• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4  *
5  * Licensed under the OpenSSL license (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  *
10  * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
11  * (1) Intel Corporation, Israel Development Center, Haifa, Israel
12  * (2) University of Haifa, Israel
13  *
14  * Reference:
15  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
16  *                          256 Bit Primes"
17  */
18 
19 #include <openssl/ec.h>
20 
21 #include <assert.h>
22 #include <stdint.h>
23 #include <string.h>
24 
25 #include <openssl/bn.h>
26 #include <openssl/cpu.h>
27 #include <openssl/crypto.h>
28 #include <openssl/err.h>
29 
30 #include "../bn/internal.h"
31 #include "../delocate.h"
32 #include "../../internal.h"
33 #include "internal.h"
34 #include "p256-x86_64.h"
35 
36 
37 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
38     !defined(OPENSSL_SMALL)
39 
40 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
41 
42 // One converted into the Montgomery domain
43 static const BN_ULONG ONE[P256_LIMBS] = {
44     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
45     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
46 };
47 
48 // Precomputed tables for the default generator
49 #include "p256-x86_64-table.h"
50 
51 // Recode window to a signed digit, see util-64.c for details
booth_recode_w5(unsigned in)52 static unsigned booth_recode_w5(unsigned in) {
53   unsigned s, d;
54 
55   s = ~((in >> 5) - 1);
56   d = (1 << 6) - in - 1;
57   d = (d & s) | (in & ~s);
58   d = (d >> 1) + (d & 1);
59 
60   return (d << 1) + (s & 1);
61 }
62 
booth_recode_w7(unsigned in)63 static unsigned booth_recode_w7(unsigned in) {
64   unsigned s, d;
65 
66   s = ~((in >> 7) - 1);
67   d = (1 << 8) - in - 1;
68   d = (d & s) | (in & ~s);
69   d = (d >> 1) + (d & 1);
70 
71   return (d << 1) + (s & 1);
72 }
73 
74 // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
75 // if |move| is zero.
76 //
77 // WARNING: this breaks the usual convention of constant-time functions
78 // returning masks.
copy_conditional(BN_ULONG dst[P256_LIMBS],const BN_ULONG src[P256_LIMBS],BN_ULONG move)79 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
80                              const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
81   BN_ULONG mask1 = ((BN_ULONG)0) - move;
82   BN_ULONG mask2 = ~mask1;
83 
84   dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
85   dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
86   dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
87   dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
88   if (P256_LIMBS == 8) {
89     dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
90     dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
91     dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
92     dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
93   }
94 }
95 
96 // is_not_zero returns one iff in != 0 and zero otherwise.
97 //
98 // WARNING: this breaks the usual convention of constant-time functions
99 // returning masks.
100 //
101 // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
102 //   (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
103 // )
104 //
105 // (declare-fun x () (_ BitVec 64))
106 //
107 // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
108 // (check-sat)
109 //
110 // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
111 // (check-sat)
112 //
is_not_zero(BN_ULONG in)113 static BN_ULONG is_not_zero(BN_ULONG in) {
114   in |= (0 - in);
115   in >>= BN_BITS2 - 1;
116   return in;
117 }
118 
119 // ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p.
120 // That is, |r| is the modular inverse of |in| for input and output in the
121 // Montgomery domain.
ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS],const BN_ULONG in[P256_LIMBS])122 static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS],
123                                           const BN_ULONG in[P256_LIMBS]) {
124   /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
125      ffffffff
126      We use FLT and used poly-2 as exponent */
127   BN_ULONG p2[P256_LIMBS];
128   BN_ULONG p4[P256_LIMBS];
129   BN_ULONG p8[P256_LIMBS];
130   BN_ULONG p16[P256_LIMBS];
131   BN_ULONG p32[P256_LIMBS];
132   BN_ULONG res[P256_LIMBS];
133   int i;
134 
135   ecp_nistz256_sqr_mont(res, in);
136   ecp_nistz256_mul_mont(p2, res, in);  // 3*p
137 
138   ecp_nistz256_sqr_mont(res, p2);
139   ecp_nistz256_sqr_mont(res, res);
140   ecp_nistz256_mul_mont(p4, res, p2);  // f*p
141 
142   ecp_nistz256_sqr_mont(res, p4);
143   ecp_nistz256_sqr_mont(res, res);
144   ecp_nistz256_sqr_mont(res, res);
145   ecp_nistz256_sqr_mont(res, res);
146   ecp_nistz256_mul_mont(p8, res, p4);  // ff*p
147 
148   ecp_nistz256_sqr_mont(res, p8);
149   for (i = 0; i < 7; i++) {
150     ecp_nistz256_sqr_mont(res, res);
151   }
152   ecp_nistz256_mul_mont(p16, res, p8);  // ffff*p
153 
154   ecp_nistz256_sqr_mont(res, p16);
155   for (i = 0; i < 15; i++) {
156     ecp_nistz256_sqr_mont(res, res);
157   }
158   ecp_nistz256_mul_mont(p32, res, p16);  // ffffffff*p
159 
160   ecp_nistz256_sqr_mont(res, p32);
161   for (i = 0; i < 31; i++) {
162     ecp_nistz256_sqr_mont(res, res);
163   }
164   ecp_nistz256_mul_mont(res, res, in);
165 
166   for (i = 0; i < 32 * 4; i++) {
167     ecp_nistz256_sqr_mont(res, res);
168   }
169   ecp_nistz256_mul_mont(res, res, p32);
170 
171   for (i = 0; i < 32; i++) {
172     ecp_nistz256_sqr_mont(res, res);
173   }
174   ecp_nistz256_mul_mont(res, res, p32);
175 
176   for (i = 0; i < 16; i++) {
177     ecp_nistz256_sqr_mont(res, res);
178   }
179   ecp_nistz256_mul_mont(res, res, p16);
180 
181   for (i = 0; i < 8; i++) {
182     ecp_nistz256_sqr_mont(res, res);
183   }
184   ecp_nistz256_mul_mont(res, res, p8);
185 
186   ecp_nistz256_sqr_mont(res, res);
187   ecp_nistz256_sqr_mont(res, res);
188   ecp_nistz256_sqr_mont(res, res);
189   ecp_nistz256_sqr_mont(res, res);
190   ecp_nistz256_mul_mont(res, res, p4);
191 
192   ecp_nistz256_sqr_mont(res, res);
193   ecp_nistz256_sqr_mont(res, res);
194   ecp_nistz256_mul_mont(res, res, p2);
195 
196   ecp_nistz256_sqr_mont(res, res);
197   ecp_nistz256_sqr_mont(res, res);
198   ecp_nistz256_mul_mont(r, res, in);
199 }
200 
201 // r = p * p_scalar
ecp_nistz256_windowed_mul(const EC_GROUP * group,P256_POINT * r,const EC_RAW_POINT * p,const EC_SCALAR * p_scalar)202 static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
203                                       const EC_RAW_POINT *p,
204                                       const EC_SCALAR *p_scalar) {
205   assert(p != NULL);
206   assert(p_scalar != NULL);
207   assert(group->field.width == P256_LIMBS);
208 
209   static const unsigned kWindowSize = 5;
210   static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
211 
212   // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
213   // add no more than 63 bytes of overhead. Thus, |table| should require
214   // ~1599 ((96 * 16) + 63) bytes of stack space.
215   alignas(64) P256_POINT table[16];
216   uint8_t p_str[33];
217   OPENSSL_memcpy(p_str, p_scalar->bytes, 32);
218   p_str[32] = 0;
219 
220   // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
221   // not stored. All other values are actually stored with an offset of -1 in
222   // table.
223   P256_POINT *row = table;
224   assert(group->field.width == P256_LIMBS);
225   OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG));
226   OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG));
227   OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG));
228 
229   ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
230   ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
231   ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
232   ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
233   ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
234   ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
235   ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
236   ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
237   ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
238   ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
239   ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
240   ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
241   ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
242   ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
243   ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
244 
245   BN_ULONG tmp[P256_LIMBS];
246   alignas(32) P256_POINT h;
247   unsigned index = 255;
248   unsigned wvalue = p_str[(index - 1) / 8];
249   wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
250 
251   ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
252 
253   while (index >= 5) {
254     if (index != 255) {
255       unsigned off = (index - 1) / 8;
256 
257       wvalue = p_str[off] | p_str[off + 1] << 8;
258       wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
259 
260       wvalue = booth_recode_w5(wvalue);
261 
262       ecp_nistz256_select_w5(&h, table, wvalue >> 1);
263 
264       ecp_nistz256_neg(tmp, h.Y);
265       copy_conditional(h.Y, tmp, (wvalue & 1));
266 
267       ecp_nistz256_point_add(r, r, &h);
268     }
269 
270     index -= kWindowSize;
271 
272     ecp_nistz256_point_double(r, r);
273     ecp_nistz256_point_double(r, r);
274     ecp_nistz256_point_double(r, r);
275     ecp_nistz256_point_double(r, r);
276     ecp_nistz256_point_double(r, r);
277   }
278 
279   // Final window
280   wvalue = p_str[0];
281   wvalue = (wvalue << 1) & kMask;
282 
283   wvalue = booth_recode_w5(wvalue);
284 
285   ecp_nistz256_select_w5(&h, table, wvalue >> 1);
286 
287   ecp_nistz256_neg(tmp, h.Y);
288   copy_conditional(h.Y, tmp, wvalue & 1);
289 
290   ecp_nistz256_point_add(r, r, &h);
291 }
292 
293 typedef union {
294   P256_POINT p;
295   P256_POINT_AFFINE a;
296 } p256_point_union_t;
297 
calc_first_wvalue(unsigned * index,const uint8_t p_str[33])298 static unsigned calc_first_wvalue(unsigned *index, const uint8_t p_str[33]) {
299   static const unsigned kWindowSize = 7;
300   static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
301   *index = kWindowSize;
302 
303   unsigned wvalue = (p_str[0] << 1) & kMask;
304   return booth_recode_w7(wvalue);
305 }
306 
calc_wvalue(unsigned * index,const uint8_t p_str[33])307 static unsigned calc_wvalue(unsigned *index, const uint8_t p_str[33]) {
308   static const unsigned kWindowSize = 7;
309   static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
310 
311   const unsigned off = (*index - 1) / 8;
312   unsigned wvalue = p_str[off] | p_str[off + 1] << 8;
313   wvalue = (wvalue >> ((*index - 1) % 8)) & kMask;
314   *index += kWindowSize;
315 
316   return booth_recode_w7(wvalue);
317 }
318 
mul_p_add_and_store(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * g_scalar,const EC_RAW_POINT * p_,const EC_SCALAR * p_scalar,p256_point_union_t * t,p256_point_union_t * p)319 static void mul_p_add_and_store(const EC_GROUP *group, EC_RAW_POINT *r,
320                                 const EC_SCALAR *g_scalar,
321                                 const EC_RAW_POINT *p_,
322                                 const EC_SCALAR *p_scalar,
323                                 p256_point_union_t *t, p256_point_union_t *p) {
324   const int p_is_infinity = g_scalar == NULL;
325   if (p_scalar != NULL) {
326     P256_POINT *out = &t->p;
327     if (p_is_infinity) {
328       out = &p->p;
329     }
330 
331     ecp_nistz256_windowed_mul(group, out, p_, p_scalar);
332     if (!p_is_infinity) {
333       ecp_nistz256_point_add(&p->p, &p->p, out);
334     }
335   }
336 
337   assert(group->field.width == P256_LIMBS);
338   OPENSSL_memcpy(r->X.words, p->p.X, P256_LIMBS * sizeof(BN_ULONG));
339   OPENSSL_memcpy(r->Y.words, p->p.Y, P256_LIMBS * sizeof(BN_ULONG));
340   OPENSSL_memcpy(r->Z.words, p->p.Z, P256_LIMBS * sizeof(BN_ULONG));
341 }
342 
ecp_nistz256_points_mul(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * g_scalar,const EC_RAW_POINT * p_,const EC_SCALAR * p_scalar)343 static void ecp_nistz256_points_mul(const EC_GROUP *group, EC_RAW_POINT *r,
344                                     const EC_SCALAR *g_scalar,
345                                     const EC_RAW_POINT *p_,
346                                     const EC_SCALAR *p_scalar) {
347   assert((p_ != NULL) == (p_scalar != NULL));
348 
349   alignas(32) p256_point_union_t t, p;
350 
351   if (g_scalar != NULL) {
352     uint8_t p_str[33];
353     OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
354     p_str[32] = 0;
355 
356     // First window
357     unsigned index = 0;
358     unsigned wvalue = calc_first_wvalue(&index, p_str);
359 
360     ecp_nistz256_select_w7(&p.a, ecp_nistz256_precomputed[0], wvalue >> 1);
361 
362     ecp_nistz256_neg(p.p.Z, p.p.Y);
363     copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
364 
365     // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
366     // is infinity and |ONE| otherwise. |p| was computed from the table, so it
367     // is infinity iff |wvalue >> 1| is zero.
368     OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
369     copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));
370 
371     for (int i = 1; i < 37; i++) {
372       wvalue = calc_wvalue(&index, p_str);
373 
374       ecp_nistz256_select_w7(&t.a, ecp_nistz256_precomputed[i], wvalue >> 1);
375 
376       ecp_nistz256_neg(t.p.Z, t.a.Y);
377       copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
378 
379       // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
380       // are the same non-infinity point, so it is important that we compute the
381       // |g_scalar| term before the |p_scalar| term.
382       ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
383     }
384   }
385 
386   mul_p_add_and_store(group, r, g_scalar, p_, p_scalar, &t, &p);
387 }
388 
ecp_nistz256_points_mul_public(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * g_scalar,const EC_RAW_POINT * p_,const EC_SCALAR * p_scalar)389 static void ecp_nistz256_points_mul_public(const EC_GROUP *group,
390                                            EC_RAW_POINT *r,
391                                            const EC_SCALAR *g_scalar,
392                                            const EC_RAW_POINT *p_,
393                                            const EC_SCALAR *p_scalar) {
394   assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL);
395 
396   alignas(32) p256_point_union_t t, p;
397   uint8_t p_str[33];
398   OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
399   p_str[32] = 0;
400 
401   // First window
402   unsigned index = 0;
403   unsigned wvalue = calc_first_wvalue(&index, p_str);
404 
405   // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
406   // is infinity and |ONE| otherwise. |p| was computed from the table, so it
407   // is infinity iff |wvalue >> 1| is zero.
408   if ((wvalue >> 1) != 0) {
409     OPENSSL_memcpy(&p.a, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1],
410                    sizeof(p.a));
411     OPENSSL_memcpy(&p.p.Z, ONE, sizeof(p.p.Z));
412   } else {
413     OPENSSL_memset(&p.a, 0, sizeof(p.a));
414     OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
415   }
416 
417   if ((wvalue & 1) == 1) {
418     ecp_nistz256_neg(p.p.Y, p.p.Y);
419   }
420 
421   for (int i = 1; i < 37; i++) {
422     wvalue = calc_wvalue(&index, p_str);
423 
424     if ((wvalue >> 1) == 0) {
425       continue;
426     }
427 
428     OPENSSL_memcpy(&t.a, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1],
429                    sizeof(p.a));
430 
431     if ((wvalue & 1) == 1) {
432       ecp_nistz256_neg(t.a.Y, t.a.Y);
433     }
434 
435     // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
436     // are the same non-infinity point, so it is important that we compute the
437     // |g_scalar| term before the |p_scalar| term.
438     ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
439   }
440 
441   mul_p_add_and_store(group, r, g_scalar, p_, p_scalar, &t, &p);
442 }
443 
ecp_nistz256_get_affine(const EC_GROUP * group,const EC_RAW_POINT * point,EC_FELEM * x,EC_FELEM * y)444 static int ecp_nistz256_get_affine(const EC_GROUP *group,
445                                    const EC_RAW_POINT *point, EC_FELEM *x,
446                                    EC_FELEM *y) {
447   if (ec_GFp_simple_is_at_infinity(group, point)) {
448     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
449     return 0;
450   }
451 
452   BN_ULONG z_inv2[P256_LIMBS];
453   BN_ULONG z_inv3[P256_LIMBS];
454   assert(group->field.width == P256_LIMBS);
455   ecp_nistz256_mod_inverse_mont(z_inv3, point->Z.words);
456   ecp_nistz256_sqr_mont(z_inv2, z_inv3);
457 
458   // Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate
459   // and then calling |ecp_nistz256_from_mont| again to convert the |y|
460   // coordinate below, convert the common factor |z_inv2| once now, saving one
461   // reduction.
462   ecp_nistz256_from_mont(z_inv2, z_inv2);
463 
464   if (x != NULL) {
465     ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words);
466   }
467 
468   if (y != NULL) {
469     ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
470     ecp_nistz256_mul_mont(y->words, z_inv3, point->Y.words);
471   }
472 
473   return 1;
474 }
475 
ecp_nistz256_add(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a_,const EC_RAW_POINT * b_)476 static void ecp_nistz256_add(const EC_GROUP *group, EC_RAW_POINT *r,
477                              const EC_RAW_POINT *a_, const EC_RAW_POINT *b_) {
478   P256_POINT a, b;
479   OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
480   OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
481   OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
482   OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG));
483   OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
484   OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
485   ecp_nistz256_point_add(&a, &a, &b);
486   OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
487   OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
488   OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
489 }
490 
ecp_nistz256_dbl(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a_)491 static void ecp_nistz256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
492                              const EC_RAW_POINT *a_) {
493   P256_POINT a;
494   OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
495   OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
496   OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
497   ecp_nistz256_point_double(&a, &a);
498   OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
499   OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
500   OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
501 }
502 
ecp_nistz256_inv_mod_ord(const EC_GROUP * group,EC_SCALAR * out,const EC_SCALAR * in)503 static void ecp_nistz256_inv_mod_ord(const EC_GROUP *group, EC_SCALAR *out,
504                                      const EC_SCALAR *in) {
505   // table[i] stores a power of |in| corresponding to the matching enum value.
506   enum {
507     // The following indices specify the power in binary.
508     i_1 = 0,
509     i_10,
510     i_11,
511     i_101,
512     i_111,
513     i_1010,
514     i_1111,
515     i_10101,
516     i_101010,
517     i_101111,
518     // The following indices specify 2^N-1, or N ones in a row.
519     i_x6,
520     i_x8,
521     i_x16,
522     i_x32
523   };
524   BN_ULONG table[15][P256_LIMBS];
525 
526   // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
527   //
528   // Even though this code path spares 12 squarings, 4.5%, and 13
529   // multiplications, 25%, the overall sign operation is not that much faster,
530   // not more that 2%. Most of the performance of this function comes from the
531   // scalar operations.
532 
533   // Pre-calculate powers.
534   OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG));
535 
536   ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
537 
538   ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
539 
540   ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
541 
542   ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
543 
544   ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
545 
546   ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
547 
548   ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
549   ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
550 
551   ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
552 
553   ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
554 
555   ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
556 
557   ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
558   ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
559 
560   ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
561   ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
562 
563   ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
564   ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
565 
566   // Compute |in| raised to the order-2.
567   ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64);
568   ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]);
569   static const struct {
570     uint8_t p, i;
571   } kChain[27] = {{32, i_x32},    {6, i_101111}, {5, i_111},    {4, i_11},
572                   {5, i_1111},    {5, i_10101},  {4, i_101},    {3, i_101},
573                   {3, i_101},     {5, i_111},    {9, i_101111}, {6, i_1111},
574                   {2, i_1},       {5, i_1},      {6, i_1111},   {5, i_111},
575                   {4, i_111},     {5, i_111},    {5, i_101},    {3, i_11},
576                   {10, i_101111}, {2, i_11},     {5, i_11},     {5, i_11},
577                   {3, i_1},       {7, i_10101},  {6, i_1111}};
578   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) {
579     ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p);
580     ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]);
581   }
582 }
583 
ecp_nistz256_mont_inv_mod_ord_vartime(const EC_GROUP * group,EC_SCALAR * out,const EC_SCALAR * in)584 static int ecp_nistz256_mont_inv_mod_ord_vartime(const EC_GROUP *group,
585                                                  EC_SCALAR *out,
586                                                  const EC_SCALAR *in) {
587   if ((OPENSSL_ia32cap_get()[1] & (1 << 28)) == 0) {
588     // No AVX support; fallback to generic code.
589     return ec_GFp_simple_mont_inv_mod_ord_vartime(group, out, in);
590   }
591 
592   assert(group->order.width == P256_LIMBS);
593   if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.d)) {
594     return 0;
595   }
596 
597   // The result should be returned in the Montgomery domain.
598   ec_scalar_to_montgomery(group, out, out);
599   return 1;
600 }
601 
ecp_nistz256_cmp_x_coordinate(const EC_GROUP * group,const EC_RAW_POINT * p,const EC_SCALAR * r)602 static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group,
603                                          const EC_RAW_POINT *p,
604                                          const EC_SCALAR *r) {
605   if (ec_GFp_simple_is_at_infinity(group, p)) {
606     return 0;
607   }
608 
609   assert(group->order.width == P256_LIMBS);
610   assert(group->field.width == P256_LIMBS);
611 
612   // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
613   // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
614   // not.
615   BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS];
616   ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words);
617   ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont);
618   ecp_nistz256_from_mont(X, p->X.words);
619 
620   if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
621     return 1;
622   }
623 
624   // During signing the x coefficient is reduced modulo the group order.
625   // Therefore there is a small possibility, less than 1/2^128, that group_order
626   // < p.x < P. in that case we need not only to compare against |r| but also to
627   // compare against r+group_order.
628   if (bn_less_than_words(r->words, group->field_minus_order.words,
629                          P256_LIMBS)) {
630     // We can ignore the carry because: r + group_order < p < 2^256.
631     bn_add_words(r_Z2, r->words, group->order.d, P256_LIMBS);
632     ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont);
633     if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
634       return 1;
635     }
636   }
637 
638   return 0;
639 }
640 
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistz256_method)641 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
642   out->group_init = ec_GFp_mont_group_init;
643   out->group_finish = ec_GFp_mont_group_finish;
644   out->group_set_curve = ec_GFp_mont_group_set_curve;
645   out->point_get_affine_coordinates = ecp_nistz256_get_affine;
646   out->add = ecp_nistz256_add;
647   out->dbl = ecp_nistz256_dbl;
648   out->mul = ecp_nistz256_points_mul;
649   out->mul_public = ecp_nistz256_points_mul_public;
650   out->felem_mul = ec_GFp_mont_felem_mul;
651   out->felem_sqr = ec_GFp_mont_felem_sqr;
652   out->bignum_to_felem = ec_GFp_mont_bignum_to_felem;
653   out->felem_to_bignum = ec_GFp_mont_felem_to_bignum;
654   out->scalar_inv_montgomery = ecp_nistz256_inv_mod_ord;
655   out->scalar_inv_montgomery_vartime = ecp_nistz256_mont_inv_mod_ord_vartime;
656   out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate;
657 }
658 
659 #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
660           !defined(OPENSSL_SMALL) */
661