1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
19
20 #include <cstring>
21 #include <map>
22
23 #include "arch/instruction_set.h"
24 #include "compiled_method.h"
25 #include "debug/method_debug_info.h"
26 #include "dwarf/debug_info_entry_writer.h"
27 #include "dwarf/register.h"
28 #include "stack_map.h"
29
30 namespace art {
31 namespace debug {
32 using Reg = dwarf::Reg;
33
GetDwarfCoreReg(InstructionSet isa,int machine_reg)34 static Reg GetDwarfCoreReg(InstructionSet isa, int machine_reg) {
35 switch (isa) {
36 case InstructionSet::kArm:
37 case InstructionSet::kThumb2:
38 return Reg::ArmCore(machine_reg);
39 case InstructionSet::kArm64:
40 return Reg::Arm64Core(machine_reg);
41 case InstructionSet::kX86:
42 return Reg::X86Core(machine_reg);
43 case InstructionSet::kX86_64:
44 return Reg::X86_64Core(machine_reg);
45 case InstructionSet::kMips:
46 return Reg::MipsCore(machine_reg);
47 case InstructionSet::kMips64:
48 return Reg::Mips64Core(machine_reg);
49 case InstructionSet::kNone:
50 LOG(FATAL) << "No instruction set";
51 }
52 UNREACHABLE();
53 }
54
GetDwarfFpReg(InstructionSet isa,int machine_reg)55 static Reg GetDwarfFpReg(InstructionSet isa, int machine_reg) {
56 switch (isa) {
57 case InstructionSet::kArm:
58 case InstructionSet::kThumb2:
59 return Reg::ArmFp(machine_reg);
60 case InstructionSet::kArm64:
61 return Reg::Arm64Fp(machine_reg);
62 case InstructionSet::kX86:
63 return Reg::X86Fp(machine_reg);
64 case InstructionSet::kX86_64:
65 return Reg::X86_64Fp(machine_reg);
66 case InstructionSet::kMips:
67 return Reg::MipsFp(machine_reg);
68 case InstructionSet::kMips64:
69 return Reg::Mips64Fp(machine_reg);
70 case InstructionSet::kNone:
71 LOG(FATAL) << "No instruction set";
72 }
73 UNREACHABLE();
74 }
75
76 struct VariableLocation {
77 uint32_t low_pc; // Relative to compilation unit.
78 uint32_t high_pc; // Relative to compilation unit.
79 DexRegisterLocation reg_lo; // May be None if the location is unknown.
80 DexRegisterLocation reg_hi; // Most significant bits of 64-bit value.
81 };
82
83 // Get the location of given dex register (e.g. stack or machine register).
84 // Note that the location might be different based on the current pc.
85 // The result will cover all ranges where the variable is in scope.
86 // PCs corresponding to stackmap with dex register map are accurate,
87 // all other PCs are best-effort only.
GetVariableLocations(const MethodDebugInfo * method_info,const std::vector<DexRegisterMap> & dex_register_maps,uint16_t vreg,bool is64bitValue,uint64_t compilation_unit_code_address,uint32_t dex_pc_low,uint32_t dex_pc_high,InstructionSet isa)88 static std::vector<VariableLocation> GetVariableLocations(
89 const MethodDebugInfo* method_info,
90 const std::vector<DexRegisterMap>& dex_register_maps,
91 uint16_t vreg,
92 bool is64bitValue,
93 uint64_t compilation_unit_code_address,
94 uint32_t dex_pc_low,
95 uint32_t dex_pc_high,
96 InstructionSet isa) {
97 std::vector<VariableLocation> variable_locations;
98
99 // Get stack maps sorted by pc (they might not be sorted internally).
100 // TODO(dsrbecky) Remove this once stackmaps get sorted by pc.
101 const CodeInfo code_info(method_info->code_info);
102 std::map<uint32_t, uint32_t> stack_maps; // low_pc -> stack_map_index.
103 for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(); s++) {
104 StackMap stack_map = code_info.GetStackMapAt(s);
105 DCHECK(stack_map.IsValid());
106 if (!stack_map.HasDexRegisterMap()) {
107 // The compiler creates stackmaps without register maps at the start of
108 // basic blocks in order to keep instruction-accurate line number mapping.
109 // However, we never stop at those (breakpoint locations always have map).
110 // Therefore, for the purpose of local variables, we ignore them.
111 // The main reason for this is to save space by avoiding undefined gaps.
112 continue;
113 }
114 const uint32_t pc_offset = stack_map.GetNativePcOffset(isa);
115 DCHECK_LE(pc_offset, method_info->code_size);
116 DCHECK_LE(compilation_unit_code_address, method_info->code_address);
117 const uint32_t low_pc = dchecked_integral_cast<uint32_t>(
118 method_info->code_address + pc_offset - compilation_unit_code_address);
119 stack_maps.emplace(low_pc, s);
120 }
121
122 // Create entries for the requested register based on stack map data.
123 for (auto it = stack_maps.begin(); it != stack_maps.end(); it++) {
124 const uint32_t low_pc = it->first;
125 const uint32_t stack_map_index = it->second;
126 const StackMap stack_map = code_info.GetStackMapAt(stack_map_index);
127 auto next_it = it;
128 next_it++;
129 const uint32_t high_pc = next_it != stack_maps.end()
130 ? next_it->first
131 : method_info->code_address + method_info->code_size - compilation_unit_code_address;
132 DCHECK_LE(low_pc, high_pc);
133 if (low_pc == high_pc) {
134 continue; // Ignore if the address range is empty.
135 }
136
137 // Check that the stack map is in the requested range.
138 uint32_t dex_pc = stack_map.GetDexPc();
139 if (!(dex_pc_low <= dex_pc && dex_pc < dex_pc_high)) {
140 // The variable is not in scope at this PC. Therefore omit the entry.
141 // Note that this is different to None() entry which means in scope, but unknown location.
142 continue;
143 }
144
145 // Find the location of the dex register.
146 DexRegisterLocation reg_lo = DexRegisterLocation::None();
147 DexRegisterLocation reg_hi = DexRegisterLocation::None();
148 DCHECK_LT(stack_map_index, dex_register_maps.size());
149 DexRegisterMap dex_register_map = dex_register_maps[stack_map_index];
150 DCHECK(!dex_register_map.empty());
151 CodeItemDataAccessor accessor(*method_info->dex_file, method_info->code_item);
152 reg_lo = dex_register_map[vreg];
153 if (is64bitValue) {
154 reg_hi = dex_register_map[vreg + 1];
155 }
156
157 // Add location entry for this address range.
158 if (!variable_locations.empty() &&
159 variable_locations.back().reg_lo == reg_lo &&
160 variable_locations.back().reg_hi == reg_hi &&
161 variable_locations.back().high_pc == low_pc) {
162 // Merge with the previous entry (extend its range).
163 variable_locations.back().high_pc = high_pc;
164 } else {
165 variable_locations.push_back({low_pc, high_pc, reg_lo, reg_hi});
166 }
167 }
168
169 return variable_locations;
170 }
171
172 // Write table into .debug_loc which describes location of dex register.
173 // The dex register might be valid only at some points and it might
174 // move between machine registers and stack.
WriteDebugLocEntry(const MethodDebugInfo * method_info,const std::vector<DexRegisterMap> & dex_register_maps,uint16_t vreg,bool is64bitValue,uint64_t compilation_unit_code_address,uint32_t dex_pc_low,uint32_t dex_pc_high,InstructionSet isa,dwarf::DebugInfoEntryWriter<> * debug_info,std::vector<uint8_t> * debug_loc_buffer,std::vector<uint8_t> * debug_ranges_buffer)175 static void WriteDebugLocEntry(const MethodDebugInfo* method_info,
176 const std::vector<DexRegisterMap>& dex_register_maps,
177 uint16_t vreg,
178 bool is64bitValue,
179 uint64_t compilation_unit_code_address,
180 uint32_t dex_pc_low,
181 uint32_t dex_pc_high,
182 InstructionSet isa,
183 dwarf::DebugInfoEntryWriter<>* debug_info,
184 std::vector<uint8_t>* debug_loc_buffer,
185 std::vector<uint8_t>* debug_ranges_buffer) {
186 using Kind = DexRegisterLocation::Kind;
187 if (method_info->code_info == nullptr || dex_register_maps.empty()) {
188 return;
189 }
190
191 std::vector<VariableLocation> variable_locations = GetVariableLocations(
192 method_info,
193 dex_register_maps,
194 vreg,
195 is64bitValue,
196 compilation_unit_code_address,
197 dex_pc_low,
198 dex_pc_high,
199 isa);
200
201 // Write .debug_loc entries.
202 dwarf::Writer<> debug_loc(debug_loc_buffer);
203 const size_t debug_loc_offset = debug_loc.size();
204 const bool is64bit = Is64BitInstructionSet(isa);
205 std::vector<uint8_t> expr_buffer;
206 for (const VariableLocation& variable_location : variable_locations) {
207 // Translate dex register location to DWARF expression.
208 // Note that 64-bit value might be split to two distinct locations.
209 // (for example, two 32-bit machine registers, or even stack and register)
210 dwarf::Expression expr(&expr_buffer);
211 DexRegisterLocation reg_lo = variable_location.reg_lo;
212 DexRegisterLocation reg_hi = variable_location.reg_hi;
213 for (int piece = 0; piece < (is64bitValue ? 2 : 1); piece++) {
214 DexRegisterLocation reg_loc = (piece == 0 ? reg_lo : reg_hi);
215 const Kind kind = reg_loc.GetKind();
216 const int32_t value = reg_loc.GetValue();
217 if (kind == Kind::kInStack) {
218 // The stack offset is relative to SP. Make it relative to CFA.
219 expr.WriteOpFbreg(value - method_info->frame_size_in_bytes);
220 if (piece == 0 && reg_hi.GetKind() == Kind::kInStack &&
221 reg_hi.GetValue() == value + 4) {
222 break; // the high word is correctly implied by the low word.
223 }
224 } else if (kind == Kind::kInRegister) {
225 expr.WriteOpReg(GetDwarfCoreReg(isa, value).num());
226 if (piece == 0 && reg_hi.GetKind() == Kind::kInRegisterHigh &&
227 reg_hi.GetValue() == value) {
228 break; // the high word is correctly implied by the low word.
229 }
230 } else if (kind == Kind::kInFpuRegister) {
231 if ((isa == InstructionSet::kArm || isa == InstructionSet::kThumb2) &&
232 piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegister &&
233 reg_hi.GetValue() == value + 1 && value % 2 == 0) {
234 // Translate S register pair to D register (e.g. S4+S5 to D2).
235 expr.WriteOpReg(Reg::ArmDp(value / 2).num());
236 break;
237 }
238 expr.WriteOpReg(GetDwarfFpReg(isa, value).num());
239 if (piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegisterHigh &&
240 reg_hi.GetValue() == reg_lo.GetValue()) {
241 break; // the high word is correctly implied by the low word.
242 }
243 } else if (kind == Kind::kConstant) {
244 expr.WriteOpConsts(value);
245 expr.WriteOpStackValue();
246 } else if (kind == Kind::kNone) {
247 break;
248 } else {
249 // kInStackLargeOffset and kConstantLargeValue are hidden by GetKind().
250 // kInRegisterHigh and kInFpuRegisterHigh should be handled by
251 // the special cases above and they should not occur alone.
252 LOG(WARNING) << "Unexpected register location: " << kind
253 << " (This can indicate either a bug in the dexer when generating"
254 << " local variable information, or a bug in ART compiler."
255 << " Please file a bug at go/art-bug)";
256 break;
257 }
258 if (is64bitValue) {
259 // Write the marker which is needed by split 64-bit values.
260 // This code is skipped by the special cases.
261 expr.WriteOpPiece(4);
262 }
263 }
264
265 if (expr.size() > 0) {
266 if (is64bit) {
267 debug_loc.PushUint64(variable_location.low_pc);
268 debug_loc.PushUint64(variable_location.high_pc);
269 } else {
270 debug_loc.PushUint32(variable_location.low_pc);
271 debug_loc.PushUint32(variable_location.high_pc);
272 }
273 // Write the expression.
274 debug_loc.PushUint16(expr.size());
275 debug_loc.PushData(expr.data());
276 } else {
277 // Do not generate .debug_loc if the location is not known.
278 }
279 }
280 // Write end-of-list entry.
281 if (is64bit) {
282 debug_loc.PushUint64(0);
283 debug_loc.PushUint64(0);
284 } else {
285 debug_loc.PushUint32(0);
286 debug_loc.PushUint32(0);
287 }
288
289 // Write .debug_ranges entries.
290 // This includes ranges where the variable is in scope but the location is not known.
291 dwarf::Writer<> debug_ranges(debug_ranges_buffer);
292 size_t debug_ranges_offset = debug_ranges.size();
293 for (size_t i = 0; i < variable_locations.size(); i++) {
294 uint32_t low_pc = variable_locations[i].low_pc;
295 uint32_t high_pc = variable_locations[i].high_pc;
296 while (i + 1 < variable_locations.size() && variable_locations[i+1].low_pc == high_pc) {
297 // Merge address range with the next entry.
298 high_pc = variable_locations[++i].high_pc;
299 }
300 if (is64bit) {
301 debug_ranges.PushUint64(low_pc);
302 debug_ranges.PushUint64(high_pc);
303 } else {
304 debug_ranges.PushUint32(low_pc);
305 debug_ranges.PushUint32(high_pc);
306 }
307 }
308 // Write end-of-list entry.
309 if (is64bit) {
310 debug_ranges.PushUint64(0);
311 debug_ranges.PushUint64(0);
312 } else {
313 debug_ranges.PushUint32(0);
314 debug_ranges.PushUint32(0);
315 }
316
317 // Simple de-duplication - check whether this entry is same as the last one (or tail of it).
318 size_t debug_ranges_entry_size = debug_ranges.size() - debug_ranges_offset;
319 if (debug_ranges_offset >= debug_ranges_entry_size) {
320 size_t previous_offset = debug_ranges_offset - debug_ranges_entry_size;
321 if (memcmp(debug_ranges_buffer->data() + previous_offset,
322 debug_ranges_buffer->data() + debug_ranges_offset,
323 debug_ranges_entry_size) == 0) {
324 // Remove what we have just written and use the last entry instead.
325 debug_ranges_buffer->resize(debug_ranges_offset);
326 debug_ranges_offset = previous_offset;
327 }
328 }
329
330 // Write attributes to .debug_info.
331 debug_info->WriteSecOffset(dwarf::DW_AT_location, debug_loc_offset);
332 debug_info->WriteSecOffset(dwarf::DW_AT_start_scope, debug_ranges_offset);
333 }
334
335 } // namespace debug
336 } // namespace art
337
338 #endif // ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
339
340