• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Evaluation for CIFAR-10.
16
17Accuracy:
18cifar10_train.py achieves 83.0% accuracy after 100K steps (256 epochs
19of data) as judged by cifar10_eval.py.
20
21Speed:
22On a single Tesla K40, cifar10_train.py processes a single batch of 128 images
23in 0.25-0.35 sec (i.e. 350 - 600 images /sec). The model reaches ~86%
24accuracy after 100K steps in 8 hours of training time.
25
26Usage:
27Please see the tutorial and website for how to download the CIFAR-10
28data set, compile the program and train the model.
29
30http://tensorflow.org/tutorials/deep_cnn/
31"""
32from __future__ import absolute_import
33from __future__ import division
34from __future__ import print_function
35
36import argparse
37import datetime
38import math
39import sys
40import time
41
42import numpy as np
43import tensorflow as tf
44
45from tensorflow.contrib.model_pruning.examples.cifar10 import cifar10_pruning as cifar10
46
47FLAGS = None
48
49
50def eval_once(saver, summary_writer, top_k_op, summary_op):
51  """Run Eval once.
52
53  Args:
54    saver: Saver.
55    summary_writer: Summary writer.
56    top_k_op: Top K op.
57    summary_op: Summary op.
58  """
59  with tf.Session() as sess:
60    ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
61    if ckpt and ckpt.model_checkpoint_path:
62      # Restores from checkpoint
63      saver.restore(sess, ckpt.model_checkpoint_path)
64      # Assuming model_checkpoint_path looks something like:
65      #   /my-favorite-path/cifar10_train/model.ckpt-0,
66      # extract global_step from it.
67      global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
68    else:
69      print('No checkpoint file found')
70      return
71
72    # Start the queue runners.
73    coord = tf.train.Coordinator()
74    try:
75      threads = []
76      for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
77        threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
78                                         start=True))
79
80      num_iter = int(math.ceil(FLAGS.num_examples / 128))
81      true_count = 0  # Counts the number of correct predictions.
82      total_sample_count = num_iter * 128
83      step = 0
84      while step < num_iter and not coord.should_stop():
85        predictions = sess.run([top_k_op])
86        true_count += np.sum(predictions)
87        step += 1
88
89      # Compute precision @ 1.
90      precision = true_count / total_sample_count
91      print('%s: precision @ 1 = %.3f' % (datetime.datetime.now(), precision))
92
93      summary = tf.Summary()
94      summary.ParseFromString(sess.run(summary_op))
95      summary.value.add(tag='Precision @ 1', simple_value=precision)
96      summary_writer.add_summary(summary, global_step)
97    except Exception as e:  # pylint: disable=broad-except
98      coord.request_stop(e)
99
100    coord.request_stop()
101    coord.join(threads, stop_grace_period_secs=10)
102
103
104def evaluate():
105  """Eval CIFAR-10 for a number of steps."""
106  with tf.Graph().as_default() as g:
107    # Get images and labels for CIFAR-10.
108    eval_data = FLAGS.eval_data == 'test'
109    images, labels = cifar10.inputs(eval_data=eval_data)
110
111    # Build a Graph that computes the logits predictions from the
112    # inference model.
113    logits = cifar10.inference(images)
114
115    # Calculate predictions.
116    top_k_op = tf.nn.in_top_k(logits, labels, 1)
117
118    # Restore the moving average version of the learned variables for eval.
119    variable_averages = tf.train.ExponentialMovingAverage(
120        cifar10.MOVING_AVERAGE_DECAY)
121    variables_to_restore = variable_averages.variables_to_restore()
122    saver = tf.train.Saver(variables_to_restore)
123
124    # Build the summary operation based on the TF collection of Summaries.
125    summary_op = tf.summary.merge_all()
126
127    summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)
128
129    while True:
130      eval_once(saver, summary_writer, top_k_op, summary_op)
131      if FLAGS.run_once:
132        break
133      time.sleep(FLAGS.eval_interval_secs)
134
135
136def main(argv=None):  # pylint: disable=unused-argument
137  cifar10.maybe_download_and_extract()
138  if tf.gfile.Exists(FLAGS.eval_dir):
139    tf.gfile.DeleteRecursively(FLAGS.eval_dir)
140  tf.gfile.MakeDirs(FLAGS.eval_dir)
141  evaluate()
142
143
144if __name__ == '__main__':
145  parser = argparse.ArgumentParser()
146  parser.add_argument(
147      '--eval_dir',
148      type=str,
149      default='/tmp/cifar10_eval',
150      help='Directory where to write event logs.')
151  parser.add_argument(
152      '--eval_data',
153      type=str,
154      default='test',
155      help="""Either 'test' or 'train_eval'.""")
156  parser.add_argument(
157      '--checkpoint_dir',
158      type=str,
159      default='/tmp/cifar10_train',
160      help="""Directory where to read model checkpoints.""")
161  parser.add_argument(
162      '--eval_interval_secs',
163      type=int,
164      default=60 * 5,
165      help='How often to run the eval.')
166  parser.add_argument(
167      '--num_examples',
168      type=int,
169      default=10000,
170      help='Number of examples to run.')
171  parser.add_argument(
172      '--run_once',
173      type=bool,
174      default=False,
175      help='Whether to run eval only once.')
176
177  FLAGS, unparsed = parser.parse_known_args()
178  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
179