• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/jbd2/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * We cache revoke status of a buffer in the current transaction in b_states
51  * bits.  As the name says, revokevalid flag indicates that the cached revoke
52  * status of a buffer is valid and we can rely on the cached status.
53  *
54  * Revoke information on buffers is a tri-state value:
55  *
56  * RevokeValid clear:	no cached revoke status, need to look it up
57  * RevokeValid set, Revoked clear:
58  *			buffer has not been revoked, and cancel_revoke
59  *			need do nothing.
60  * RevokeValid set, Revoked set:
61  *			buffer has been revoked.
62  *
63  * Locking rules:
64  * We keep two hash tables of revoke records. One hashtable belongs to the
65  * running transaction (is pointed to by journal->j_revoke), the other one
66  * belongs to the committing transaction. Accesses to the second hash table
67  * happen only from the kjournald and no other thread touches this table.  Also
68  * journal_switch_revoke_table() which switches which hashtable belongs to the
69  * running and which to the committing transaction is called only from
70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
71  * to the committing transaction.
72  *
73  * All users operating on the hash table belonging to the running transaction
74  * have a handle to the transaction. Therefore they are safe from kjournald
75  * switching hash tables under them. For operations on the lists of entries in
76  * the hash table j_revoke_lock is used.
77  *
78  * Finally, also replay code uses the hash tables but at this moment no one else
79  * can touch them (filesystem isn't mounted yet) and hence no locking is
80  * needed.
81  */
82 
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd2.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #include <linux/log2.h>
95 #endif
96 
97 static lkmem_cache_t *jbd2_revoke_record_cache;
98 static lkmem_cache_t *jbd2_revoke_table_cache;
99 
100 /* Each revoke record represents one single revoked block.  During
101    journal replay, this involves recording the transaction ID of the
102    last transaction to revoke this block. */
103 
104 struct jbd2_revoke_record_s
105 {
106 	struct list_head  hash;
107 	tid_t		  sequence;	/* Used for recovery only */
108 	unsigned long long	  blocknr;
109 };
110 
111 
112 /* The revoke table is just a simple hash table of revoke records. */
113 struct jbd2_revoke_table_s
114 {
115 	/* It is conceivable that we might want a larger hash table
116 	 * for recovery.  Must be a power of two. */
117 	int		  hash_size;
118 	int		  hash_shift;
119 	struct list_head *hash_table;
120 };
121 
122 
123 #ifdef __KERNEL__
124 static void write_one_revoke_record(journal_t *, transaction_t *,
125 				    struct list_head *,
126 				    struct buffer_head **, int *,
127 				    struct jbd2_revoke_record_s *, int);
128 static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
129 #endif
130 
131 /* Utility functions to maintain the revoke table */
132 
133 /* Borrowed from buffer.c: this is a tried and tested block hash function */
hash(journal_t * journal,unsigned long long block)134 static inline int hash(journal_t *journal, unsigned long long block)
135 {
136 	struct jbd2_revoke_table_s *table = journal->j_revoke;
137 
138 	return (hash_64(block, table->hash_shift));
139 }
140 
insert_revoke_hash(journal_t * journal,unsigned long long blocknr,tid_t seq)141 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
142 			      tid_t seq)
143 {
144 	struct list_head *hash_list;
145 	struct jbd2_revoke_record_s *record;
146 
147 repeat:
148 	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
149 	if (!record)
150 		goto oom;
151 
152 	record->sequence = seq;
153 	record->blocknr = blocknr;
154 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
155 	spin_lock(&journal->j_revoke_lock);
156 	list_add(&record->hash, hash_list);
157 	spin_unlock(&journal->j_revoke_lock);
158 	return 0;
159 
160 oom:
161 	if (!journal_oom_retry)
162 		return -ENOMEM;
163 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
164 	yield();
165 	goto repeat;
166 }
167 
168 /* Find a revoke record in the journal's hash table. */
169 
find_revoke_record(journal_t * journal,unsigned long long blocknr)170 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
171 						      unsigned long long blocknr)
172 {
173 	struct list_head *hash_list;
174 	struct jbd2_revoke_record_s *record;
175 
176 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
177 
178 	spin_lock(&journal->j_revoke_lock);
179 	record = (struct jbd2_revoke_record_s *) hash_list->next;
180 	while (&(record->hash) != hash_list) {
181 		if (record->blocknr == blocknr) {
182 			spin_unlock(&journal->j_revoke_lock);
183 			return record;
184 		}
185 		record = (struct jbd2_revoke_record_s *) record->hash.next;
186 	}
187 	spin_unlock(&journal->j_revoke_lock);
188 	return NULL;
189 }
190 
journal_destroy_revoke_caches(void)191 void journal_destroy_revoke_caches(void)
192 {
193 	if (jbd2_revoke_record_cache) {
194 		kmem_cache_destroy(jbd2_revoke_record_cache);
195 		jbd2_revoke_record_cache = NULL;
196 	}
197 	if (jbd2_revoke_table_cache) {
198 		kmem_cache_destroy(jbd2_revoke_table_cache);
199 		jbd2_revoke_table_cache = NULL;
200 	}
201 }
202 
journal_init_revoke_caches(void)203 int __init journal_init_revoke_caches(void)
204 {
205 	J_ASSERT(!jbd2_revoke_record_cache);
206 	J_ASSERT(!jbd2_revoke_table_cache);
207 
208 	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
209 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
210 	if (!jbd2_revoke_record_cache)
211 		goto record_cache_failure;
212 
213 	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
214 					     SLAB_TEMPORARY);
215 	if (!jbd2_revoke_table_cache)
216 		goto table_cache_failure;
217 	return 0;
218 table_cache_failure:
219 	journal_destroy_revoke_caches();
220 record_cache_failure:
221 		return -ENOMEM;
222 }
223 
journal_init_revoke_table(int hash_size)224 static struct jbd2_revoke_table_s *journal_init_revoke_table(int hash_size)
225 {
226 	int shift = 0;
227 	int tmp = hash_size;
228 	struct jbd2_revoke_table_s *table;
229 
230 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
231 	if (!table)
232 		goto out;
233 
234 	while((tmp >>= 1UL) != 0UL)
235 		shift++;
236 
237 	table->hash_size = hash_size;
238 	table->hash_shift = shift;
239 	table->hash_table =
240 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
241 	if (!table->hash_table) {
242 		kmem_cache_free(jbd2_revoke_table_cache, table);
243 		table = NULL;
244 		goto out;
245 	}
246 
247 	for (tmp = 0; tmp < hash_size; tmp++)
248 		INIT_LIST_HEAD(&table->hash_table[tmp]);
249 
250 out:
251 	return table;
252 }
253 
journal_destroy_revoke_table(struct jbd2_revoke_table_s * table)254 static void journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
255 {
256 	int i;
257 	struct list_head *hash_list;
258 
259 	for (i = 0; i < table->hash_size; i++) {
260 		hash_list = &table->hash_table[i];
261 		J_ASSERT(list_empty(hash_list));
262 	}
263 
264 	kfree(table->hash_table);
265 	kmem_cache_free(jbd2_revoke_table_cache, table);
266 }
267 
268 /* Initialise the revoke table for a given journal to a given size. */
journal_init_revoke(journal_t * journal,int hash_size)269 int journal_init_revoke(journal_t *journal, int hash_size)
270 {
271 	J_ASSERT(journal->j_revoke_table[0] == NULL);
272 	J_ASSERT(is_power_of_2(hash_size));
273 
274 	journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
275 	if (!journal->j_revoke_table[0])
276 		goto fail0;
277 
278 	journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
279 	if (!journal->j_revoke_table[1])
280 		goto fail1;
281 
282 	journal->j_revoke = journal->j_revoke_table[1];
283 
284 	spin_lock_init(&journal->j_revoke_lock);
285 
286 	return 0;
287 
288 fail1:
289 	journal_destroy_revoke_table(journal->j_revoke_table[0]);
290 fail0:
291 	return -ENOMEM;
292 }
293 
294 /* Destroy a journal's revoke table.  The table must already be empty! */
journal_destroy_revoke(journal_t * journal)295 void journal_destroy_revoke(journal_t *journal)
296 {
297 	journal->j_revoke = NULL;
298 	if (journal->j_revoke_table[0])
299 		journal_destroy_revoke_table(journal->j_revoke_table[0]);
300 	if (journal->j_revoke_table[1])
301 		journal_destroy_revoke_table(journal->j_revoke_table[1]);
302 }
303 
304 
305 #ifdef __KERNEL__
306 
307 /*
308  * journal_revoke: revoke a given buffer_head from the journal.  This
309  * prevents the block from being replayed during recovery if we take a
310  * crash after this current transaction commits.  Any subsequent
311  * metadata writes of the buffer in this transaction cancel the
312  * revoke.
313  *
314  * Note that this call may block --- it is up to the caller to make
315  * sure that there are no further calls to journal_write_metadata
316  * before the revoke is complete.  In ext3, this implies calling the
317  * revoke before clearing the block bitmap when we are deleting
318  * metadata.
319  *
320  * Revoke performs a journal_forget on any buffer_head passed in as a
321  * parameter, but does _not_ forget the buffer_head if the bh was only
322  * found implicitly.
323  *
324  * bh_in may not be a journalled buffer - it may have come off
325  * the hash tables without an attached journal_head.
326  *
327  * If bh_in is non-zero, journal_revoke() will decrement its b_count
328  * by one.
329  */
330 
journal_revoke(handle_t * handle,unsigned long long blocknr,struct buffer_head * bh_in)331 int journal_revoke(handle_t *handle, unsigned long long blocknr,
332 		   struct buffer_head *bh_in)
333 {
334 	struct buffer_head *bh = NULL;
335 	journal_t *journal;
336 	struct block_device *bdev;
337 	int err;
338 
339 	might_sleep();
340 	if (bh_in)
341 		BUFFER_TRACE(bh_in, "enter");
342 
343 	journal = handle->h_transaction->t_journal;
344 	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
345 		J_ASSERT (!"Cannot set revoke feature!");
346 		return -EINVAL;
347 	}
348 
349 	bdev = journal->j_fs_dev;
350 	bh = bh_in;
351 
352 	if (!bh) {
353 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
354 		if (bh)
355 			BUFFER_TRACE(bh, "found on hash");
356 	}
357 #ifdef JFS_EXPENSIVE_CHECKING
358 	else {
359 		struct buffer_head *bh2;
360 
361 		/* If there is a different buffer_head lying around in
362 		 * memory anywhere... */
363 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
364 		if (bh2) {
365 			/* ... and it has RevokeValid status... */
366 			if (bh2 != bh && buffer_revokevalid(bh2))
367 				/* ...then it better be revoked too,
368 				 * since it's illegal to create a revoke
369 				 * record against a buffer_head which is
370 				 * not marked revoked --- that would
371 				 * risk missing a subsequent revoke
372 				 * cancel. */
373 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
374 			put_bh(bh2);
375 		}
376 	}
377 #endif
378 
379 	/* We really ought not ever to revoke twice in a row without
380            first having the revoke cancelled: it's illegal to free a
381            block twice without allocating it in between! */
382 	if (bh) {
383 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
384 				 "inconsistent data on disk")) {
385 			if (!bh_in)
386 				brelse(bh);
387 			return -EIO;
388 		}
389 		set_buffer_revoked(bh);
390 		set_buffer_revokevalid(bh);
391 		if (bh_in) {
392 			BUFFER_TRACE(bh_in, "call journal_forget");
393 			journal_forget(handle, bh_in);
394 		} else {
395 			BUFFER_TRACE(bh, "call brelse");
396 			__brelse(bh);
397 		}
398 	}
399 
400 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
401 	err = insert_revoke_hash(journal, blocknr,
402 				handle->h_transaction->t_tid);
403 	BUFFER_TRACE(bh_in, "exit");
404 	return err;
405 }
406 
407 /*
408  * Cancel an outstanding revoke.  For use only internally by the
409  * journaling code (called from journal_get_write_access).
410  *
411  * We trust buffer_revoked() on the buffer if the buffer is already
412  * being journaled: if there is no revoke pending on the buffer, then we
413  * don't do anything here.
414  *
415  * This would break if it were possible for a buffer to be revoked and
416  * discarded, and then reallocated within the same transaction.  In such
417  * a case we would have lost the revoked bit, but when we arrived here
418  * the second time we would still have a pending revoke to cancel.  So,
419  * do not trust the Revoked bit on buffers unless RevokeValid is also
420  * set.
421  */
journal_cancel_revoke(handle_t * handle,struct journal_head * jh)422 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
423 {
424 	struct jbd2_revoke_record_s *record;
425 	journal_t *journal = handle->h_transaction->t_journal;
426 	int need_cancel;
427 	int did_revoke = 0;	/* akpm: debug */
428 	struct buffer_head *bh = jh2bh(jh);
429 
430 	jbd_debug(4, "journal_head %p, canceling revoke\n", jh);
431 
432 	/* Is the existing Revoke bit valid?  If so, we trust it, and
433 	 * only perform the full cancel if the revoke bit is set.  If
434 	 * not, we can't trust the revoke bit, and we need to do the
435 	 * full search for a revoke record. */
436 	if (test_set_buffer_revokevalid(bh)) {
437 		need_cancel = test_clear_buffer_revoked(bh);
438 	} else {
439 		need_cancel = 1;
440 		clear_buffer_revoked(bh);
441 	}
442 
443 	if (need_cancel) {
444 		record = find_revoke_record(journal, bh->b_blocknr);
445 		if (record) {
446 			jbd_debug(4, "cancelled existing revoke on "
447 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
448 			spin_lock(&journal->j_revoke_lock);
449 			list_del(&record->hash);
450 			spin_unlock(&journal->j_revoke_lock);
451 			kmem_cache_free(jbd2_revoke_record_cache, record);
452 			did_revoke = 1;
453 		}
454 	}
455 
456 #ifdef JFS_EXPENSIVE_CHECKING
457 	/* There better not be one left behind by now! */
458 	record = find_revoke_record(journal, bh->b_blocknr);
459 	J_ASSERT_JH(jh, record == NULL);
460 #endif
461 
462 	/* Finally, have we just cleared revoke on an unhashed
463 	 * buffer_head?  If so, we'd better make sure we clear the
464 	 * revoked status on any hashed alias too, otherwise the revoke
465 	 * state machine will get very upset later on. */
466 	if (need_cancel) {
467 		struct buffer_head *bh2;
468 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
469 		if (bh2) {
470 			if (bh2 != bh)
471 				clear_buffer_revoked(bh2);
472 			__brelse(bh2);
473 		}
474 	}
475 	return did_revoke;
476 }
477 
478 /*
479  * journal_clear_revoked_flag clears revoked flag of buffers in
480  * revoke table to reflect there is no revoked buffers in the next
481  * transaction which is going to be started.
482  */
jbd2_clear_buffer_revoked_flags(journal_t * journal)483 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
484 {
485 	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
486 	int i = 0;
487 
488 	for (i = 0; i < revoke->hash_size; i++) {
489 		struct list_head *hash_list;
490 		struct list_head *list_entry;
491 		hash_list = &revoke->hash_table[i];
492 
493 		list_for_each(list_entry, hash_list) {
494 			struct jbd2_revoke_record_s *record;
495 			struct buffer_head *bh;
496 			record = (struct jbd2_revoke_record_s *)list_entry;
497 			bh = __find_get_block(journal->j_fs_dev,
498 					      record->blocknr,
499 					      journal->j_blocksize);
500 			if (bh) {
501 				clear_buffer_revoked(bh);
502 				__brelse(bh);
503 			}
504 		}
505 	}
506 }
507 
508 /* journal_switch_revoke table select j_revoke for next transaction
509  * we do not want to suspend any processing until all revokes are
510  * written -bzzz
511  */
journal_switch_revoke_table(journal_t * journal)512 void journal_switch_revoke_table(journal_t *journal)
513 {
514 	int i;
515 
516 	if (journal->j_revoke == journal->j_revoke_table[0])
517 		journal->j_revoke = journal->j_revoke_table[1];
518 	else
519 		journal->j_revoke = journal->j_revoke_table[0];
520 
521 	for (i = 0; i < journal->j_revoke->hash_size; i++)
522 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
523 }
524 
525 /*
526  * Write revoke records to the journal for all entries in the current
527  * revoke hash, deleting the entries as we go.
528  */
journal_write_revoke_records(journal_t * journal,transaction_t * transaction,struct list_head * log_bufs,int write_op)529 void journal_write_revoke_records(journal_t *journal,
530 				       transaction_t *transaction,
531 				       struct list_head *log_bufs,
532 				       int write_op)
533 {
534 	struct buffer_head *descriptor;
535 	struct jbd2_revoke_record_s *record;
536 	struct jbd2_revoke_table_s *revoke;
537 	struct list_head *hash_list;
538 	int i, offset, count;
539 
540 	descriptor = NULL;
541 	offset = 0;
542 	count = 0;
543 
544 	/* select revoke table for committing transaction */
545 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
546 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
547 
548 	for (i = 0; i < revoke->hash_size; i++) {
549 		hash_list = &revoke->hash_table[i];
550 
551 		while (!list_empty(hash_list)) {
552 			record = (struct jbd2_revoke_record_s *)
553 				hash_list->next;
554 			write_one_revoke_record(journal, transaction, log_bufs,
555 						&descriptor, &offset,
556 						record, write_op);
557 			count++;
558 			list_del(&record->hash);
559 			kmem_cache_free(jbd2_revoke_record_cache, record);
560 		}
561 	}
562 	if (descriptor)
563 		flush_descriptor(journal, descriptor, offset, write_op);
564 	jbd_debug(1, "Wrote %d revoke records\n", count);
565 }
566 
567 /*
568  * Write out one revoke record.  We need to create a new descriptor
569  * block if the old one is full or if we have not already created one.
570  */
571 
write_one_revoke_record(journal_t * journal,transaction_t * transaction,struct list_head * log_bufs,struct buffer_head ** descriptorp,int * offsetp,struct jbd2_revoke_record_s * record,int write_op)572 static void write_one_revoke_record(journal_t *journal,
573 				    transaction_t *transaction,
574 				    struct list_head *log_bufs,
575 				    struct buffer_head **descriptorp,
576 				    int *offsetp,
577 				    struct jbd2_revoke_record_s *record,
578 				    int write_op)
579 {
580 	int csum_size = 0;
581 	struct buffer_head *descriptor;
582 	int sz, offset;
583 	journal_header_t *header;
584 
585 	/* If we are already aborting, this all becomes a noop.  We
586            still need to go round the loop in
587            journal_write_revoke_records in order to free all of the
588            revoke records: only the IO to the journal is omitted. */
589 	if (is_journal_aborted(journal))
590 		return;
591 
592 	descriptor = *descriptorp;
593 	offset = *offsetp;
594 
595 	/* Do we need to leave space at the end for a checksum? */
596 	if (journal_has_csum_v2or3(journal))
597 		csum_size = sizeof(struct journal_revoke_tail);
598 
599 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
600 		sz = 8;
601 	else
602 		sz = 4;
603 
604 	/* Make sure we have a descriptor with space left for the record */
605 	if (descriptor) {
606 		if (offset + sz > journal->j_blocksize - csum_size) {
607 			flush_descriptor(journal, descriptor, offset, write_op);
608 			descriptor = NULL;
609 		}
610 	}
611 
612 	if (!descriptor) {
613 		descriptor = journal_get_descriptor_buffer(journal);
614 		if (!descriptor)
615 			return;
616 		header = (journal_header_t *)descriptor->b_data;
617 		header->h_magic     = ext2fs_cpu_to_be32(JFS_MAGIC_NUMBER);
618 		header->h_blocktype = ext2fs_cpu_to_be32(JFS_REVOKE_BLOCK);
619 		header->h_sequence  = ext2fs_cpu_to_be32(transaction->t_tid);
620 
621 		/* Record it so that we can wait for IO completion later */
622 		BUFFER_TRACE(descriptor, "file in log_bufs");
623 		jbd2_file_log_bh(log_bufs, descriptor);
624 
625 		offset = sizeof(journal_revoke_header_t);
626 		*descriptorp = descriptor;
627 	}
628 
629 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
630 		* ((__be64 *)(&descriptor->b_data[offset])) =
631 			cpu_to_be64(record->blocknr);
632 	else
633 		* ((__be32 *)(&descriptor->b_data[offset])) =
634 			cpu_to_be32(record->blocknr);
635 	offset += sz;
636 
637 	*offsetp = offset;
638 }
639 
640 static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
641 {
642 	struct journal_revoke_tail *tail;
643 	__u32 csum;
644 
645 	if (!journal_has_csum_v2or3(j))
646 		return;
647 
648 	tail = (struct journal_revoke_tail *)(bh->b_data + j->j_blocksize -
649 			sizeof(struct journal_revoke_tail));
650 	tail->r_checksum = 0;
651 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
652 	tail->r_checksum = ext2fs_cpu_to_be32(csum);
653 }
654 
655 /*
656  * Flush a revoke descriptor out to the journal.  If we are aborting,
657  * this is a noop; otherwise we are generating a buffer which needs to
658  * be waited for during commit, so it has to go onto the appropriate
659  * journal buffer list.
660  */
661 
662 static void flush_descriptor(journal_t *journal,
663 			     struct buffer_head *descriptor,
664 			     int offset, int write_op)
665 {
666 	journal_revoke_header_t *header;
667 
668 	if (is_journal_aborted(journal)) {
669 		put_bh(descriptor);
670 		return;
671 	}
672 
673 	header = (journal_revoke_header_t *)descriptor->b_data;
674 	header->r_count = ext2fs_cpu_to_be32(offset);
675 	jbd2_revoke_csum_set(journal, descriptor);
676 
677 	set_buffer_jwrite(descriptor);
678 	BUFFER_TRACE(descriptor, "write");
679 	set_buffer_dirty(descriptor);
680 	write_dirty_buffer(descriptor, write_op);
681 }
682 #endif
683 
684 /*
685  * Revoke support for recovery.
686  *
687  * Recovery needs to be able to:
688  *
689  *  record all revoke records, including the tid of the latest instance
690  *  of each revoke in the journal
691  *
692  *  check whether a given block in a given transaction should be replayed
693  *  (ie. has not been revoked by a revoke record in that or a subsequent
694  *  transaction)
695  *
696  *  empty the revoke table after recovery.
697  */
698 
699 /*
700  * First, setting revoke records.  We create a new revoke record for
701  * every block ever revoked in the log as we scan it for recovery, and
702  * we update the existing records if we find multiple revokes for a
703  * single block.
704  */
705 
706 int journal_set_revoke(journal_t *journal,
707 		       unsigned long long blocknr,
708 		       tid_t sequence)
709 {
710 	struct jbd2_revoke_record_s *record;
711 
712 	record = find_revoke_record(journal, blocknr);
713 	if (record) {
714 		/* If we have multiple occurrences, only record the
715 		 * latest sequence number in the hashed record */
716 		if (tid_gt(sequence, record->sequence))
717 			record->sequence = sequence;
718 		return 0;
719 	}
720 	return insert_revoke_hash(journal, blocknr, sequence);
721 }
722 
723 /*
724  * Test revoke records.  For a given block referenced in the log, has
725  * that block been revoked?  A revoke record with a given transaction
726  * sequence number revokes all blocks in that transaction and earlier
727  * ones, but later transactions still need replayed.
728  */
729 
730 int journal_test_revoke(journal_t *journal,
731 			unsigned long long blocknr,
732 			tid_t sequence)
733 {
734 	struct jbd2_revoke_record_s *record;
735 
736 	record = find_revoke_record(journal, blocknr);
737 	if (!record)
738 		return 0;
739 	if (tid_gt(sequence, record->sequence))
740 		return 0;
741 	return 1;
742 }
743 
744 /*
745  * Finally, once recovery is over, we need to clear the revoke table so
746  * that it can be reused by the running filesystem.
747  */
748 
749 void journal_clear_revoke(journal_t *journal)
750 {
751 	int i;
752 	struct list_head *hash_list;
753 	struct jbd2_revoke_record_s *record;
754 	struct jbd2_revoke_table_s *revoke;
755 
756 	revoke = journal->j_revoke;
757 
758 	for (i = 0; i < revoke->hash_size; i++) {
759 		hash_list = &revoke->hash_table[i];
760 		while (!list_empty(hash_list)) {
761 			record = (struct jbd2_revoke_record_s*) hash_list->next;
762 			list_del(&record->hash);
763 			kmem_cache_free(jbd2_revoke_record_cache, record);
764 		}
765 	}
766 }
767