common enough
450 // that I want to give some thought as to how to generalize it further.
451
452 class ScopedHashTable {
453 public:
454 typedef ::GHashTable element_type;
455
456 ScopedHashTable()
457 : object_(nullptr) {
458 }
459
460 explicit ScopedHashTable(::GHashTable* p)
461 : object_(p) {
462 }
463
464 ~ScopedHashTable() {
465 clear();
466 }
467
468 template <typename T>
469 bool Retrieve(const char* key, T* result) const {
470 DCHECK(object_) << "Retrieve on empty ScopedHashTable.";
471 if (!object_)
472 return false;
473
474 ::gpointer ptr = ::g_hash_table_lookup(object_, key);
475 if (!ptr)
476 return false;
477 return glib::Retrieve(*static_cast< ::GValue*>(ptr), result);
478 }
479
480 void clear() {
481 if (object_) {
482 ::g_hash_table_unref(object_);
483 object_ = nullptr;
484 }
485 }
486
487 GHashTable* get() {
488 return object_;
489 }
490
491 void reset(::GHashTable* p = nullptr) {
492 if (p != object_) {
493 clear();
494 object_ = p;
495 }
496 }
497
498 private:
499 ::GHashTable* object_;
500 };
501
502 } // namespace glib
503 } // namespace brillo
504
505 #endif // LIBBRILLO_BRILLO_GLIB_OBJECT_H_
506