• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Originally written by Bodo Moeller for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #include <openssl/ec.h>
69 
70 #include <assert.h>
71 #include <string.h>
72 
73 #include <openssl/bn.h>
74 #include <openssl/err.h>
75 #include <openssl/thread.h>
76 
77 #include "internal.h"
78 #include "../bn/internal.h"
79 #include "../../internal.h"
80 
81 
82 // This file implements the wNAF-based interleaving multi-exponentiation method
83 // at:
84 //   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
85 //   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
86 
ec_compute_wNAF(const EC_GROUP * group,int8_t * out,const EC_SCALAR * scalar,size_t bits,int w)87 void ec_compute_wNAF(const EC_GROUP *group, int8_t *out,
88                      const EC_SCALAR *scalar, size_t bits, int w) {
89   // 'int8_t' can represent integers with absolute values less than 2^7.
90   assert(0 < w && w <= 7);
91   assert(bits != 0);
92   int bit = 1 << w;         // 2^w, at most 128
93   int next_bit = bit << 1;  // 2^(w+1), at most 256
94   int mask = next_bit - 1;  // at most 255
95 
96   int window_val = scalar->words[0] & mask;
97   for (size_t j = 0; j < bits + 1; j++) {
98     assert(0 <= window_val && window_val <= next_bit);
99     int digit = 0;
100     if (window_val & 1) {
101       assert(0 < window_val && window_val < next_bit);
102       if (window_val & bit) {
103         digit = window_val - next_bit;
104         // We know -next_bit < digit < 0 and window_val - digit = next_bit.
105 
106         // modified wNAF
107         if (j + w + 1 >= bits) {
108           // special case for generating modified wNAFs:
109           // no new bits will be added into window_val,
110           // so using a positive digit here will decrease
111           // the total length of the representation
112 
113           digit = window_val & (mask >> 1);
114           // We know 0 < digit < bit and window_val - digit = bit.
115         }
116       } else {
117         digit = window_val;
118         // We know 0 < digit < bit and window_val - digit = 0.
119       }
120 
121       window_val -= digit;
122 
123       // Now window_val is 0 or 2^(w+1) in standard wNAF generation.
124       // For modified window NAFs, it may also be 2^w.
125       //
126       // See the comments above for the derivation of each of these bounds.
127       assert(window_val == 0 || window_val == next_bit || window_val == bit);
128       assert(-bit < digit && digit < bit);
129 
130       // window_val was odd, so digit is also odd.
131       assert(digit & 1);
132     }
133 
134     out[j] = digit;
135 
136     // Incorporate the next bit. Previously, |window_val| <= |next_bit|, so if
137     // we shift and add at most one copy of |bit|, this will continue to hold
138     // afterwards.
139     window_val >>= 1;
140     window_val +=
141         bit * bn_is_bit_set_words(scalar->words, group->order.width, j + w + 1);
142     assert(window_val <= next_bit);
143   }
144 
145   // bits + 1 entries should be sufficient to consume all bits.
146   assert(window_val == 0);
147 }
148 
149 // compute_precomp sets |out[i]| to (2*i+1)*p, for i from 0 to |len|.
compute_precomp(const EC_GROUP * group,EC_RAW_POINT * out,const EC_RAW_POINT * p,size_t len)150 static void compute_precomp(const EC_GROUP *group, EC_RAW_POINT *out,
151                             const EC_RAW_POINT *p, size_t len) {
152   ec_GFp_simple_point_copy(&out[0], p);
153   EC_RAW_POINT two_p;
154   ec_GFp_mont_dbl(group, &two_p, p);
155   for (size_t i = 1; i < len; i++) {
156     ec_GFp_mont_add(group, &out[i], &out[i - 1], &two_p);
157   }
158 }
159 
lookup_precomp(const EC_GROUP * group,EC_RAW_POINT * out,const EC_RAW_POINT * precomp,int digit)160 static void lookup_precomp(const EC_GROUP *group, EC_RAW_POINT *out,
161                            const EC_RAW_POINT *precomp, int digit) {
162   if (digit < 0) {
163     digit = -digit;
164     ec_GFp_simple_point_copy(out, &precomp[digit >> 1]);
165     ec_GFp_simple_invert(group, out);
166   } else {
167     ec_GFp_simple_point_copy(out, &precomp[digit >> 1]);
168   }
169 }
170 
171 // EC_WNAF_WINDOW_BITS is the window size to use for |ec_GFp_mont_mul_public|.
172 #define EC_WNAF_WINDOW_BITS 4
173 
174 // EC_WNAF_TABLE_SIZE is the table size to use for |ec_GFp_mont_mul_public|.
175 #define EC_WNAF_TABLE_SIZE (1 << (EC_WNAF_WINDOW_BITS - 1))
176 
ec_GFp_mont_mul_public(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * g_scalar,const EC_RAW_POINT * p,const EC_SCALAR * p_scalar)177 void ec_GFp_mont_mul_public(const EC_GROUP *group, EC_RAW_POINT *r,
178                             const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
179                             const EC_SCALAR *p_scalar) {
180   size_t bits = BN_num_bits(&group->order);
181   size_t wNAF_len = bits + 1;
182 
183   int8_t g_wNAF[EC_MAX_BYTES * 8 + 1];
184   EC_RAW_POINT g_precomp[EC_WNAF_TABLE_SIZE];
185   assert(wNAF_len <= OPENSSL_ARRAY_SIZE(g_wNAF));
186   const EC_RAW_POINT *g = &group->generator->raw;
187   ec_compute_wNAF(group, g_wNAF, g_scalar, bits, EC_WNAF_WINDOW_BITS);
188   compute_precomp(group, g_precomp, g, EC_WNAF_TABLE_SIZE);
189 
190   int8_t p_wNAF[EC_MAX_BYTES * 8 + 1];
191   EC_RAW_POINT p_precomp[EC_WNAF_TABLE_SIZE];
192   assert(wNAF_len <= OPENSSL_ARRAY_SIZE(p_wNAF));
193   ec_compute_wNAF(group, p_wNAF, p_scalar, bits, EC_WNAF_WINDOW_BITS);
194   compute_precomp(group, p_precomp, p, EC_WNAF_TABLE_SIZE);
195 
196   EC_RAW_POINT tmp;
197   int r_is_at_infinity = 1;
198   for (size_t k = wNAF_len - 1; k < wNAF_len; k--) {
199     if (!r_is_at_infinity) {
200       ec_GFp_mont_dbl(group, r, r);
201     }
202 
203     if (g_wNAF[k] != 0) {
204       lookup_precomp(group, &tmp, g_precomp, g_wNAF[k]);
205       if (r_is_at_infinity) {
206         ec_GFp_simple_point_copy(r, &tmp);
207         r_is_at_infinity = 0;
208       } else {
209         ec_GFp_mont_add(group, r, r, &tmp);
210       }
211     }
212 
213     if (p_wNAF[k] != 0) {
214       lookup_precomp(group, &tmp, p_precomp, p_wNAF[k]);
215       if (r_is_at_infinity) {
216         ec_GFp_simple_point_copy(r, &tmp);
217         r_is_at_infinity = 0;
218       } else {
219         ec_GFp_mont_add(group, r, r, &tmp);
220       }
221     }
222   }
223 
224   if (r_is_at_infinity) {
225     ec_GFp_simple_point_set_to_infinity(group, r);
226   }
227 }
228