1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_IA32
6
7 #include "src/base/adapters.h"
8 #include "src/code-factory.h"
9 #include "src/debug/debug.h"
10 #include "src/deoptimizer.h"
11 #include "src/frame-constants.h"
12 #include "src/frames.h"
13 #include "src/objects-inl.h"
14 #include "src/objects/js-generator.h"
15 #include "src/wasm/wasm-linkage.h"
16 #include "src/wasm/wasm-objects.h"
17
18 namespace v8 {
19 namespace internal {
20
21 #define __ ACCESS_MASM(masm)
22
Generate_Adaptor(MacroAssembler * masm,Address address,ExitFrameType exit_frame_type)23 void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
24 ExitFrameType exit_frame_type) {
25 __ mov(kJavaScriptCallExtraArg1Register,
26 Immediate(ExternalReference::Create(address)));
27 if (exit_frame_type == BUILTIN_EXIT) {
28 __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
29 RelocInfo::CODE_TARGET);
30 } else {
31 DCHECK(exit_frame_type == EXIT);
32 __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
33 RelocInfo::CODE_TARGET);
34 }
35 }
36
GenerateTailCallToReturnedCode(MacroAssembler * masm,Runtime::FunctionId function_id)37 static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
38 Runtime::FunctionId function_id) {
39 // ----------- S t a t e -------------
40 // -- eax : argument count (preserved for callee)
41 // -- edx : new target (preserved for callee)
42 // -- edi : target function (preserved for callee)
43 // -----------------------------------
44 {
45 FrameScope scope(masm, StackFrame::INTERNAL);
46 // Push the number of arguments to the callee.
47 __ SmiTag(eax);
48 __ push(eax);
49 // Push a copy of the target function and the new target.
50 __ push(edi);
51 __ push(edx);
52 // Function is also the parameter to the runtime call.
53 __ push(edi);
54
55 __ CallRuntime(function_id, 1);
56 __ mov(ecx, eax);
57
58 // Restore target function and new target.
59 __ pop(edx);
60 __ pop(edi);
61 __ pop(eax);
62 __ SmiUntag(eax);
63 }
64
65 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
66 __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
67 __ jmp(ecx);
68 }
69
70 namespace {
71
Generate_JSBuiltinsConstructStubHelper(MacroAssembler * masm)72 void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
73 // ----------- S t a t e -------------
74 // -- eax: number of arguments
75 // -- edi: constructor function
76 // -- edx: new target
77 // -- esi: context
78 // -----------------------------------
79
80 // Enter a construct frame.
81 {
82 FrameScope scope(masm, StackFrame::CONSTRUCT);
83
84 // Preserve the incoming parameters on the stack.
85 __ SmiTag(eax);
86 __ push(esi);
87 __ push(eax);
88 __ SmiUntag(eax);
89
90 // The receiver for the builtin/api call.
91 __ PushRoot(Heap::kTheHoleValueRootIndex);
92
93 // Set up pointer to last argument.
94 __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
95
96 // Copy arguments and receiver to the expression stack.
97 Label loop, entry;
98 __ mov(ecx, eax);
99 // ----------- S t a t e -------------
100 // -- eax: number of arguments (untagged)
101 // -- edi: constructor function
102 // -- edx: new target
103 // -- ebx: pointer to last argument
104 // -- ecx: counter
105 // -- sp[0*kPointerSize]: the hole (receiver)
106 // -- sp[1*kPointerSize]: number of arguments (tagged)
107 // -- sp[2*kPointerSize]: context
108 // -----------------------------------
109 __ jmp(&entry);
110 __ bind(&loop);
111 __ push(Operand(ebx, ecx, times_4, 0));
112 __ bind(&entry);
113 __ dec(ecx);
114 __ j(greater_equal, &loop);
115
116 // Call the function.
117 // eax: number of arguments (untagged)
118 // edi: constructor function
119 // edx: new target
120 ParameterCount actual(eax);
121 __ InvokeFunction(edi, edx, actual, CALL_FUNCTION);
122
123 // Restore context from the frame.
124 __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
125 // Restore smi-tagged arguments count from the frame.
126 __ mov(ebx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
127 // Leave construct frame.
128 }
129
130 // Remove caller arguments from the stack and return.
131 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
132 __ pop(ecx);
133 __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
134 __ push(ecx);
135 __ ret(0);
136 }
137
138 } // namespace
139
140 // The construct stub for ES5 constructor functions and ES6 class constructors.
Generate_JSConstructStubGeneric(MacroAssembler * masm)141 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
142 // ----------- S t a t e -------------
143 // -- eax: number of arguments (untagged)
144 // -- edi: constructor function
145 // -- edx: new target
146 // -- esi: context
147 // -- sp[...]: constructor arguments
148 // -----------------------------------
149
150 // Enter a construct frame.
151 {
152 FrameScope scope(masm, StackFrame::CONSTRUCT);
153 Label post_instantiation_deopt_entry, not_create_implicit_receiver;
154
155 // Preserve the incoming parameters on the stack.
156 __ mov(ecx, eax);
157 __ SmiTag(ecx);
158 __ Push(esi);
159 __ Push(ecx);
160 __ Push(edi);
161 __ PushRoot(Heap::kTheHoleValueRootIndex);
162 __ Push(edx);
163
164 // ----------- S t a t e -------------
165 // -- sp[0*kPointerSize]: new target
166 // -- sp[1*kPointerSize]: padding
167 // -- edi and sp[2*kPointerSize]: constructor function
168 // -- sp[3*kPointerSize]: argument count
169 // -- sp[4*kPointerSize]: context
170 // -----------------------------------
171
172 __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
173 __ test(FieldOperand(ebx, SharedFunctionInfo::kFlagsOffset),
174 Immediate(SharedFunctionInfo::IsDerivedConstructorBit::kMask));
175 __ j(not_zero, ¬_create_implicit_receiver);
176
177 // If not derived class constructor: Allocate the new receiver object.
178 __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
179 __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
180 RelocInfo::CODE_TARGET);
181 __ jmp(&post_instantiation_deopt_entry, Label::kNear);
182
183 // Else: use TheHoleValue as receiver for constructor call
184 __ bind(¬_create_implicit_receiver);
185 __ LoadRoot(eax, Heap::kTheHoleValueRootIndex);
186
187 // ----------- S t a t e -------------
188 // -- eax: implicit receiver
189 // -- Slot 4 / sp[0*kPointerSize]: new target
190 // -- Slot 3 / sp[1*kPointerSize]: padding
191 // -- Slot 2 / sp[2*kPointerSize]: constructor function
192 // -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
193 // -- Slot 0 / sp[4*kPointerSize]: context
194 // -----------------------------------
195 // Deoptimizer enters here.
196 masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
197 masm->pc_offset());
198 __ bind(&post_instantiation_deopt_entry);
199
200 // Restore new target.
201 __ Pop(edx);
202
203 // Push the allocated receiver to the stack. We need two copies
204 // because we may have to return the original one and the calling
205 // conventions dictate that the called function pops the receiver.
206 __ Push(eax);
207 __ Push(eax);
208
209 // ----------- S t a t e -------------
210 // -- edx: new target
211 // -- sp[0*kPointerSize]: implicit receiver
212 // -- sp[1*kPointerSize]: implicit receiver
213 // -- sp[2*kPointerSize]: padding
214 // -- sp[3*kPointerSize]: constructor function
215 // -- sp[4*kPointerSize]: number of arguments (tagged)
216 // -- sp[5*kPointerSize]: context
217 // -----------------------------------
218
219 // Restore constructor function and argument count.
220 __ mov(edi, Operand(ebp, ConstructFrameConstants::kConstructorOffset));
221 __ mov(eax, Operand(ebp, ConstructFrameConstants::kLengthOffset));
222 __ SmiUntag(eax);
223
224 // Set up pointer to last argument.
225 __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
226
227 // Copy arguments and receiver to the expression stack.
228 Label loop, entry;
229 __ mov(ecx, eax);
230 // ----------- S t a t e -------------
231 // -- eax: number of arguments (untagged)
232 // -- edx: new target
233 // -- ebx: pointer to last argument
234 // -- ecx: counter (tagged)
235 // -- sp[0*kPointerSize]: implicit receiver
236 // -- sp[1*kPointerSize]: implicit receiver
237 // -- sp[2*kPointerSize]: padding
238 // -- edi and sp[3*kPointerSize]: constructor function
239 // -- sp[4*kPointerSize]: number of arguments (tagged)
240 // -- sp[5*kPointerSize]: context
241 // -----------------------------------
242 __ jmp(&entry, Label::kNear);
243 __ bind(&loop);
244 __ Push(Operand(ebx, ecx, times_pointer_size, 0));
245 __ bind(&entry);
246 __ dec(ecx);
247 __ j(greater_equal, &loop);
248
249 // Call the function.
250 ParameterCount actual(eax);
251 __ InvokeFunction(edi, edx, actual, CALL_FUNCTION);
252
253 // ----------- S t a t e -------------
254 // -- eax: constructor result
255 // -- sp[0*kPointerSize]: implicit receiver
256 // -- sp[1*kPointerSize]: padding
257 // -- sp[2*kPointerSize]: constructor function
258 // -- sp[3*kPointerSize]: number of arguments
259 // -- sp[4*kPointerSize]: context
260 // -----------------------------------
261
262 // Store offset of return address for deoptimizer.
263 masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
264 masm->pc_offset());
265
266 // Restore context from the frame.
267 __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
268
269 // If the result is an object (in the ECMA sense), we should get rid
270 // of the receiver and use the result; see ECMA-262 section 13.2.2-7
271 // on page 74.
272 Label use_receiver, do_throw, leave_frame;
273
274 // If the result is undefined, we jump out to using the implicit receiver.
275 __ JumpIfRoot(eax, Heap::kUndefinedValueRootIndex, &use_receiver,
276 Label::kNear);
277
278 // Otherwise we do a smi check and fall through to check if the return value
279 // is a valid receiver.
280
281 // If the result is a smi, it is *not* an object in the ECMA sense.
282 __ JumpIfSmi(eax, &use_receiver, Label::kNear);
283
284 // If the type of the result (stored in its map) is less than
285 // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
286 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
287 __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
288 __ j(above_equal, &leave_frame, Label::kNear);
289 __ jmp(&use_receiver, Label::kNear);
290
291 __ bind(&do_throw);
292 __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
293
294 // Throw away the result of the constructor invocation and use the
295 // on-stack receiver as the result.
296 __ bind(&use_receiver);
297 __ mov(eax, Operand(esp, 0 * kPointerSize));
298 __ JumpIfRoot(eax, Heap::kTheHoleValueRootIndex, &do_throw);
299
300 __ bind(&leave_frame);
301 // Restore smi-tagged arguments count from the frame.
302 __ mov(ebx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
303 // Leave construct frame.
304 }
305 // Remove caller arguments from the stack and return.
306 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
307 __ pop(ecx);
308 __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
309 __ push(ecx);
310 __ ret(0);
311 }
312
Generate_JSBuiltinsConstructStub(MacroAssembler * masm)313 void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
314 Generate_JSBuiltinsConstructStubHelper(masm);
315 }
316
Generate_ConstructedNonConstructable(MacroAssembler * masm)317 void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
318 FrameScope scope(masm, StackFrame::INTERNAL);
319 __ push(edi);
320 __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
321 }
322
Generate_StackOverflowCheck(MacroAssembler * masm,Register num_args,Register scratch1,Register scratch2,Label * stack_overflow,bool include_receiver=false)323 static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
324 Register scratch1, Register scratch2,
325 Label* stack_overflow,
326 bool include_receiver = false) {
327 // Check the stack for overflow. We are not trying to catch
328 // interruptions (e.g. debug break and preemption) here, so the "real stack
329 // limit" is checked.
330 ExternalReference real_stack_limit =
331 ExternalReference::address_of_real_stack_limit(masm->isolate());
332 __ mov(scratch1, __ StaticVariable(real_stack_limit));
333 // Make scratch2 the space we have left. The stack might already be overflowed
334 // here which will cause scratch2 to become negative.
335 __ mov(scratch2, esp);
336 __ sub(scratch2, scratch1);
337 // Make scratch1 the space we need for the array when it is unrolled onto the
338 // stack.
339 __ mov(scratch1, num_args);
340 if (include_receiver) {
341 __ add(scratch1, Immediate(1));
342 }
343 __ shl(scratch1, kPointerSizeLog2);
344 // Check if the arguments will overflow the stack.
345 __ cmp(scratch2, scratch1);
346 __ j(less_equal, stack_overflow); // Signed comparison.
347 }
348
Generate_JSEntryTrampolineHelper(MacroAssembler * masm,bool is_construct)349 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
350 bool is_construct) {
351 ProfileEntryHookStub::MaybeCallEntryHook(masm);
352
353 {
354 FrameScope scope(masm, StackFrame::INTERNAL);
355
356 // Setup the context (we need to use the caller context from the isolate).
357 ExternalReference context_address = ExternalReference::Create(
358 IsolateAddressId::kContextAddress, masm->isolate());
359 __ mov(esi, __ StaticVariable(context_address));
360
361 // Load the previous frame pointer (ebx) to access C arguments
362 __ mov(ebx, Operand(ebp, 0));
363
364 // Push the function and the receiver onto the stack.
365 __ push(Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
366 __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
367
368 // Load the number of arguments and setup pointer to the arguments.
369 __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
370 __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
371
372 // Check if we have enough stack space to push all arguments.
373 // Argument count in eax. Clobbers ecx and edx.
374 Label enough_stack_space, stack_overflow;
375 Generate_StackOverflowCheck(masm, eax, ecx, edx, &stack_overflow);
376 __ jmp(&enough_stack_space);
377
378 __ bind(&stack_overflow);
379 __ CallRuntime(Runtime::kThrowStackOverflow);
380 // This should be unreachable.
381 __ int3();
382
383 __ bind(&enough_stack_space);
384
385 // Copy arguments to the stack in a loop.
386 Label loop, entry;
387 __ Move(ecx, Immediate(0));
388 __ jmp(&entry, Label::kNear);
389 __ bind(&loop);
390 __ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv
391 __ push(Operand(edx, 0)); // dereference handle
392 __ inc(ecx);
393 __ bind(&entry);
394 __ cmp(ecx, eax);
395 __ j(not_equal, &loop);
396
397 // Load the previous frame pointer (ebx) to access C arguments
398 __ mov(ebx, Operand(ebp, 0));
399
400 // Get the new.target and function from the frame.
401 __ mov(edx, Operand(ebx, EntryFrameConstants::kNewTargetArgOffset));
402 __ mov(edi, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
403
404 // Invoke the code.
405 Handle<Code> builtin = is_construct
406 ? BUILTIN_CODE(masm->isolate(), Construct)
407 : masm->isolate()->builtins()->Call();
408 __ Call(builtin, RelocInfo::CODE_TARGET);
409
410 // Exit the internal frame. Notice that this also removes the empty.
411 // context and the function left on the stack by the code
412 // invocation.
413 }
414 __ ret(0);
415 }
416
Generate_JSEntryTrampoline(MacroAssembler * masm)417 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
418 Generate_JSEntryTrampolineHelper(masm, false);
419 }
420
Generate_JSConstructEntryTrampoline(MacroAssembler * masm)421 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
422 Generate_JSEntryTrampolineHelper(masm, true);
423 }
424
GetSharedFunctionInfoBytecode(MacroAssembler * masm,Register sfi_data,Register scratch1)425 static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
426 Register sfi_data,
427 Register scratch1) {
428 Label done;
429
430 __ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1);
431 __ j(not_equal, &done, Label::kNear);
432 __ mov(sfi_data,
433 FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
434
435 __ bind(&done);
436 }
437
438 // static
Generate_ResumeGeneratorTrampoline(MacroAssembler * masm)439 void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
440 // ----------- S t a t e -------------
441 // -- eax : the value to pass to the generator
442 // -- edx : the JSGeneratorObject to resume
443 // -- esp[0] : return address
444 // -----------------------------------
445 __ AssertGeneratorObject(edx);
446
447 // Store input value into generator object.
448 __ mov(FieldOperand(edx, JSGeneratorObject::kInputOrDebugPosOffset), eax);
449 __ RecordWriteField(edx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx,
450 kDontSaveFPRegs);
451
452 // Load suspended function and context.
453 __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
454 __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
455
456 // Flood function if we are stepping.
457 Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
458 Label stepping_prepared;
459 ExternalReference debug_hook =
460 ExternalReference::debug_hook_on_function_call_address(masm->isolate());
461 __ cmpb(__ StaticVariable(debug_hook), Immediate(0));
462 __ j(not_equal, &prepare_step_in_if_stepping);
463
464 // Flood function if we need to continue stepping in the suspended generator.
465 ExternalReference debug_suspended_generator =
466 ExternalReference::debug_suspended_generator_address(masm->isolate());
467 __ cmp(edx, __ StaticVariable(debug_suspended_generator));
468 __ j(equal, &prepare_step_in_suspended_generator);
469 __ bind(&stepping_prepared);
470
471 // Check the stack for overflow. We are not trying to catch interruptions
472 // (i.e. debug break and preemption) here, so check the "real stack limit".
473 Label stack_overflow;
474 __ CompareRoot(esp, ecx, Heap::kRealStackLimitRootIndex);
475 __ j(below, &stack_overflow);
476
477 // Pop return address.
478 __ PopReturnAddressTo(eax);
479
480 // Push receiver.
481 __ Push(FieldOperand(edx, JSGeneratorObject::kReceiverOffset));
482
483 // ----------- S t a t e -------------
484 // -- eax : return address
485 // -- edx : the JSGeneratorObject to resume
486 // -- edi : generator function
487 // -- esi : generator context
488 // -- esp[0] : generator receiver
489 // -----------------------------------
490
491 // Copy the function arguments from the generator object's register file.
492 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
493 __ movzx_w(
494 ecx, FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset));
495 __ mov(ebx,
496 FieldOperand(edx, JSGeneratorObject::kParametersAndRegistersOffset));
497 {
498 Label done_loop, loop;
499 __ Set(edi, 0);
500
501 __ bind(&loop);
502 __ cmp(edi, ecx);
503 __ j(greater_equal, &done_loop);
504 __ Push(
505 FieldOperand(ebx, edi, times_pointer_size, FixedArray::kHeaderSize));
506 __ add(edi, Immediate(1));
507 __ jmp(&loop);
508
509 __ bind(&done_loop);
510 __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
511 }
512
513 // Underlying function needs to have bytecode available.
514 if (FLAG_debug_code) {
515 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
516 __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
517 __ Push(eax);
518 GetSharedFunctionInfoBytecode(masm, ecx, eax);
519 __ Pop(eax);
520 __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx);
521 __ Assert(equal, AbortReason::kMissingBytecodeArray);
522 }
523
524 // Resume (Ignition/TurboFan) generator object.
525 {
526 __ PushReturnAddressFrom(eax);
527 __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
528 __ movzx_w(eax, FieldOperand(
529 eax, SharedFunctionInfo::kFormalParameterCountOffset));
530 // We abuse new.target both to indicate that this is a resume call and to
531 // pass in the generator object. In ordinary calls, new.target is always
532 // undefined because generator functions are non-constructable.
533 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
534 __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
535 __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
536 __ jmp(ecx);
537 }
538
539 __ bind(&prepare_step_in_if_stepping);
540 {
541 FrameScope scope(masm, StackFrame::INTERNAL);
542 __ Push(edx);
543 __ Push(edi);
544 // Push hole as receiver since we do not use it for stepping.
545 __ PushRoot(Heap::kTheHoleValueRootIndex);
546 __ CallRuntime(Runtime::kDebugOnFunctionCall);
547 __ Pop(edx);
548 __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
549 }
550 __ jmp(&stepping_prepared);
551
552 __ bind(&prepare_step_in_suspended_generator);
553 {
554 FrameScope scope(masm, StackFrame::INTERNAL);
555 __ Push(edx);
556 __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
557 __ Pop(edx);
558 __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
559 }
560 __ jmp(&stepping_prepared);
561
562 __ bind(&stack_overflow);
563 {
564 FrameScope scope(masm, StackFrame::INTERNAL);
565 __ CallRuntime(Runtime::kThrowStackOverflow);
566 __ int3(); // This should be unreachable.
567 }
568 }
569
ReplaceClosureCodeWithOptimizedCode(MacroAssembler * masm,Register optimized_code,Register closure,Register scratch1,Register scratch2,Register scratch3)570 static void ReplaceClosureCodeWithOptimizedCode(
571 MacroAssembler* masm, Register optimized_code, Register closure,
572 Register scratch1, Register scratch2, Register scratch3) {
573
574 // Store the optimized code in the closure.
575 __ mov(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code);
576 __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below.
577 __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
578 kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
579 }
580
LeaveInterpreterFrame(MacroAssembler * masm,Register scratch1,Register scratch2)581 static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
582 Register scratch2) {
583 Register args_count = scratch1;
584 Register return_pc = scratch2;
585
586 // Get the arguments + receiver count.
587 __ mov(args_count,
588 Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
589 __ mov(args_count,
590 FieldOperand(args_count, BytecodeArray::kParameterSizeOffset));
591
592 // Leave the frame (also dropping the register file).
593 __ leave();
594
595 // Drop receiver + arguments.
596 __ pop(return_pc);
597 __ add(esp, args_count);
598 __ push(return_pc);
599 }
600
601 // Tail-call |function_id| if |smi_entry| == |marker|
TailCallRuntimeIfMarkerEquals(MacroAssembler * masm,Register smi_entry,OptimizationMarker marker,Runtime::FunctionId function_id)602 static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
603 Register smi_entry,
604 OptimizationMarker marker,
605 Runtime::FunctionId function_id) {
606 Label no_match;
607 __ cmp(smi_entry, Immediate(Smi::FromEnum(marker)));
608 __ j(not_equal, &no_match, Label::kNear);
609 GenerateTailCallToReturnedCode(masm, function_id);
610 __ bind(&no_match);
611 }
612
MaybeTailCallOptimizedCodeSlot(MacroAssembler * masm,Register feedback_vector,Register scratch)613 static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
614 Register feedback_vector,
615 Register scratch) {
616 // ----------- S t a t e -------------
617 // -- eax : argument count (preserved for callee if needed, and caller)
618 // -- edx : new target (preserved for callee if needed, and caller)
619 // -- edi : target function (preserved for callee if needed, and caller)
620 // -- feedback vector (preserved for caller if needed)
621 // -----------------------------------
622 DCHECK(!AreAliased(feedback_vector, eax, edx, edi, scratch));
623
624 Label optimized_code_slot_is_weak_ref, fallthrough;
625
626 Register closure = edi;
627 Register optimized_code_entry = scratch;
628
629 __ mov(optimized_code_entry,
630 FieldOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
631
632 // Check if the code entry is a Smi. If yes, we interpret it as an
633 // optimisation marker. Otherwise, interpret it as a weak reference to a code
634 // object.
635 __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
636
637 {
638 // Optimized code slot is an optimization marker.
639
640 // Fall through if no optimization trigger.
641 __ cmp(optimized_code_entry,
642 Immediate(Smi::FromEnum(OptimizationMarker::kNone)));
643 __ j(equal, &fallthrough);
644
645 TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
646 OptimizationMarker::kLogFirstExecution,
647 Runtime::kFunctionFirstExecution);
648 TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
649 OptimizationMarker::kCompileOptimized,
650 Runtime::kCompileOptimized_NotConcurrent);
651 TailCallRuntimeIfMarkerEquals(
652 masm, optimized_code_entry,
653 OptimizationMarker::kCompileOptimizedConcurrent,
654 Runtime::kCompileOptimized_Concurrent);
655
656 {
657 // Otherwise, the marker is InOptimizationQueue, so fall through hoping
658 // that an interrupt will eventually update the slot with optimized code.
659 if (FLAG_debug_code) {
660 __ cmp(
661 optimized_code_entry,
662 Immediate(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)));
663 __ Assert(equal, AbortReason::kExpectedOptimizationSentinel);
664 }
665 __ jmp(&fallthrough);
666 }
667 }
668
669 {
670 // Optimized code slot is a weak reference.
671 __ bind(&optimized_code_slot_is_weak_ref);
672
673 __ LoadWeakValue(optimized_code_entry, &fallthrough);
674
675 __ push(eax);
676 __ push(edx);
677
678 // Check if the optimized code is marked for deopt. If it is, bailout to a
679 // given label.
680 Label found_deoptimized_code;
681 __ mov(eax,
682 FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
683 __ test(FieldOperand(eax, CodeDataContainer::kKindSpecificFlagsOffset),
684 Immediate(1 << Code::kMarkedForDeoptimizationBit));
685 __ j(not_zero, &found_deoptimized_code);
686
687 // Optimized code is good, get it into the closure and link the closure into
688 // the optimized functions list, then tail call the optimized code.
689 // The feedback vector is no longer used, so re-use it as a scratch
690 // register.
691 ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
692 edx, eax, feedback_vector);
693 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
694 __ Move(ecx, optimized_code_entry);
695 __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
696 __ pop(edx);
697 __ pop(eax);
698 __ jmp(ecx);
699
700 // Optimized code slot contains deoptimized code, evict it and re-enter the
701 // closure's code.
702 __ bind(&found_deoptimized_code);
703 __ pop(edx);
704 __ pop(eax);
705 GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
706 }
707
708 // Fall-through if the optimized code cell is clear and there is no
709 // optimization marker.
710 __ bind(&fallthrough);
711 }
712
713 // Advance the current bytecode offset. This simulates what all bytecode
714 // handlers do upon completion of the underlying operation. Will bail out to a
715 // label if the bytecode (without prefix) is a return bytecode.
AdvanceBytecodeOffsetOrReturn(MacroAssembler * masm,Register bytecode_array,Register bytecode_offset,Register bytecode,Register scratch1,Label * if_return)716 static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
717 Register bytecode_array,
718 Register bytecode_offset,
719 Register bytecode, Register scratch1,
720 Label* if_return) {
721 Register bytecode_size_table = scratch1;
722 DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
723 bytecode));
724
725 __ Move(bytecode_size_table,
726 Immediate(ExternalReference::bytecode_size_table_address()));
727
728 // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
729 Label process_bytecode, extra_wide;
730 STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
731 STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
732 STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
733 STATIC_ASSERT(3 ==
734 static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
735 __ cmpb(bytecode, Immediate(0x3));
736 __ j(above, &process_bytecode, Label::kNear);
737 __ test(bytecode, Immediate(0x1));
738 __ j(not_equal, &extra_wide, Label::kNear);
739
740 // Load the next bytecode and update table to the wide scaled table.
741 __ inc(bytecode_offset);
742 __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
743 __ add(bytecode_size_table,
744 Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount));
745 __ jmp(&process_bytecode, Label::kNear);
746
747 __ bind(&extra_wide);
748 // Load the next bytecode and update table to the extra wide scaled table.
749 __ inc(bytecode_offset);
750 __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
751 __ add(bytecode_size_table,
752 Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
753
754 __ bind(&process_bytecode);
755
756 // Bailout to the return label if this is a return bytecode.
757 #define JUMP_IF_EQUAL(NAME) \
758 __ cmpb(bytecode, \
759 Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \
760 __ j(equal, if_return);
761 RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
762 #undef JUMP_IF_EQUAL
763
764 // Otherwise, load the size of the current bytecode and advance the offset.
765 __ add(bytecode_offset, Operand(bytecode_size_table, bytecode, times_4, 0));
766 }
767
768 // Generate code for entering a JS function with the interpreter.
769 // On entry to the function the receiver and arguments have been pushed on the
770 // stack left to right. The actual argument count matches the formal parameter
771 // count expected by the function.
772 //
773 // The live registers are:
774 // o edi: the JS function object being called
775 // o edx: the incoming new target or generator object
776 // o esi: our context
777 // o ebp: the caller's frame pointer
778 // o esp: stack pointer (pointing to return address)
779 //
780 // The function builds an interpreter frame. See InterpreterFrameConstants in
781 // frames.h for its layout.
Generate_InterpreterEntryTrampoline(MacroAssembler * masm)782 void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
783 ProfileEntryHookStub::MaybeCallEntryHook(masm);
784
785 Register closure = edi;
786 Register feedback_vector = ebx;
787
788 // Load the feedback vector from the closure.
789 __ mov(feedback_vector,
790 FieldOperand(closure, JSFunction::kFeedbackCellOffset));
791 __ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
792 // Read off the optimized code slot in the feedback vector, and if there
793 // is optimized code or an optimization marker, call that instead.
794 MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, ecx);
795
796 // Open a frame scope to indicate that there is a frame on the stack. The
797 // MANUAL indicates that the scope shouldn't actually generate code to set
798 // up the frame (that is done below).
799 FrameScope frame_scope(masm, StackFrame::MANUAL);
800 __ push(ebp); // Caller's frame pointer.
801 __ mov(ebp, esp);
802 __ push(esi); // Callee's context.
803 __ push(edi); // Callee's JS function.
804
805 // Get the bytecode array from the function object and load it into
806 // kInterpreterBytecodeArrayRegister.
807 __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
808 __ mov(kInterpreterBytecodeArrayRegister,
809 FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset));
810 __ Push(eax);
811 GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, eax);
812 __ Pop(eax);
813
814 __ inc(FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
815
816 // Check function data field is actually a BytecodeArray object.
817 if (FLAG_debug_code) {
818 __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
819 __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
820 eax);
821 __ Assert(
822 equal,
823 AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
824 }
825
826 // Reset code age.
827 __ mov_b(FieldOperand(kInterpreterBytecodeArrayRegister,
828 BytecodeArray::kBytecodeAgeOffset),
829 Immediate(BytecodeArray::kNoAgeBytecodeAge));
830
831 // Push bytecode array.
832 __ push(kInterpreterBytecodeArrayRegister);
833 // Push Smi tagged initial bytecode array offset.
834 __ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag)));
835
836 // Allocate the local and temporary register file on the stack.
837 {
838 // Load frame size from the BytecodeArray object.
839 __ mov(ebx, FieldOperand(kInterpreterBytecodeArrayRegister,
840 BytecodeArray::kFrameSizeOffset));
841
842 // Do a stack check to ensure we don't go over the limit.
843 Label ok;
844 __ mov(ecx, esp);
845 __ sub(ecx, ebx);
846 ExternalReference stack_limit =
847 ExternalReference::address_of_real_stack_limit(masm->isolate());
848 __ cmp(ecx, __ StaticVariable(stack_limit));
849 __ j(above_equal, &ok);
850 __ CallRuntime(Runtime::kThrowStackOverflow);
851 __ bind(&ok);
852
853 // If ok, push undefined as the initial value for all register file entries.
854 Label loop_header;
855 Label loop_check;
856 __ mov(eax, Immediate(masm->isolate()->factory()->undefined_value()));
857 __ jmp(&loop_check);
858 __ bind(&loop_header);
859 // TODO(rmcilroy): Consider doing more than one push per loop iteration.
860 __ push(eax);
861 // Continue loop if not done.
862 __ bind(&loop_check);
863 __ sub(ebx, Immediate(kPointerSize));
864 __ j(greater_equal, &loop_header);
865 }
866
867 // If the bytecode array has a valid incoming new target or generator object
868 // register, initialize it with incoming value which was passed in edx.
869 Label no_incoming_new_target_or_generator_register;
870 __ mov(eax, FieldOperand(
871 kInterpreterBytecodeArrayRegister,
872 BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
873 __ test(eax, eax);
874 __ j(zero, &no_incoming_new_target_or_generator_register);
875 __ mov(Operand(ebp, eax, times_pointer_size, 0), edx);
876 __ bind(&no_incoming_new_target_or_generator_register);
877
878 // Load accumulator and bytecode offset into registers.
879 __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
880 __ mov(kInterpreterBytecodeOffsetRegister,
881 Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
882
883 // Load the dispatch table into a register and dispatch to the bytecode
884 // handler at the current bytecode offset.
885 Label do_dispatch;
886 __ bind(&do_dispatch);
887 __ mov(kInterpreterDispatchTableRegister,
888 Immediate(ExternalReference::interpreter_dispatch_table_address(
889 masm->isolate())));
890 __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
891 kInterpreterBytecodeOffsetRegister, times_1, 0));
892 __ mov(
893 kJavaScriptCallCodeStartRegister,
894 Operand(kInterpreterDispatchTableRegister, ebx, times_pointer_size, 0));
895 __ call(kJavaScriptCallCodeStartRegister);
896 masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
897
898 // Any returns to the entry trampoline are either due to the return bytecode
899 // or the interpreter tail calling a builtin and then a dispatch.
900
901 // Get bytecode array and bytecode offset from the stack frame.
902 __ mov(kInterpreterBytecodeArrayRegister,
903 Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
904 __ mov(kInterpreterBytecodeOffsetRegister,
905 Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
906 __ SmiUntag(kInterpreterBytecodeOffsetRegister);
907
908 // Either return, or advance to the next bytecode and dispatch.
909 Label do_return;
910 __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
911 kInterpreterBytecodeOffsetRegister, times_1, 0));
912 AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
913 kInterpreterBytecodeOffsetRegister, ebx, ecx,
914 &do_return);
915 __ jmp(&do_dispatch);
916
917 __ bind(&do_return);
918 // The return value is in eax.
919 LeaveInterpreterFrame(masm, ebx, ecx);
920 __ ret(0);
921 }
922
923
Generate_InterpreterPushArgs(MacroAssembler * masm,Register array_limit,Register start_address)924 static void Generate_InterpreterPushArgs(MacroAssembler* masm,
925 Register array_limit,
926 Register start_address) {
927 // ----------- S t a t e -------------
928 // -- start_address : Pointer to the last argument in the args array.
929 // -- array_limit : Pointer to one before the first argument in the
930 // args array.
931 // -----------------------------------
932 Label loop_header, loop_check;
933 __ jmp(&loop_check);
934 __ bind(&loop_header);
935 __ Push(Operand(start_address, 0));
936 __ sub(start_address, Immediate(kPointerSize));
937 __ bind(&loop_check);
938 __ cmp(start_address, array_limit);
939 __ j(greater, &loop_header, Label::kNear);
940 }
941
942 // static
Generate_InterpreterPushArgsThenCallImpl(MacroAssembler * masm,ConvertReceiverMode receiver_mode,InterpreterPushArgsMode mode)943 void Builtins::Generate_InterpreterPushArgsThenCallImpl(
944 MacroAssembler* masm, ConvertReceiverMode receiver_mode,
945 InterpreterPushArgsMode mode) {
946 DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
947 // ----------- S t a t e -------------
948 // -- eax : the number of arguments (not including the receiver)
949 // -- ebx : the address of the first argument to be pushed. Subsequent
950 // arguments should be consecutive above this, in the same order as
951 // they are to be pushed onto the stack.
952 // -- edi : the target to call (can be any Object).
953 // -----------------------------------
954 Label stack_overflow;
955 // Compute the expected number of arguments.
956 __ mov(ecx, eax);
957 __ add(ecx, Immediate(1)); // Add one for receiver.
958
959 // Add a stack check before pushing the arguments. We need an extra register
960 // to perform a stack check. So push it onto the stack temporarily. This
961 // might cause stack overflow, but it will be detected by the check.
962 __ Push(edi);
963 Generate_StackOverflowCheck(masm, ecx, edx, edi, &stack_overflow);
964 __ Pop(edi);
965
966 // Pop return address to allow tail-call after pushing arguments.
967 __ Pop(edx);
968
969 // Push "undefined" as the receiver arg if we need to.
970 if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
971 __ PushRoot(Heap::kUndefinedValueRootIndex);
972 __ sub(ecx, Immediate(1)); // Subtract one for receiver.
973 }
974
975 // Find the address of the last argument.
976 __ shl(ecx, kPointerSizeLog2);
977 __ neg(ecx);
978 __ add(ecx, ebx);
979 Generate_InterpreterPushArgs(masm, ecx, ebx);
980
981 if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
982 __ Pop(ebx); // Pass the spread in a register
983 __ sub(eax, Immediate(1)); // Subtract one for spread
984 }
985
986 // Call the target.
987 __ Push(edx); // Re-push return address.
988
989 if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
990 __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
991 RelocInfo::CODE_TARGET);
992 } else {
993 __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
994 RelocInfo::CODE_TARGET);
995 }
996
997 __ bind(&stack_overflow);
998 {
999 // Pop the temporary registers, so that return address is on top of stack.
1000 __ Pop(edi);
1001
1002 __ TailCallRuntime(Runtime::kThrowStackOverflow);
1003
1004 // This should be unreachable.
1005 __ int3();
1006 }
1007 }
1008
1009 namespace {
1010
1011 // This function modified start_addr, and only reads the contents of num_args
1012 // register. scratch1 and scratch2 are used as temporary registers. Their
1013 // original values are restored after the use.
Generate_InterpreterPushZeroAndArgsAndReturnAddress(MacroAssembler * masm,Register num_args,Register start_addr,Register scratch1,Register scratch2,int num_slots_above_ret_addr,Label * stack_overflow)1014 void Generate_InterpreterPushZeroAndArgsAndReturnAddress(
1015 MacroAssembler* masm, Register num_args, Register start_addr,
1016 Register scratch1, Register scratch2, int num_slots_above_ret_addr,
1017 Label* stack_overflow) {
1018 // We have to move return address and the temporary registers above it
1019 // before we can copy arguments onto the stack. To achieve this:
1020 // Step 1: Increment the stack pointer by num_args + 1 (for receiver).
1021 // Step 2: Move the return address and values above it to the top of stack.
1022 // Step 3: Copy the arguments into the correct locations.
1023 // current stack =====> required stack layout
1024 // | | | scratch1 | (2) <-- esp(1)
1025 // | | | .... | (2)
1026 // | | | scratch-n | (2)
1027 // | | | return addr | (2)
1028 // | | | arg N | (3)
1029 // | scratch1 | <-- esp | .... |
1030 // | .... | | arg 1 |
1031 // | scratch-n | | arg 0 |
1032 // | return addr | | receiver slot |
1033
1034 // Check for stack overflow before we increment the stack pointer.
1035 Generate_StackOverflowCheck(masm, num_args, scratch1, scratch2,
1036 stack_overflow, true);
1037
1038 // Step 1 - Update the stack pointer. scratch1 already contains the required
1039 // increment to the stack. i.e. num_args + 1 stack slots. This is computed in
1040 // Generate_StackOverflowCheck.
1041
1042 __ AllocateStackFrame(scratch1);
1043
1044 // Step 2 move return_address and slots above it to the correct locations.
1045 // Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1,
1046 // basically when the source and destination overlap. We at least need one
1047 // extra slot for receiver, so no extra checks are required to avoid copy.
1048 for (int i = 0; i < num_slots_above_ret_addr + 1; i++) {
1049 __ mov(scratch1,
1050 Operand(esp, num_args, times_pointer_size, (i + 1) * kPointerSize));
1051 __ mov(Operand(esp, i * kPointerSize), scratch1);
1052 }
1053
1054 // Step 3 copy arguments to correct locations.
1055 // Slot meant for receiver contains return address. Reset it so that
1056 // we will not incorrectly interpret return address as an object.
1057 __ mov(Operand(esp, num_args, times_pointer_size,
1058 (num_slots_above_ret_addr + 1) * kPointerSize),
1059 Immediate(0));
1060 __ mov(scratch1, num_args);
1061
1062 Label loop_header, loop_check;
1063 __ jmp(&loop_check);
1064 __ bind(&loop_header);
1065 __ mov(scratch2, Operand(start_addr, 0));
1066 __ mov(Operand(esp, scratch1, times_pointer_size,
1067 num_slots_above_ret_addr * kPointerSize),
1068 scratch2);
1069 __ sub(start_addr, Immediate(kPointerSize));
1070 __ sub(scratch1, Immediate(1));
1071 __ bind(&loop_check);
1072 __ cmp(scratch1, Immediate(0));
1073 __ j(greater, &loop_header, Label::kNear);
1074 }
1075
1076 } // end anonymous namespace
1077
1078 // static
Generate_InterpreterPushArgsThenConstructImpl(MacroAssembler * masm,InterpreterPushArgsMode mode)1079 void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
1080 MacroAssembler* masm, InterpreterPushArgsMode mode) {
1081 // ----------- S t a t e -------------
1082 // -- eax : the number of arguments (not including the receiver)
1083 // -- edx : the new target
1084 // -- edi : the constructor
1085 // -- ebx : allocation site feedback (if available or undefined)
1086 // -- ecx : the address of the first argument to be pushed. Subsequent
1087 // arguments should be consecutive above this, in the same order as
1088 // they are to be pushed onto the stack.
1089 // -----------------------------------
1090 Label stack_overflow;
1091 // We need two scratch registers. Push edi and edx onto stack.
1092 __ Push(edi);
1093 __ Push(edx);
1094
1095 // Push arguments and move return address to the top of stack.
1096 // The eax register is readonly. The ecx register will be modified. The edx
1097 // and edi registers will be modified but restored to their original values.
1098 Generate_InterpreterPushZeroAndArgsAndReturnAddress(masm, eax, ecx, edx, edi,
1099 2, &stack_overflow);
1100
1101 // Restore edi and edx
1102 __ Pop(edx);
1103 __ Pop(edi);
1104
1105 if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1106 __ PopReturnAddressTo(ecx);
1107 __ Pop(ebx); // Pass the spread in a register
1108 __ PushReturnAddressFrom(ecx);
1109 __ sub(eax, Immediate(1)); // Subtract one for spread
1110 } else {
1111 __ AssertUndefinedOrAllocationSite(ebx);
1112 }
1113
1114 if (mode == InterpreterPushArgsMode::kArrayFunction) {
1115 // Tail call to the array construct stub (still in the caller
1116 // context at this point).
1117 __ AssertFunction(edi);
1118 // TODO(v8:6666): When rewriting ia32 ASM builtins to not clobber the
1119 // kRootRegister ebx, this useless move can be removed.
1120 __ Move(kJavaScriptCallExtraArg1Register, ebx);
1121 Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
1122 __ Jump(code, RelocInfo::CODE_TARGET);
1123 } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1124 // Call the constructor with unmodified eax, edi, edx values.
1125 __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
1126 RelocInfo::CODE_TARGET);
1127 } else {
1128 DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1129 // Call the constructor with unmodified eax, edi, edx values.
1130 __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
1131 }
1132
1133 __ bind(&stack_overflow);
1134 {
1135 // Pop the temporary registers, so that return address is on top of stack.
1136 __ Pop(edx);
1137 __ Pop(edi);
1138
1139 __ TailCallRuntime(Runtime::kThrowStackOverflow);
1140
1141 // This should be unreachable.
1142 __ int3();
1143 }
1144 }
1145
Generate_InterpreterEnterBytecode(MacroAssembler * masm)1146 static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1147 // Set the return address to the correct point in the interpreter entry
1148 // trampoline.
1149 Label builtin_trampoline, trampoline_loaded;
1150 Smi* interpreter_entry_return_pc_offset(
1151 masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1152 DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
1153
1154 // If the SFI function_data is an InterpreterData, get the trampoline stored
1155 // in it, otherwise get the trampoline from the builtins list.
1156 __ mov(ebx, Operand(ebp, StandardFrameConstants::kFunctionOffset));
1157 __ mov(ebx, FieldOperand(ebx, JSFunction::kSharedFunctionInfoOffset));
1158 __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kFunctionDataOffset));
1159 __ Push(eax);
1160 __ CmpObjectType(ebx, INTERPRETER_DATA_TYPE, eax);
1161 __ j(not_equal, &builtin_trampoline, Label::kNear);
1162
1163 __ mov(ebx, FieldOperand(ebx, InterpreterData::kInterpreterTrampolineOffset));
1164 __ jmp(&trampoline_loaded, Label::kNear);
1165
1166 __ bind(&builtin_trampoline);
1167 __ Move(ebx, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
1168
1169 __ bind(&trampoline_loaded);
1170 __ Pop(eax);
1171 __ add(ebx, Immediate(interpreter_entry_return_pc_offset->value() +
1172 Code::kHeaderSize - kHeapObjectTag));
1173 __ push(ebx);
1174
1175 // Initialize the dispatch table register.
1176 __ mov(kInterpreterDispatchTableRegister,
1177 Immediate(ExternalReference::interpreter_dispatch_table_address(
1178 masm->isolate())));
1179
1180 // Get the bytecode array pointer from the frame.
1181 __ mov(kInterpreterBytecodeArrayRegister,
1182 Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1183
1184 if (FLAG_debug_code) {
1185 // Check function data field is actually a BytecodeArray object.
1186 __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
1187 __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
1188 ebx);
1189 __ Assert(
1190 equal,
1191 AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1192 }
1193
1194 // Get the target bytecode offset from the frame.
1195 __ mov(kInterpreterBytecodeOffsetRegister,
1196 Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1197 __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1198
1199 // Dispatch to the target bytecode.
1200 __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
1201 kInterpreterBytecodeOffsetRegister, times_1, 0));
1202 __ mov(
1203 kJavaScriptCallCodeStartRegister,
1204 Operand(kInterpreterDispatchTableRegister, ebx, times_pointer_size, 0));
1205 __ jmp(kJavaScriptCallCodeStartRegister);
1206 }
1207
Generate_InterpreterEnterBytecodeAdvance(MacroAssembler * masm)1208 void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
1209 // Get bytecode array and bytecode offset from the stack frame.
1210 __ mov(kInterpreterBytecodeArrayRegister,
1211 Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1212 __ mov(kInterpreterBytecodeOffsetRegister,
1213 Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1214 __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1215
1216 // Load the current bytecode
1217 __ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
1218 kInterpreterBytecodeOffsetRegister, times_1, 0));
1219
1220 // Advance to the next bytecode.
1221 Label if_return;
1222 AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
1223 kInterpreterBytecodeOffsetRegister, ebx, ecx,
1224 &if_return);
1225
1226 // Convert new bytecode offset to a Smi and save in the stackframe.
1227 __ mov(ebx, kInterpreterBytecodeOffsetRegister);
1228 __ SmiTag(ebx);
1229 __ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), ebx);
1230
1231 Generate_InterpreterEnterBytecode(masm);
1232
1233 // We should never take the if_return path.
1234 __ bind(&if_return);
1235 __ Abort(AbortReason::kInvalidBytecodeAdvance);
1236 }
1237
Generate_InterpreterEnterBytecodeDispatch(MacroAssembler * masm)1238 void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
1239 Generate_InterpreterEnterBytecode(masm);
1240 }
1241
Generate_InstantiateAsmJs(MacroAssembler * masm)1242 void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
1243 // ----------- S t a t e -------------
1244 // -- eax : argument count (preserved for callee)
1245 // -- edx : new target (preserved for callee)
1246 // -- edi : target function (preserved for callee)
1247 // -----------------------------------
1248 Label failed;
1249 {
1250 FrameScope scope(masm, StackFrame::INTERNAL);
1251 // Preserve argument count for later compare.
1252 __ mov(ecx, eax);
1253 // Push the number of arguments to the callee.
1254 __ SmiTag(eax);
1255 __ push(eax);
1256 // Push a copy of the target function and the new target.
1257 __ push(edi);
1258 __ push(edx);
1259
1260 // The function.
1261 __ push(edi);
1262 // Copy arguments from caller (stdlib, foreign, heap).
1263 Label args_done;
1264 for (int j = 0; j < 4; ++j) {
1265 Label over;
1266 if (j < 3) {
1267 __ cmp(ecx, Immediate(j));
1268 __ j(not_equal, &over, Label::kNear);
1269 }
1270 for (int i = j - 1; i >= 0; --i) {
1271 __ Push(Operand(
1272 ebp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize));
1273 }
1274 for (int i = 0; i < 3 - j; ++i) {
1275 __ PushRoot(Heap::kUndefinedValueRootIndex);
1276 }
1277 if (j < 3) {
1278 __ jmp(&args_done, Label::kNear);
1279 __ bind(&over);
1280 }
1281 }
1282 __ bind(&args_done);
1283
1284 // Call runtime, on success unwind frame, and parent frame.
1285 __ CallRuntime(Runtime::kInstantiateAsmJs, 4);
1286 // A smi 0 is returned on failure, an object on success.
1287 __ JumpIfSmi(eax, &failed, Label::kNear);
1288
1289 __ Drop(2);
1290 __ Pop(ecx);
1291 __ SmiUntag(ecx);
1292 scope.GenerateLeaveFrame();
1293
1294 __ PopReturnAddressTo(ebx);
1295 __ inc(ecx);
1296 __ lea(esp, Operand(esp, ecx, times_pointer_size, 0));
1297 __ PushReturnAddressFrom(ebx);
1298 __ ret(0);
1299
1300 __ bind(&failed);
1301 // Restore target function and new target.
1302 __ pop(edx);
1303 __ pop(edi);
1304 __ pop(eax);
1305 __ SmiUntag(eax);
1306 }
1307 // On failure, tail call back to regular js by re-calling the function
1308 // which has be reset to the compile lazy builtin.
1309 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
1310 __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
1311 __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1312 __ jmp(ecx);
1313 }
1314
1315 namespace {
Generate_ContinueToBuiltinHelper(MacroAssembler * masm,bool java_script_builtin,bool with_result)1316 void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
1317 bool java_script_builtin,
1318 bool with_result) {
1319 const RegisterConfiguration* config(RegisterConfiguration::Default());
1320 int allocatable_register_count = config->num_allocatable_general_registers();
1321 if (with_result) {
1322 // Overwrite the hole inserted by the deoptimizer with the return value from
1323 // the LAZY deopt point.
1324 __ mov(Operand(esp,
1325 config->num_allocatable_general_registers() * kPointerSize +
1326 BuiltinContinuationFrameConstants::kFixedFrameSize),
1327 eax);
1328 }
1329 for (int i = allocatable_register_count - 1; i >= 0; --i) {
1330 int code = config->GetAllocatableGeneralCode(i);
1331 __ pop(Register::from_code(code));
1332 if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
1333 __ SmiUntag(Register::from_code(code));
1334 }
1335 }
1336 __ mov(
1337 ebp,
1338 Operand(esp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1339 const int offsetToPC =
1340 BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - kPointerSize;
1341 __ pop(Operand(esp, offsetToPC));
1342 __ Drop(offsetToPC / kPointerSize);
1343 __ add(Operand(esp, 0), Immediate(Code::kHeaderSize - kHeapObjectTag));
1344 __ ret(0);
1345 }
1346 } // namespace
1347
Generate_ContinueToCodeStubBuiltin(MacroAssembler * masm)1348 void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
1349 Generate_ContinueToBuiltinHelper(masm, false, false);
1350 }
1351
Generate_ContinueToCodeStubBuiltinWithResult(MacroAssembler * masm)1352 void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
1353 MacroAssembler* masm) {
1354 Generate_ContinueToBuiltinHelper(masm, false, true);
1355 }
1356
Generate_ContinueToJavaScriptBuiltin(MacroAssembler * masm)1357 void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
1358 Generate_ContinueToBuiltinHelper(masm, true, false);
1359 }
1360
Generate_ContinueToJavaScriptBuiltinWithResult(MacroAssembler * masm)1361 void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
1362 MacroAssembler* masm) {
1363 Generate_ContinueToBuiltinHelper(masm, true, true);
1364 }
1365
Generate_NotifyDeoptimized(MacroAssembler * masm)1366 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1367 {
1368 FrameScope scope(masm, StackFrame::INTERNAL);
1369 __ CallRuntime(Runtime::kNotifyDeoptimized);
1370 // Tear down internal frame.
1371 }
1372
1373 DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code());
1374 __ mov(eax, Operand(esp, 1 * kPointerSize));
1375 __ ret(1 * kPointerSize); // Remove eax.
1376 }
1377
1378 // static
Generate_FunctionPrototypeApply(MacroAssembler * masm)1379 void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1380 // ----------- S t a t e -------------
1381 // -- eax : argc
1382 // -- esp[0] : return address
1383 // -- esp[4] : argArray
1384 // -- esp[8] : thisArg
1385 // -- esp[12] : receiver
1386 // -----------------------------------
1387
1388 // 1. Load receiver into edi, argArray into ebx (if present), remove all
1389 // arguments from the stack (including the receiver), and push thisArg (if
1390 // present) instead.
1391 {
1392 Label no_arg_array, no_this_arg;
1393 __ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
1394 __ mov(ebx, edx);
1395 __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
1396 __ test(eax, eax);
1397 __ j(zero, &no_this_arg, Label::kNear);
1398 {
1399 __ mov(edx, Operand(esp, eax, times_pointer_size, 0));
1400 __ cmp(eax, Immediate(1));
1401 __ j(equal, &no_arg_array, Label::kNear);
1402 __ mov(ebx, Operand(esp, eax, times_pointer_size, -kPointerSize));
1403 __ bind(&no_arg_array);
1404 }
1405 __ bind(&no_this_arg);
1406 __ PopReturnAddressTo(ecx);
1407 __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
1408 __ Push(edx);
1409 __ PushReturnAddressFrom(ecx);
1410 }
1411
1412 // ----------- S t a t e -------------
1413 // -- ebx : argArray
1414 // -- edi : receiver
1415 // -- esp[0] : return address
1416 // -- esp[4] : thisArg
1417 // -----------------------------------
1418
1419 // 2. We don't need to check explicitly for callable receiver here,
1420 // since that's the first thing the Call/CallWithArrayLike builtins
1421 // will do.
1422
1423 // 3. Tail call with no arguments if argArray is null or undefined.
1424 Label no_arguments;
1425 __ JumpIfRoot(ebx, Heap::kNullValueRootIndex, &no_arguments, Label::kNear);
1426 __ JumpIfRoot(ebx, Heap::kUndefinedValueRootIndex, &no_arguments,
1427 Label::kNear);
1428
1429 // 4a. Apply the receiver to the given argArray.
1430 __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1431 RelocInfo::CODE_TARGET);
1432
1433 // 4b. The argArray is either null or undefined, so we tail call without any
1434 // arguments to the receiver.
1435 __ bind(&no_arguments);
1436 {
1437 __ Set(eax, 0);
1438 __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1439 }
1440 }
1441
1442 // static
Generate_FunctionPrototypeCall(MacroAssembler * masm)1443 void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
1444 // Stack Layout:
1445 // esp[0] : Return address
1446 // esp[8] : Argument n
1447 // esp[16] : Argument n-1
1448 // ...
1449 // esp[8 * n] : Argument 1
1450 // esp[8 * (n + 1)] : Receiver (callable to call)
1451 //
1452 // eax contains the number of arguments, n, not counting the receiver.
1453 //
1454 // 1. Make sure we have at least one argument.
1455 {
1456 Label done;
1457 __ test(eax, eax);
1458 __ j(not_zero, &done, Label::kNear);
1459 __ PopReturnAddressTo(ebx);
1460 __ PushRoot(Heap::kUndefinedValueRootIndex);
1461 __ PushReturnAddressFrom(ebx);
1462 __ inc(eax);
1463 __ bind(&done);
1464 }
1465
1466 // 2. Get the callable to call (passed as receiver) from the stack.
1467 __ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
1468
1469 // 3. Shift arguments and return address one slot down on the stack
1470 // (overwriting the original receiver). Adjust argument count to make
1471 // the original first argument the new receiver.
1472 {
1473 Label loop;
1474 __ mov(ecx, eax);
1475 __ bind(&loop);
1476 __ mov(ebx, Operand(esp, ecx, times_pointer_size, 0));
1477 __ mov(Operand(esp, ecx, times_pointer_size, kPointerSize), ebx);
1478 __ dec(ecx);
1479 __ j(not_sign, &loop); // While non-negative (to copy return address).
1480 __ pop(ebx); // Discard copy of return address.
1481 __ dec(eax); // One fewer argument (first argument is new receiver).
1482 }
1483
1484 // 4. Call the callable.
1485 __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1486 }
1487
Generate_ReflectApply(MacroAssembler * masm)1488 void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1489 // ----------- S t a t e -------------
1490 // -- eax : argc
1491 // -- esp[0] : return address
1492 // -- esp[4] : argumentsList
1493 // -- esp[8] : thisArgument
1494 // -- esp[12] : target
1495 // -- esp[16] : receiver
1496 // -----------------------------------
1497
1498 // 1. Load target into edi (if present), argumentsList into ebx (if present),
1499 // remove all arguments from the stack (including the receiver), and push
1500 // thisArgument (if present) instead.
1501 {
1502 Label done;
1503 __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
1504 __ mov(edx, edi);
1505 __ mov(ebx, edi);
1506 __ cmp(eax, Immediate(1));
1507 __ j(below, &done, Label::kNear);
1508 __ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize));
1509 __ j(equal, &done, Label::kNear);
1510 __ mov(edx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize));
1511 __ cmp(eax, Immediate(3));
1512 __ j(below, &done, Label::kNear);
1513 __ mov(ebx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize));
1514 __ bind(&done);
1515 __ PopReturnAddressTo(ecx);
1516 __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
1517 __ Push(edx);
1518 __ PushReturnAddressFrom(ecx);
1519 }
1520
1521 // ----------- S t a t e -------------
1522 // -- ebx : argumentsList
1523 // -- edi : target
1524 // -- esp[0] : return address
1525 // -- esp[4] : thisArgument
1526 // -----------------------------------
1527
1528 // 2. We don't need to check explicitly for callable target here,
1529 // since that's the first thing the Call/CallWithArrayLike builtins
1530 // will do.
1531
1532 // 3. Apply the target to the given argumentsList.
1533 __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1534 RelocInfo::CODE_TARGET);
1535 }
1536
Generate_ReflectConstruct(MacroAssembler * masm)1537 void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
1538 // ----------- S t a t e -------------
1539 // -- eax : argc
1540 // -- esp[0] : return address
1541 // -- esp[4] : new.target (optional)
1542 // -- esp[8] : argumentsList
1543 // -- esp[12] : target
1544 // -- esp[16] : receiver
1545 // -----------------------------------
1546
1547 // 1. Load target into edi (if present), argumentsList into ebx (if present),
1548 // new.target into edx (if present, otherwise use target), remove all
1549 // arguments from the stack (including the receiver), and push thisArgument
1550 // (if present) instead.
1551 {
1552 Label done;
1553 __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
1554 __ mov(edx, edi);
1555 __ mov(ebx, edi);
1556 __ cmp(eax, Immediate(1));
1557 __ j(below, &done, Label::kNear);
1558 __ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize));
1559 __ mov(edx, edi);
1560 __ j(equal, &done, Label::kNear);
1561 __ mov(ebx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize));
1562 __ cmp(eax, Immediate(3));
1563 __ j(below, &done, Label::kNear);
1564 __ mov(edx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize));
1565 __ bind(&done);
1566 __ PopReturnAddressTo(ecx);
1567 __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
1568 __ PushRoot(Heap::kUndefinedValueRootIndex);
1569 __ PushReturnAddressFrom(ecx);
1570 }
1571
1572 // ----------- S t a t e -------------
1573 // -- ebx : argumentsList
1574 // -- edx : new.target
1575 // -- edi : target
1576 // -- esp[0] : return address
1577 // -- esp[4] : receiver (undefined)
1578 // -----------------------------------
1579
1580 // 2. We don't need to check explicitly for constructor target here,
1581 // since that's the first thing the Construct/ConstructWithArrayLike
1582 // builtins will do.
1583
1584 // 3. We don't need to check explicitly for constructor new.target here,
1585 // since that's the second thing the Construct/ConstructWithArrayLike
1586 // builtins will do.
1587
1588 // 4. Construct the target with the given new.target and argumentsList.
1589 __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
1590 RelocInfo::CODE_TARGET);
1591 }
1592
Generate_InternalArrayConstructor(MacroAssembler * masm)1593 void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
1594 // ----------- S t a t e -------------
1595 // -- eax : argc
1596 // -- esp[0] : return address
1597 // -- esp[4] : last argument
1598 // -----------------------------------
1599 Label generic_array_code;
1600
1601 if (FLAG_debug_code) {
1602 // Initial map for the builtin InternalArray function should be a map.
1603 __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
1604 // Will both indicate a nullptr and a Smi.
1605 __ test(ebx, Immediate(kSmiTagMask));
1606 __ Assert(not_zero,
1607 AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
1608 __ CmpObjectType(ebx, MAP_TYPE, ecx);
1609 __ Assert(equal,
1610 AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
1611 }
1612
1613 // Run the native code for the InternalArray function called as a normal
1614 // function.
1615 __ mov(ebx, masm->isolate()->factory()->undefined_value());
1616 __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl),
1617 RelocInfo::CODE_TARGET);
1618 }
1619
EnterArgumentsAdaptorFrame(MacroAssembler * masm)1620 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1621 __ push(ebp);
1622 __ mov(ebp, esp);
1623
1624 // Store the arguments adaptor context sentinel.
1625 __ push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1626
1627 // Push the function on the stack.
1628 __ push(edi);
1629
1630 // Preserve the number of arguments on the stack. Must preserve eax,
1631 // ebx and ecx because these registers are used when copying the
1632 // arguments and the receiver.
1633 STATIC_ASSERT(kSmiTagSize == 1);
1634 __ lea(edi, Operand(eax, eax, times_1, kSmiTag));
1635 __ push(edi);
1636
1637 __ Push(Immediate(0)); // Padding.
1638 }
1639
LeaveArgumentsAdaptorFrame(MacroAssembler * masm)1640 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1641 // Retrieve the number of arguments from the stack.
1642 __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1643
1644 // Leave the frame.
1645 __ leave();
1646
1647 // Remove caller arguments from the stack.
1648 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
1649 __ pop(ecx);
1650 __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
1651 __ push(ecx);
1652 }
1653
1654 // static
Generate_CallOrConstructVarargs(MacroAssembler * masm,Handle<Code> code)1655 void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
1656 Handle<Code> code) {
1657 // ----------- S t a t e -------------
1658 // -- edi : target
1659 // -- eax : number of parameters on the stack (not including the receiver)
1660 // -- ebx : arguments list (a FixedArray)
1661 // -- ecx : len (number of elements to from args)
1662 // -- edx : new.target (checked to be constructor or undefined)
1663 // -- esp[0] : return address.
1664 // -----------------------------------
1665
1666 // We need to preserve eax, edi and ebx.
1667 __ movd(xmm0, edx);
1668 __ movd(xmm1, edi);
1669 __ movd(xmm2, eax);
1670
1671 if (masm->emit_debug_code()) {
1672 // Allow ebx to be a FixedArray, or a FixedDoubleArray if ecx == 0.
1673 Label ok, fail;
1674 __ AssertNotSmi(ebx);
1675 __ mov(edx, FieldOperand(ebx, HeapObject::kMapOffset));
1676 __ CmpInstanceType(edx, FIXED_ARRAY_TYPE);
1677 __ j(equal, &ok);
1678 __ CmpInstanceType(edx, FIXED_DOUBLE_ARRAY_TYPE);
1679 __ j(not_equal, &fail);
1680 __ cmp(ecx, 0);
1681 __ j(equal, &ok);
1682 // Fall through.
1683 __ bind(&fail);
1684 __ Abort(AbortReason::kOperandIsNotAFixedArray);
1685
1686 __ bind(&ok);
1687 }
1688
1689 // Check for stack overflow.
1690 {
1691 // Check the stack for overflow. We are not trying to catch interruptions
1692 // (i.e. debug break and preemption) here, so check the "real stack limit".
1693 Label done;
1694 ExternalReference real_stack_limit =
1695 ExternalReference::address_of_real_stack_limit(masm->isolate());
1696 __ mov(edx, __ StaticVariable(real_stack_limit));
1697 // Make edx the space we have left. The stack might already be overflowed
1698 // here which will cause edx to become negative.
1699 __ neg(edx);
1700 __ add(edx, esp);
1701 __ sar(edx, kPointerSizeLog2);
1702 // Check if the arguments will overflow the stack.
1703 __ cmp(edx, ecx);
1704 __ j(greater, &done, Label::kNear); // Signed comparison.
1705 __ TailCallRuntime(Runtime::kThrowStackOverflow);
1706 __ bind(&done);
1707 }
1708
1709 // Push additional arguments onto the stack.
1710 {
1711 __ PopReturnAddressTo(edx);
1712 __ Move(eax, Immediate(0));
1713 Label done, push, loop;
1714 __ bind(&loop);
1715 __ cmp(eax, ecx);
1716 __ j(equal, &done, Label::kNear);
1717 // Turn the hole into undefined as we go.
1718 __ mov(edi,
1719 FieldOperand(ebx, eax, times_pointer_size, FixedArray::kHeaderSize));
1720 __ CompareRoot(edi, Heap::kTheHoleValueRootIndex);
1721 __ j(not_equal, &push, Label::kNear);
1722 __ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
1723 __ bind(&push);
1724 __ Push(edi);
1725 __ inc(eax);
1726 __ jmp(&loop);
1727 __ bind(&done);
1728 __ PushReturnAddressFrom(edx);
1729 }
1730
1731 // Restore eax, edi and edx.
1732 __ movd(eax, xmm2);
1733 __ movd(edi, xmm1);
1734 __ movd(edx, xmm0);
1735
1736 // Compute the actual parameter count.
1737 __ add(eax, ecx);
1738
1739 // Tail-call to the actual Call or Construct builtin.
1740 __ Jump(code, RelocInfo::CODE_TARGET);
1741 }
1742
1743 // static
Generate_CallOrConstructForwardVarargs(MacroAssembler * masm,CallOrConstructMode mode,Handle<Code> code)1744 void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
1745 CallOrConstructMode mode,
1746 Handle<Code> code) {
1747 // ----------- S t a t e -------------
1748 // -- eax : the number of arguments (not including the receiver)
1749 // -- edi : the target to call (can be any Object)
1750 // -- edx : the new target (for [[Construct]] calls)
1751 // -- ecx : start index (to support rest parameters)
1752 // -----------------------------------
1753
1754 // Check if new.target has a [[Construct]] internal method.
1755 if (mode == CallOrConstructMode::kConstruct) {
1756 Label new_target_constructor, new_target_not_constructor;
1757 __ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear);
1758 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
1759 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1760 Immediate(Map::IsConstructorBit::kMask));
1761 __ j(not_zero, &new_target_constructor, Label::kNear);
1762 __ bind(&new_target_not_constructor);
1763 {
1764 FrameScope scope(masm, StackFrame::MANUAL);
1765 __ EnterFrame(StackFrame::INTERNAL);
1766 __ Push(edx);
1767 __ CallRuntime(Runtime::kThrowNotConstructor);
1768 }
1769 __ bind(&new_target_constructor);
1770 }
1771
1772 // Preserve new.target (in case of [[Construct]]).
1773 __ movd(xmm0, edx);
1774
1775 // Check if we have an arguments adaptor frame below the function frame.
1776 Label arguments_adaptor, arguments_done;
1777 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
1778 __ cmp(Operand(ebx, CommonFrameConstants::kContextOrFrameTypeOffset),
1779 Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1780 __ j(equal, &arguments_adaptor, Label::kNear);
1781 {
1782 __ mov(edx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1783 __ mov(edx, FieldOperand(edx, JSFunction::kSharedFunctionInfoOffset));
1784 __ movzx_w(edx, FieldOperand(
1785 edx, SharedFunctionInfo::kFormalParameterCountOffset));
1786 __ mov(ebx, ebp);
1787 }
1788 __ jmp(&arguments_done, Label::kNear);
1789 __ bind(&arguments_adaptor);
1790 {
1791 // Just load the length from the ArgumentsAdaptorFrame.
1792 __ mov(edx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1793 __ SmiUntag(edx);
1794 }
1795 __ bind(&arguments_done);
1796
1797 Label stack_done;
1798 __ sub(edx, ecx);
1799 __ j(less_equal, &stack_done);
1800 {
1801 // Check for stack overflow.
1802 {
1803 // Check the stack for overflow. We are not trying to catch interruptions
1804 // (i.e. debug break and preemption) here, so check the "real stack
1805 // limit".
1806 Label done;
1807 __ LoadRoot(ecx, Heap::kRealStackLimitRootIndex);
1808 // Make ecx the space we have left. The stack might already be
1809 // overflowed here which will cause ecx to become negative.
1810 __ neg(ecx);
1811 __ add(ecx, esp);
1812 __ sar(ecx, kPointerSizeLog2);
1813 // Check if the arguments will overflow the stack.
1814 __ cmp(ecx, edx);
1815 __ j(greater, &done, Label::kNear); // Signed comparison.
1816 __ TailCallRuntime(Runtime::kThrowStackOverflow);
1817 __ bind(&done);
1818 }
1819
1820 // Forward the arguments from the caller frame.
1821 {
1822 Label loop;
1823 __ add(eax, edx);
1824 __ PopReturnAddressTo(ecx);
1825 __ bind(&loop);
1826 {
1827 __ Push(Operand(ebx, edx, times_pointer_size, 1 * kPointerSize));
1828 __ dec(edx);
1829 __ j(not_zero, &loop);
1830 }
1831 __ PushReturnAddressFrom(ecx);
1832 }
1833 }
1834 __ bind(&stack_done);
1835
1836 // Restore new.target (in case of [[Construct]]).
1837 __ movd(edx, xmm0);
1838
1839 // Tail-call to the {code} handler.
1840 __ Jump(code, RelocInfo::CODE_TARGET);
1841 }
1842
1843 // static
Generate_CallFunction(MacroAssembler * masm,ConvertReceiverMode mode)1844 void Builtins::Generate_CallFunction(MacroAssembler* masm,
1845 ConvertReceiverMode mode) {
1846 // ----------- S t a t e -------------
1847 // -- eax : the number of arguments (not including the receiver)
1848 // -- edi : the function to call (checked to be a JSFunction)
1849 // -----------------------------------
1850 __ AssertFunction(edi);
1851
1852 // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
1853 // Check that the function is not a "classConstructor".
1854 Label class_constructor;
1855 __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1856 __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
1857 Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask));
1858 __ j(not_zero, &class_constructor);
1859
1860 // Enter the context of the function; ToObject has to run in the function
1861 // context, and we also need to take the global proxy from the function
1862 // context in case of conversion.
1863 __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
1864 // We need to convert the receiver for non-native sloppy mode functions.
1865 Label done_convert;
1866 __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
1867 Immediate(SharedFunctionInfo::IsNativeBit::kMask |
1868 SharedFunctionInfo::IsStrictBit::kMask));
1869 __ j(not_zero, &done_convert);
1870 {
1871 // ----------- S t a t e -------------
1872 // -- eax : the number of arguments (not including the receiver)
1873 // -- edx : the shared function info.
1874 // -- edi : the function to call (checked to be a JSFunction)
1875 // -- esi : the function context.
1876 // -----------------------------------
1877
1878 if (mode == ConvertReceiverMode::kNullOrUndefined) {
1879 // Patch receiver to global proxy.
1880 __ LoadGlobalProxy(ecx);
1881 } else {
1882 Label convert_to_object, convert_receiver;
1883 __ mov(ecx, Operand(esp, eax, times_pointer_size, kPointerSize));
1884 __ JumpIfSmi(ecx, &convert_to_object, Label::kNear);
1885 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
1886 __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ebx);
1887 __ j(above_equal, &done_convert);
1888 if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
1889 Label convert_global_proxy;
1890 __ JumpIfRoot(ecx, Heap::kUndefinedValueRootIndex,
1891 &convert_global_proxy, Label::kNear);
1892 __ JumpIfNotRoot(ecx, Heap::kNullValueRootIndex, &convert_to_object,
1893 Label::kNear);
1894 __ bind(&convert_global_proxy);
1895 {
1896 // Patch receiver to global proxy.
1897 __ LoadGlobalProxy(ecx);
1898 }
1899 __ jmp(&convert_receiver);
1900 }
1901 __ bind(&convert_to_object);
1902 {
1903 // Convert receiver using ToObject.
1904 // TODO(bmeurer): Inline the allocation here to avoid building the frame
1905 // in the fast case? (fall back to AllocateInNewSpace?)
1906 FrameScope scope(masm, StackFrame::INTERNAL);
1907 __ SmiTag(eax);
1908 __ Push(eax);
1909 __ Push(edi);
1910 __ mov(eax, ecx);
1911 __ Push(esi);
1912 __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
1913 RelocInfo::CODE_TARGET);
1914 __ Pop(esi);
1915 __ mov(ecx, eax);
1916 __ Pop(edi);
1917 __ Pop(eax);
1918 __ SmiUntag(eax);
1919 }
1920 __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1921 __ bind(&convert_receiver);
1922 }
1923 __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ecx);
1924 }
1925 __ bind(&done_convert);
1926
1927 // ----------- S t a t e -------------
1928 // -- eax : the number of arguments (not including the receiver)
1929 // -- edx : the shared function info.
1930 // -- edi : the function to call (checked to be a JSFunction)
1931 // -- esi : the function context.
1932 // -----------------------------------
1933
1934 __ movzx_w(
1935 ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
1936 ParameterCount actual(eax);
1937 ParameterCount expected(ebx);
1938 __ InvokeFunctionCode(edi, no_reg, expected, actual, JUMP_FUNCTION);
1939 // The function is a "classConstructor", need to raise an exception.
1940 __ bind(&class_constructor);
1941 {
1942 FrameScope frame(masm, StackFrame::INTERNAL);
1943 __ push(edi);
1944 __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
1945 }
1946 }
1947
1948 namespace {
1949
Generate_PushBoundArguments(MacroAssembler * masm)1950 void Generate_PushBoundArguments(MacroAssembler* masm) {
1951 // ----------- S t a t e -------------
1952 // -- eax : the number of arguments (not including the receiver)
1953 // -- edx : new.target (only in case of [[Construct]])
1954 // -- edi : target (checked to be a JSBoundFunction)
1955 // -----------------------------------
1956
1957 // Load [[BoundArguments]] into ecx and length of that into ebx.
1958 Label no_bound_arguments;
1959 __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
1960 __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
1961 __ SmiUntag(ebx);
1962 __ test(ebx, ebx);
1963 __ j(zero, &no_bound_arguments);
1964 {
1965 // ----------- S t a t e -------------
1966 // -- eax : the number of arguments (not including the receiver)
1967 // -- edx : new.target (only in case of [[Construct]])
1968 // -- edi : target (checked to be a JSBoundFunction)
1969 // -- ecx : the [[BoundArguments]] (implemented as FixedArray)
1970 // -- ebx : the number of [[BoundArguments]]
1971 // -----------------------------------
1972
1973 // Reserve stack space for the [[BoundArguments]].
1974 {
1975 Label done;
1976 __ lea(ecx, Operand(ebx, times_pointer_size, 0));
1977 __ sub(esp, ecx);
1978 // Check the stack for overflow. We are not trying to catch interruptions
1979 // (i.e. debug break and preemption) here, so check the "real stack
1980 // limit".
1981 __ CompareRoot(esp, ecx, Heap::kRealStackLimitRootIndex);
1982 __ j(greater, &done, Label::kNear); // Signed comparison.
1983 // Restore the stack pointer.
1984 __ lea(esp, Operand(esp, ebx, times_pointer_size, 0));
1985 {
1986 FrameScope scope(masm, StackFrame::MANUAL);
1987 __ EnterFrame(StackFrame::INTERNAL);
1988 __ CallRuntime(Runtime::kThrowStackOverflow);
1989 }
1990 __ bind(&done);
1991 }
1992
1993 // Adjust effective number of arguments to include return address.
1994 __ inc(eax);
1995
1996 // Relocate arguments and return address down the stack.
1997 {
1998 Label loop;
1999 __ Set(ecx, 0);
2000 __ lea(ebx, Operand(esp, ebx, times_pointer_size, 0));
2001 __ bind(&loop);
2002 __ movd(xmm0, Operand(ebx, ecx, times_pointer_size, 0));
2003 __ movd(Operand(esp, ecx, times_pointer_size, 0), xmm0);
2004 __ inc(ecx);
2005 __ cmp(ecx, eax);
2006 __ j(less, &loop);
2007 }
2008
2009 // Copy [[BoundArguments]] to the stack (below the arguments).
2010 {
2011 Label loop;
2012 __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
2013 __ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
2014 __ SmiUntag(ebx);
2015 __ bind(&loop);
2016 __ dec(ebx);
2017 __ movd(xmm0, FieldOperand(ecx, ebx, times_pointer_size,
2018 FixedArray::kHeaderSize));
2019 __ movd(Operand(esp, eax, times_pointer_size, 0), xmm0);
2020 __ lea(eax, Operand(eax, 1));
2021 __ j(greater, &loop);
2022 }
2023
2024 // Adjust effective number of arguments (eax contains the number of
2025 // arguments from the call plus return address plus the number of
2026 // [[BoundArguments]]), so we need to subtract one for the return address.
2027 __ dec(eax);
2028 }
2029 __ bind(&no_bound_arguments);
2030 }
2031
2032 } // namespace
2033
2034 // static
Generate_CallBoundFunctionImpl(MacroAssembler * masm)2035 void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
2036 // ----------- S t a t e -------------
2037 // -- eax : the number of arguments (not including the receiver)
2038 // -- edi : the function to call (checked to be a JSBoundFunction)
2039 // -----------------------------------
2040 __ AssertBoundFunction(edi);
2041
2042 // Patch the receiver to [[BoundThis]].
2043 __ mov(ebx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset));
2044 __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ebx);
2045
2046 // Push the [[BoundArguments]] onto the stack.
2047 Generate_PushBoundArguments(masm);
2048
2049 // Call the [[BoundTargetFunction]] via the Call builtin.
2050 __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
2051 __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
2052 RelocInfo::CODE_TARGET);
2053 }
2054
2055 // static
Generate_Call(MacroAssembler * masm,ConvertReceiverMode mode)2056 void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
2057 // ----------- S t a t e -------------
2058 // -- eax : the number of arguments (not including the receiver)
2059 // -- edi : the target to call (can be any Object).
2060 // -----------------------------------
2061
2062 Label non_callable, non_function, non_smi;
2063 __ JumpIfSmi(edi, &non_callable);
2064 __ bind(&non_smi);
2065 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2066 __ j(equal, masm->isolate()->builtins()->CallFunction(mode),
2067 RelocInfo::CODE_TARGET);
2068 __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
2069 __ j(equal, BUILTIN_CODE(masm->isolate(), CallBoundFunction),
2070 RelocInfo::CODE_TARGET);
2071
2072 // Check if target is a proxy and call CallProxy external builtin
2073 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
2074 Immediate(Map::IsCallableBit::kMask));
2075 __ j(zero, &non_callable);
2076
2077 // Call CallProxy external builtin
2078 __ CmpInstanceType(ecx, JS_PROXY_TYPE);
2079 __ j(not_equal, &non_function);
2080 __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
2081
2082 // 2. Call to something else, which might have a [[Call]] internal method (if
2083 // not we raise an exception).
2084 __ bind(&non_function);
2085 // Overwrite the original receiver with the (original) target.
2086 __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
2087 // Let the "call_as_function_delegate" take care of the rest.
2088 __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, edi);
2089 __ Jump(masm->isolate()->builtins()->CallFunction(
2090 ConvertReceiverMode::kNotNullOrUndefined),
2091 RelocInfo::CODE_TARGET);
2092
2093 // 3. Call to something that is not callable.
2094 __ bind(&non_callable);
2095 {
2096 FrameScope scope(masm, StackFrame::INTERNAL);
2097 __ Push(edi);
2098 __ CallRuntime(Runtime::kThrowCalledNonCallable);
2099 }
2100 }
2101
2102 // static
Generate_ConstructFunction(MacroAssembler * masm)2103 void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
2104 // ----------- S t a t e -------------
2105 // -- eax : the number of arguments (not including the receiver)
2106 // -- edx : the new target (checked to be a constructor)
2107 // -- edi : the constructor to call (checked to be a JSFunction)
2108 // -----------------------------------
2109 __ AssertConstructor(edi);
2110 __ AssertFunction(edi);
2111
2112 // Calling convention for function specific ConstructStubs require
2113 // ebx to contain either an AllocationSite or undefined.
2114 __ LoadRoot(ebx, Heap::kUndefinedValueRootIndex);
2115
2116 Label call_generic_stub;
2117
2118 // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
2119 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2120 __ test(FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset),
2121 Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
2122 __ j(zero, &call_generic_stub, Label::kNear);
2123
2124 __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
2125 RelocInfo::CODE_TARGET);
2126
2127 __ bind(&call_generic_stub);
2128 __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
2129 RelocInfo::CODE_TARGET);
2130 }
2131
2132 // static
Generate_ConstructBoundFunction(MacroAssembler * masm)2133 void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
2134 // ----------- S t a t e -------------
2135 // -- eax : the number of arguments (not including the receiver)
2136 // -- edx : the new target (checked to be a constructor)
2137 // -- edi : the constructor to call (checked to be a JSBoundFunction)
2138 // -----------------------------------
2139 __ AssertConstructor(edi);
2140 __ AssertBoundFunction(edi);
2141
2142 // Push the [[BoundArguments]] onto the stack.
2143 Generate_PushBoundArguments(masm);
2144
2145 // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
2146 {
2147 Label done;
2148 __ cmp(edi, edx);
2149 __ j(not_equal, &done, Label::kNear);
2150 __ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
2151 __ bind(&done);
2152 }
2153
2154 // Construct the [[BoundTargetFunction]] via the Construct builtin.
2155 __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
2156 __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
2157 }
2158
2159 // static
Generate_Construct(MacroAssembler * masm)2160 void Builtins::Generate_Construct(MacroAssembler* masm) {
2161 // ----------- S t a t e -------------
2162 // -- eax : the number of arguments (not including the receiver)
2163 // -- edx : the new target (either the same as the constructor or
2164 // the JSFunction on which new was invoked initially)
2165 // -- edi : the constructor to call (can be any Object)
2166 // -----------------------------------
2167
2168 // Check if target is a Smi.
2169 Label non_constructor, non_proxy;
2170 __ JumpIfSmi(edi, &non_constructor, Label::kNear);
2171
2172 // Check if target has a [[Construct]] internal method.
2173 __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
2174 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
2175 Immediate(Map::IsConstructorBit::kMask));
2176 __ j(zero, &non_constructor, Label::kNear);
2177
2178 // Dispatch based on instance type.
2179 __ CmpInstanceType(ecx, JS_FUNCTION_TYPE);
2180 __ j(equal, BUILTIN_CODE(masm->isolate(), ConstructFunction),
2181 RelocInfo::CODE_TARGET);
2182
2183 // Only dispatch to bound functions after checking whether they are
2184 // constructors.
2185 __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
2186 __ j(equal, BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
2187 RelocInfo::CODE_TARGET);
2188
2189 // Only dispatch to proxies after checking whether they are constructors.
2190 __ CmpInstanceType(ecx, JS_PROXY_TYPE);
2191 __ j(not_equal, &non_proxy);
2192 __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
2193 RelocInfo::CODE_TARGET);
2194
2195 // Called Construct on an exotic Object with a [[Construct]] internal method.
2196 __ bind(&non_proxy);
2197 {
2198 // Overwrite the original receiver with the (original) target.
2199 __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
2200 // Let the "call_as_constructor_delegate" take care of the rest.
2201 __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, edi);
2202 __ Jump(masm->isolate()->builtins()->CallFunction(),
2203 RelocInfo::CODE_TARGET);
2204 }
2205
2206 // Called Construct on an Object that doesn't have a [[Construct]] internal
2207 // method.
2208 __ bind(&non_constructor);
2209 __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
2210 RelocInfo::CODE_TARGET);
2211 }
2212
Generate_ArgumentsAdaptorTrampoline(MacroAssembler * masm)2213 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
2214 // ----------- S t a t e -------------
2215 // -- eax : actual number of arguments
2216 // -- ebx : expected number of arguments
2217 // -- edx : new target (passed through to callee)
2218 // -- edi : function (passed through to callee)
2219 // -----------------------------------
2220
2221 Label invoke, dont_adapt_arguments, stack_overflow;
2222 __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
2223
2224 Label enough, too_few;
2225 __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
2226 __ j(equal, &dont_adapt_arguments);
2227 __ cmp(eax, ebx);
2228 __ j(less, &too_few);
2229
2230 { // Enough parameters: Actual >= expected.
2231 __ bind(&enough);
2232 EnterArgumentsAdaptorFrame(masm);
2233 // edi is used as a scratch register. It should be restored from the frame
2234 // when needed.
2235 Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow);
2236
2237 // Copy receiver and all expected arguments.
2238 const int offset = StandardFrameConstants::kCallerSPOffset;
2239 __ lea(edi, Operand(ebp, eax, times_4, offset));
2240 __ mov(eax, -1); // account for receiver
2241
2242 Label copy;
2243 __ bind(©);
2244 __ inc(eax);
2245 __ push(Operand(edi, 0));
2246 __ sub(edi, Immediate(kPointerSize));
2247 __ cmp(eax, ebx);
2248 __ j(less, ©);
2249 // eax now contains the expected number of arguments.
2250 __ jmp(&invoke);
2251 }
2252
2253 { // Too few parameters: Actual < expected.
2254 __ bind(&too_few);
2255 EnterArgumentsAdaptorFrame(masm);
2256 // edi is used as a scratch register. It should be restored from the frame
2257 // when needed.
2258 Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow);
2259
2260 // Remember expected arguments in ecx.
2261 __ mov(ecx, ebx);
2262
2263 // Copy receiver and all actual arguments.
2264 const int offset = StandardFrameConstants::kCallerSPOffset;
2265 __ lea(edi, Operand(ebp, eax, times_4, offset));
2266 // ebx = expected - actual.
2267 __ sub(ebx, eax);
2268 // eax = -actual - 1
2269 __ neg(eax);
2270 __ sub(eax, Immediate(1));
2271
2272 Label copy;
2273 __ bind(©);
2274 __ inc(eax);
2275 __ push(Operand(edi, 0));
2276 __ sub(edi, Immediate(kPointerSize));
2277 __ test(eax, eax);
2278 __ j(not_zero, ©);
2279
2280 // Fill remaining expected arguments with undefined values.
2281 Label fill;
2282 __ bind(&fill);
2283 __ inc(eax);
2284 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
2285 __ cmp(eax, ebx);
2286 __ j(less, &fill);
2287
2288 // Restore expected arguments.
2289 __ mov(eax, ecx);
2290 }
2291
2292 // Call the entry point.
2293 __ bind(&invoke);
2294 // Restore function pointer.
2295 __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
2296 // eax : expected number of arguments
2297 // edx : new target (passed through to callee)
2298 // edi : function (passed through to callee)
2299 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
2300 __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
2301 __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
2302 __ call(ecx);
2303
2304 // Store offset of return address for deoptimizer.
2305 masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
2306
2307 // Leave frame and return.
2308 LeaveArgumentsAdaptorFrame(masm);
2309 __ ret(0);
2310
2311 // -------------------------------------------
2312 // Dont adapt arguments.
2313 // -------------------------------------------
2314 __ bind(&dont_adapt_arguments);
2315 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
2316 __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
2317 __ add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag));
2318 __ jmp(ecx);
2319
2320 __ bind(&stack_overflow);
2321 {
2322 FrameScope frame(masm, StackFrame::MANUAL);
2323 __ CallRuntime(Runtime::kThrowStackOverflow);
2324 __ int3();
2325 }
2326 }
2327
Generate_OnStackReplacementHelper(MacroAssembler * masm,bool has_handler_frame)2328 static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
2329 bool has_handler_frame) {
2330 // Lookup the function in the JavaScript frame.
2331 if (has_handler_frame) {
2332 __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2333 __ mov(eax, Operand(eax, JavaScriptFrameConstants::kFunctionOffset));
2334 } else {
2335 __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
2336 }
2337
2338 {
2339 FrameScope scope(masm, StackFrame::INTERNAL);
2340 // Pass function as argument.
2341 __ push(eax);
2342 __ CallRuntime(Runtime::kCompileForOnStackReplacement);
2343 }
2344
2345 Label skip;
2346 // If the code object is null, just return to the caller.
2347 __ cmp(eax, Immediate(0));
2348 __ j(not_equal, &skip, Label::kNear);
2349 __ ret(0);
2350
2351 __ bind(&skip);
2352
2353 // Drop any potential handler frame that is be sitting on top of the actual
2354 // JavaScript frame. This is the case then OSR is triggered from bytecode.
2355 if (has_handler_frame) {
2356 __ leave();
2357 }
2358
2359 // Load deoptimization data from the code object.
2360 __ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
2361
2362 // Load the OSR entrypoint offset from the deoptimization data.
2363 __ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt(
2364 DeoptimizationData::kOsrPcOffsetIndex) -
2365 kHeapObjectTag));
2366 __ SmiUntag(ebx);
2367
2368 // Compute the target address = code_obj + header_size + osr_offset
2369 __ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag));
2370
2371 // Overwrite the return address on the stack.
2372 __ mov(Operand(esp, 0), eax);
2373
2374 // And "return" to the OSR entry point of the function.
2375 __ ret(0);
2376 }
2377
Generate_OnStackReplacement(MacroAssembler * masm)2378 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
2379 Generate_OnStackReplacementHelper(masm, false);
2380 }
2381
Generate_InterpreterOnStackReplacement(MacroAssembler * masm)2382 void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
2383 Generate_OnStackReplacementHelper(masm, true);
2384 }
2385
Generate_WasmCompileLazy(MacroAssembler * masm)2386 void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
2387 // The function index was put in edi by the jump table trampoline.
2388 // Convert to Smi for the runtime call.
2389 __ SmiTag(edi);
2390 {
2391 HardAbortScope hard_abort(masm); // Avoid calls to Abort.
2392 FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
2393
2394 // Save all parameter registers (see wasm-linkage.cc). They might be
2395 // overwritten in the runtime call below. We don't have any callee-saved
2396 // registers in wasm, so no need to store anything else.
2397 static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs ==
2398 arraysize(wasm::kGpParamRegisters),
2399 "frame size mismatch");
2400 for (Register reg : wasm::kGpParamRegisters) {
2401 __ Push(reg);
2402 }
2403 static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs ==
2404 arraysize(wasm::kFpParamRegisters),
2405 "frame size mismatch");
2406 __ sub(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
2407 int offset = 0;
2408 for (DoubleRegister reg : wasm::kFpParamRegisters) {
2409 __ movdqu(Operand(esp, offset), reg);
2410 offset += kSimd128Size;
2411 }
2412
2413 // Push the WASM instance as an explicit argument to WasmCompileLazy.
2414 __ Push(kWasmInstanceRegister);
2415 // Push the function index as second argument.
2416 __ Push(edi);
2417 // Load the correct CEntry builtin from the instance object.
2418 __ mov(ecx, FieldOperand(kWasmInstanceRegister,
2419 WasmInstanceObject::kCEntryStubOffset));
2420 // Initialize the JavaScript context with 0. CEntry will use it to
2421 // set the current context on the isolate.
2422 __ Move(kContextRegister, Smi::kZero);
2423 __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, ecx);
2424 // The entrypoint address is the return value.
2425 __ mov(edi, kReturnRegister0);
2426
2427 // Restore registers.
2428 for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) {
2429 offset -= kSimd128Size;
2430 __ movdqu(reg, Operand(esp, offset));
2431 }
2432 DCHECK_EQ(0, offset);
2433 __ add(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
2434 for (Register reg : base::Reversed(wasm::kGpParamRegisters)) {
2435 __ Pop(reg);
2436 }
2437 }
2438 // Finally, jump to the entrypoint.
2439 __ jmp(edi);
2440 }
2441
Generate_CEntry(MacroAssembler * masm,int result_size,SaveFPRegsMode save_doubles,ArgvMode argv_mode,bool builtin_exit_frame)2442 void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
2443 SaveFPRegsMode save_doubles, ArgvMode argv_mode,
2444 bool builtin_exit_frame) {
2445 // eax: number of arguments including receiver
2446 // edx: pointer to C function
2447 // ebp: frame pointer (restored after C call)
2448 // esp: stack pointer (restored after C call)
2449 // esi: current context (C callee-saved)
2450 // edi: JS function of the caller (C callee-saved)
2451 //
2452 // If argv_mode == kArgvInRegister:
2453 // ecx: pointer to the first argument
2454
2455 STATIC_ASSERT(eax == kRuntimeCallArgCountRegister);
2456 STATIC_ASSERT(ecx == kRuntimeCallArgvRegister);
2457 STATIC_ASSERT(edx == kRuntimeCallFunctionRegister);
2458 STATIC_ASSERT(esi == kContextRegister);
2459 STATIC_ASSERT(edi == kJSFunctionRegister);
2460
2461 DCHECK(!AreAliased(kRuntimeCallArgCountRegister, kRuntimeCallArgvRegister,
2462 kRuntimeCallFunctionRegister, kContextRegister,
2463 kJSFunctionRegister, kRootRegister));
2464
2465 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2466
2467 // Reserve space on the stack for the three arguments passed to the call. If
2468 // result size is greater than can be returned in registers, also reserve
2469 // space for the hidden argument for the result location, and space for the
2470 // result itself.
2471 int arg_stack_space = 3;
2472
2473 // Enter the exit frame that transitions from JavaScript to C++.
2474 if (argv_mode == kArgvInRegister) {
2475 DCHECK(save_doubles == kDontSaveFPRegs);
2476 DCHECK(!builtin_exit_frame);
2477 __ EnterApiExitFrame(arg_stack_space);
2478
2479 // Move argc and argv into the correct registers.
2480 __ mov(esi, ecx);
2481 __ mov(edi, eax);
2482 } else {
2483 __ EnterExitFrame(
2484 arg_stack_space, save_doubles == kSaveFPRegs,
2485 builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
2486 }
2487
2488 // edx: pointer to C function
2489 // ebp: frame pointer (restored after C call)
2490 // esp: stack pointer (restored after C call)
2491 // edi: number of arguments including receiver (C callee-saved)
2492 // esi: pointer to the first argument (C callee-saved)
2493
2494 // Result returned in eax, or eax+edx if result size is 2.
2495
2496 // Check stack alignment.
2497 if (FLAG_debug_code) {
2498 __ CheckStackAlignment();
2499 }
2500 // Call C function.
2501 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
2502 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
2503 __ mov(Operand(esp, 2 * kPointerSize),
2504 Immediate(ExternalReference::isolate_address(masm->isolate())));
2505 __ call(kRuntimeCallFunctionRegister);
2506
2507 // Result is in eax or edx:eax - do not destroy these registers!
2508
2509 // Check result for exception sentinel.
2510 Label exception_returned;
2511 __ cmp(eax, masm->isolate()->factory()->exception());
2512 __ j(equal, &exception_returned);
2513
2514 // Check that there is no pending exception, otherwise we
2515 // should have returned the exception sentinel.
2516 if (FLAG_debug_code) {
2517 __ push(edx);
2518 __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value()));
2519 Label okay;
2520 ExternalReference pending_exception_address = ExternalReference::Create(
2521 IsolateAddressId::kPendingExceptionAddress, masm->isolate());
2522 __ cmp(edx, __ StaticVariable(pending_exception_address));
2523 // Cannot use check here as it attempts to generate call into runtime.
2524 __ j(equal, &okay, Label::kNear);
2525 __ int3();
2526 __ bind(&okay);
2527 __ pop(edx);
2528 }
2529
2530 // Exit the JavaScript to C++ exit frame.
2531 __ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack);
2532 __ ret(0);
2533
2534 // Handling of exception.
2535 __ bind(&exception_returned);
2536
2537 ExternalReference pending_handler_context_address = ExternalReference::Create(
2538 IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
2539 ExternalReference pending_handler_entrypoint_address =
2540 ExternalReference::Create(
2541 IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
2542 ExternalReference pending_handler_fp_address = ExternalReference::Create(
2543 IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
2544 ExternalReference pending_handler_sp_address = ExternalReference::Create(
2545 IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
2546
2547 // Ask the runtime for help to determine the handler. This will set eax to
2548 // contain the current pending exception, don't clobber it.
2549 ExternalReference find_handler =
2550 ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
2551 {
2552 FrameScope scope(masm, StackFrame::MANUAL);
2553 __ PrepareCallCFunction(3, eax);
2554 __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
2555 __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
2556 __ mov(Operand(esp, 2 * kPointerSize),
2557 Immediate(ExternalReference::isolate_address(masm->isolate())));
2558 __ CallCFunction(find_handler, 3);
2559 }
2560
2561 // Retrieve the handler context, SP and FP.
2562 __ mov(esi, __ StaticVariable(pending_handler_context_address));
2563 __ mov(esp, __ StaticVariable(pending_handler_sp_address));
2564 __ mov(ebp, __ StaticVariable(pending_handler_fp_address));
2565
2566 // If the handler is a JS frame, restore the context to the frame. Note that
2567 // the context will be set to (esi == 0) for non-JS frames.
2568 Label skip;
2569 __ test(esi, esi);
2570 __ j(zero, &skip, Label::kNear);
2571 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
2572 __ bind(&skip);
2573
2574 // Reset the masking register. This is done independent of the underlying
2575 // feature flag {FLAG_branch_load_poisoning} to make the snapshot work with
2576 // both configurations. It is safe to always do this, because the underlying
2577 // register is caller-saved and can be arbitrarily clobbered.
2578 __ ResetSpeculationPoisonRegister();
2579
2580 // Compute the handler entry address and jump to it.
2581 __ mov(edi, __ StaticVariable(pending_handler_entrypoint_address));
2582 __ jmp(edi);
2583 }
2584
Generate_DoubleToI(MacroAssembler * masm)2585 void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
2586 Label check_negative, process_64_bits, done;
2587
2588 // Account for return address and saved regs.
2589 const int kArgumentOffset = 4 * kPointerSize;
2590
2591 MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset));
2592 MemOperand exponent_operand(
2593 MemOperand(esp, kArgumentOffset + kDoubleSize / 2));
2594
2595 // The result is returned on the stack.
2596 MemOperand return_operand = mantissa_operand;
2597
2598 Register scratch1 = ebx;
2599
2600 // Since we must use ecx for shifts below, use some other register (eax)
2601 // to calculate the result.
2602 Register result_reg = eax;
2603 // Save ecx if it isn't the return register and therefore volatile, or if it
2604 // is the return register, then save the temp register we use in its stead for
2605 // the result.
2606 Register save_reg = eax;
2607 __ push(ecx);
2608 __ push(scratch1);
2609 __ push(save_reg);
2610
2611 __ mov(scratch1, mantissa_operand);
2612 if (CpuFeatures::IsSupported(SSE3)) {
2613 CpuFeatureScope scope(masm, SSE3);
2614 // Load x87 register with heap number.
2615 __ fld_d(mantissa_operand);
2616 }
2617 __ mov(ecx, exponent_operand);
2618
2619 __ and_(ecx, HeapNumber::kExponentMask);
2620 __ shr(ecx, HeapNumber::kExponentShift);
2621 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
2622 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
2623 __ j(below, &process_64_bits);
2624
2625 // Result is entirely in lower 32-bits of mantissa
2626 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
2627 if (CpuFeatures::IsSupported(SSE3)) {
2628 __ fstp(0);
2629 }
2630 __ sub(ecx, Immediate(delta));
2631 __ xor_(result_reg, result_reg);
2632 __ cmp(ecx, Immediate(31));
2633 __ j(above, &done);
2634 __ shl_cl(scratch1);
2635 __ jmp(&check_negative);
2636
2637 __ bind(&process_64_bits);
2638 if (CpuFeatures::IsSupported(SSE3)) {
2639 CpuFeatureScope scope(masm, SSE3);
2640 // Reserve space for 64 bit answer.
2641 __ sub(esp, Immediate(kDoubleSize)); // Nolint.
2642 // Do conversion, which cannot fail because we checked the exponent.
2643 __ fisttp_d(Operand(esp, 0));
2644 __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
2645 __ add(esp, Immediate(kDoubleSize));
2646 __ jmp(&done);
2647 } else {
2648 // Result must be extracted from shifted 32-bit mantissa
2649 __ sub(ecx, Immediate(delta));
2650 __ neg(ecx);
2651 __ mov(result_reg, exponent_operand);
2652 __ and_(result_reg,
2653 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
2654 __ add(result_reg,
2655 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
2656 __ shrd_cl(scratch1, result_reg);
2657 __ shr_cl(result_reg);
2658 __ test(ecx, Immediate(32));
2659 __ cmov(not_equal, scratch1, result_reg);
2660 }
2661
2662 // If the double was negative, negate the integer result.
2663 __ bind(&check_negative);
2664 __ mov(result_reg, scratch1);
2665 __ neg(result_reg);
2666 __ cmp(exponent_operand, Immediate(0));
2667 __ cmov(greater, result_reg, scratch1);
2668
2669 // Restore registers
2670 __ bind(&done);
2671 __ mov(return_operand, result_reg);
2672 __ pop(save_reg);
2673 __ pop(scratch1);
2674 __ pop(ecx);
2675 __ ret(0);
2676 }
2677
Generate_MathPowInternal(MacroAssembler * masm)2678 void Builtins::Generate_MathPowInternal(MacroAssembler* masm) {
2679 const Register exponent = eax;
2680 const Register scratch = ecx;
2681 const XMMRegister double_result = xmm3;
2682 const XMMRegister double_base = xmm2;
2683 const XMMRegister double_exponent = xmm1;
2684 const XMMRegister double_scratch = xmm4;
2685
2686 Label call_runtime, done, exponent_not_smi, int_exponent;
2687
2688 // Save 1 in double_result - we need this several times later on.
2689 __ mov(scratch, Immediate(1));
2690 __ Cvtsi2sd(double_result, scratch);
2691
2692 Label fast_power, try_arithmetic_simplification;
2693 __ DoubleToI(exponent, double_exponent, double_scratch,
2694 &try_arithmetic_simplification, &try_arithmetic_simplification);
2695 __ jmp(&int_exponent);
2696
2697 __ bind(&try_arithmetic_simplification);
2698 // Skip to runtime if possibly NaN (indicated by the indefinite integer).
2699 __ cvttsd2si(exponent, Operand(double_exponent));
2700 __ cmp(exponent, Immediate(0x1));
2701 __ j(overflow, &call_runtime);
2702
2703 // Using FPU instructions to calculate power.
2704 Label fast_power_failed;
2705 __ bind(&fast_power);
2706 __ fnclex(); // Clear flags to catch exceptions later.
2707 // Transfer (B)ase and (E)xponent onto the FPU register stack.
2708 __ sub(esp, Immediate(kDoubleSize));
2709 __ movsd(Operand(esp, 0), double_exponent);
2710 __ fld_d(Operand(esp, 0)); // E
2711 __ movsd(Operand(esp, 0), double_base);
2712 __ fld_d(Operand(esp, 0)); // B, E
2713
2714 // Exponent is in st(1) and base is in st(0)
2715 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
2716 // FYL2X calculates st(1) * log2(st(0))
2717 __ fyl2x(); // X
2718 __ fld(0); // X, X
2719 __ frndint(); // rnd(X), X
2720 __ fsub(1); // rnd(X), X-rnd(X)
2721 __ fxch(1); // X - rnd(X), rnd(X)
2722 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
2723 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
2724 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
2725 __ faddp(1); // 2^(X-rnd(X)), rnd(X)
2726 // FSCALE calculates st(0) * 2^st(1)
2727 __ fscale(); // 2^X, rnd(X)
2728 __ fstp(1); // 2^X
2729 // Bail out to runtime in case of exceptions in the status word.
2730 __ fnstsw_ax();
2731 __ test_b(eax, Immediate(0x5F)); // We check for all but precision exception.
2732 __ j(not_zero, &fast_power_failed, Label::kNear);
2733 __ fstp_d(Operand(esp, 0));
2734 __ movsd(double_result, Operand(esp, 0));
2735 __ add(esp, Immediate(kDoubleSize));
2736 __ jmp(&done);
2737
2738 __ bind(&fast_power_failed);
2739 __ fninit();
2740 __ add(esp, Immediate(kDoubleSize));
2741 __ jmp(&call_runtime);
2742
2743 // Calculate power with integer exponent.
2744 __ bind(&int_exponent);
2745 const XMMRegister double_scratch2 = double_exponent;
2746 __ mov(scratch, exponent); // Back up exponent.
2747 __ movsd(double_scratch, double_base); // Back up base.
2748 __ movsd(double_scratch2, double_result); // Load double_exponent with 1.
2749
2750 // Get absolute value of exponent.
2751 Label no_neg, while_true, while_false;
2752 __ test(scratch, scratch);
2753 __ j(positive, &no_neg, Label::kNear);
2754 __ neg(scratch);
2755 __ bind(&no_neg);
2756
2757 __ j(zero, &while_false, Label::kNear);
2758 __ shr(scratch, 1);
2759 // Above condition means CF==0 && ZF==0. This means that the
2760 // bit that has been shifted out is 0 and the result is not 0.
2761 __ j(above, &while_true, Label::kNear);
2762 __ movsd(double_result, double_scratch);
2763 __ j(zero, &while_false, Label::kNear);
2764
2765 __ bind(&while_true);
2766 __ shr(scratch, 1);
2767 __ mulsd(double_scratch, double_scratch);
2768 __ j(above, &while_true, Label::kNear);
2769 __ mulsd(double_result, double_scratch);
2770 __ j(not_zero, &while_true);
2771
2772 __ bind(&while_false);
2773 // scratch has the original value of the exponent - if the exponent is
2774 // negative, return 1/result.
2775 __ test(exponent, exponent);
2776 __ j(positive, &done);
2777 __ divsd(double_scratch2, double_result);
2778 __ movsd(double_result, double_scratch2);
2779 // Test whether result is zero. Bail out to check for subnormal result.
2780 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
2781 __ xorps(double_scratch2, double_scratch2);
2782 __ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
2783 // double_exponent aliased as double_scratch2 has already been overwritten
2784 // and may not have contained the exponent value in the first place when the
2785 // exponent is a smi. We reset it with exponent value before bailing out.
2786 __ j(not_equal, &done);
2787 __ Cvtsi2sd(double_exponent, exponent);
2788
2789 // Returning or bailing out.
2790 __ bind(&call_runtime);
2791 {
2792 AllowExternalCallThatCantCauseGC scope(masm);
2793 __ PrepareCallCFunction(4, scratch);
2794 __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
2795 __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
2796 __ CallCFunction(ExternalReference::power_double_double_function(), 4);
2797 }
2798 // Return value is in st(0) on ia32.
2799 // Store it into the (fixed) result register.
2800 __ sub(esp, Immediate(kDoubleSize));
2801 __ fstp_d(Operand(esp, 0));
2802 __ movsd(double_result, Operand(esp, 0));
2803 __ add(esp, Immediate(kDoubleSize));
2804
2805 __ bind(&done);
2806 __ ret(0);
2807 }
2808
2809 namespace {
2810
GenerateInternalArrayConstructorCase(MacroAssembler * masm,ElementsKind kind)2811 void GenerateInternalArrayConstructorCase(MacroAssembler* masm,
2812 ElementsKind kind) {
2813 Label not_zero_case, not_one_case;
2814 Label normal_sequence;
2815
2816 __ test(eax, eax);
2817 __ j(not_zero, ¬_zero_case);
2818 __ Jump(CodeFactory::InternalArrayNoArgumentConstructor(masm->isolate(), kind)
2819 .code(),
2820 RelocInfo::CODE_TARGET);
2821
2822 __ bind(¬_zero_case);
2823 __ cmp(eax, 1);
2824 __ j(greater, ¬_one_case);
2825
2826 if (IsFastPackedElementsKind(kind)) {
2827 // We might need to create a holey array
2828 // look at the first argument
2829 __ mov(ecx, Operand(esp, kPointerSize));
2830 __ test(ecx, ecx);
2831 __ j(zero, &normal_sequence);
2832
2833 __ Jump(CodeFactory::InternalArraySingleArgumentConstructor(
2834 masm->isolate(), GetHoleyElementsKind(kind))
2835 .code(),
2836 RelocInfo::CODE_TARGET);
2837 }
2838
2839 __ bind(&normal_sequence);
2840 __ Jump(
2841 CodeFactory::InternalArraySingleArgumentConstructor(masm->isolate(), kind)
2842 .code(),
2843 RelocInfo::CODE_TARGET);
2844
2845 __ bind(¬_one_case);
2846 // TODO(v8:6666): When rewriting ia32 ASM builtins to not clobber the
2847 // kRootRegister ebx, this useless move can be removed.
2848 __ Move(kJavaScriptCallExtraArg1Register, ebx);
2849 Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayNArgumentsConstructor);
2850 __ Jump(code, RelocInfo::CODE_TARGET);
2851 }
2852
2853 } // namespace
2854
Generate_InternalArrayConstructorImpl(MacroAssembler * masm)2855 void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) {
2856 // ----------- S t a t e -------------
2857 // -- eax : argc
2858 // -- edi : constructor
2859 // -- esp[0] : return address
2860 // -- esp[4] : last argument
2861 // -----------------------------------
2862
2863 if (FLAG_debug_code) {
2864 // The array construct code is only set for the global and natives
2865 // builtin Array functions which always have maps.
2866
2867 // Initial map for the builtin Array function should be a map.
2868 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
2869 // Will both indicate a nullptr and a Smi.
2870 __ test(ecx, Immediate(kSmiTagMask));
2871 __ Assert(not_zero, AbortReason::kUnexpectedInitialMapForArrayFunction);
2872 __ CmpObjectType(ecx, MAP_TYPE, ecx);
2873 __ Assert(equal, AbortReason::kUnexpectedInitialMapForArrayFunction);
2874 }
2875
2876 // Figure out the right elements kind
2877 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
2878
2879 // Load the map's "bit field 2" into |result|. We only need the first byte,
2880 // but the following masking takes care of that anyway.
2881 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
2882 // Retrieve elements_kind from bit field 2.
2883 __ DecodeField<Map::ElementsKindBits>(ecx);
2884
2885 if (FLAG_debug_code) {
2886 Label done;
2887 __ cmp(ecx, Immediate(PACKED_ELEMENTS));
2888 __ j(equal, &done);
2889 __ cmp(ecx, Immediate(HOLEY_ELEMENTS));
2890 __ Assert(
2891 equal,
2892 AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray);
2893 __ bind(&done);
2894 }
2895
2896 Label fast_elements_case;
2897 __ cmp(ecx, Immediate(PACKED_ELEMENTS));
2898 __ j(equal, &fast_elements_case);
2899 GenerateInternalArrayConstructorCase(masm, HOLEY_ELEMENTS);
2900
2901 __ bind(&fast_elements_case);
2902 GenerateInternalArrayConstructorCase(masm, PACKED_ELEMENTS);
2903 }
2904
2905 #undef __
2906
2907 } // namespace internal
2908 } // namespace v8
2909
2910 #endif // V8_TARGET_ARCH_IA32
2911