1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL ES 2.0 Module
3 * -------------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Shader compilation performance tests.
22 *//*--------------------------------------------------------------------*/
23
24 #include "es2pShaderCompilationCases.hpp"
25 #include "tcuTestLog.hpp"
26 #include "tcuVector.hpp"
27 #include "tcuMatrix.hpp"
28 #include "tcuTextureUtil.hpp"
29 #include "tcuPlatform.hpp"
30 #include "tcuCommandLine.hpp"
31 #include "tcuRenderTarget.hpp"
32 #include "tcuCPUWarmup.hpp"
33 #include "tcuStringTemplate.hpp"
34 #include "gluTexture.hpp"
35 #include "gluPixelTransfer.hpp"
36 #include "gluRenderContext.hpp"
37 #include "deStringUtil.hpp"
38 #include "deRandom.hpp"
39 #include "deClock.h"
40 #include "deMath.h"
41
42 #include "glwEnums.hpp"
43 #include "glwFunctions.hpp"
44
45 #include <map>
46 #include <algorithm>
47 #include <limits>
48 #include <iomanip>
49
50 using tcu::TestLog;
51 using tcu::Vec3;
52 using tcu::Vec4;
53 using tcu::Mat3;
54 using tcu::Mat4;
55 using std::string;
56 using std::vector;
57 using namespace glw; // GL types
58
59 namespace deqp
60 {
61
62 namespace gles2
63 {
64
65 namespace Performance
66 {
67
68 static const bool WARMUP_CPU_AT_BEGINNING_OF_CASE = false;
69 static const bool WARMUP_CPU_BEFORE_EACH_MEASUREMENT = true;
70
71 static const int MAX_VIEWPORT_WIDTH = 64;
72 static const int MAX_VIEWPORT_HEIGHT = 64;
73
74 static const int DEFAULT_MINIMUM_MEASUREMENT_COUNT = 15;
75 static const float RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD = 0.05f;
76
77 // Texture size for the light shader and texture lookup shader cases.
78 static const int TEXTURE_WIDTH = 64;
79 static const int TEXTURE_HEIGHT = 64;
80
81 template <typename T>
toStringWithPadding(T value,int minLength)82 inline string toStringWithPadding (T value, int minLength)
83 {
84 std::ostringstream s;
85 s << std::setfill('0') << std::setw(minLength) << value;
86 return s.str();
87 }
88
89 // Add some whitespace and comments to str. They should depend on uniqueNumber.
strWithWhiteSpaceAndComments(const string & str,deUint32 uniqueNumber)90 static string strWithWhiteSpaceAndComments (const string& str, deUint32 uniqueNumber)
91 {
92 string res("");
93
94 // Find the first newline.
95 int firstLineEndNdx = 0;
96 while (firstLineEndNdx < (int)str.size() && str[firstLineEndNdx] != '\n')
97 {
98 res += str[firstLineEndNdx];
99 firstLineEndNdx++;
100 }
101 res += '\n';
102 DE_ASSERT(firstLineEndNdx < (int)str.size());
103
104 // Add the whitespaces and comments just after the first line.
105
106 de::Random rnd (uniqueNumber);
107 int numWS = rnd.getInt(10, 20);
108
109 for (int i = 0; i < numWS; i++)
110 res += " \t\n"[rnd.getInt(0, 2)];
111
112 res += "/* unique comment " + de::toString(uniqueNumber) + " */\n";
113 res += "// unique comment " + de::toString(uniqueNumber) + "\n";
114
115 for (int i = 0; i < numWS; i++)
116 res += " \t\n"[rnd.getInt(0, 2)];
117
118 // Add the rest of the string.
119 res.append(&str.c_str()[firstLineEndNdx + 1]);
120
121 return res;
122 }
123
124 //! Helper for computing relative magnitudes while avoiding division by zero.
hackySafeRelativeResult(float x,float y)125 static float hackySafeRelativeResult (float x, float y)
126 {
127 // \note A possible case is that x is standard deviation, and y is average
128 // (or similarly for median or some such). So, if y is 0, that
129 // probably means that x is also 0(ish) (because in practice we're
130 // dealing with non-negative values, in which case an average of 0
131 // implies that the samples are all 0 - note that the same isn't
132 // strictly true for things like median) so a relative result of 0
133 // wouldn't be that far from the truth.
134 return y == 0.0f ? 0.0f : x/y;
135 }
136
137 template <typename T>
vectorFloatAverage(const vector<T> & v)138 static float vectorFloatAverage (const vector<T>& v)
139 {
140 DE_ASSERT(!v.empty());
141 float result = 0.0f;
142 for (int i = 0; i < (int)v.size(); i++)
143 result += (float)v[i];
144 return result / (float)v.size();
145 }
146
147 template <typename T>
vectorFloatMedian(const vector<T> & v)148 static float vectorFloatMedian (const vector<T>& v)
149 {
150 DE_ASSERT(!v.empty());
151 vector<T> temp = v;
152 std::sort(temp.begin(), temp.end());
153 return temp.size() % 2 == 0
154 ? 0.5f * ((float)temp[temp.size()/2-1] + (float)temp[temp.size()/2])
155 : (float)temp[temp.size()/2];
156 }
157
158 template <typename T>
vectorFloatMinimum(const vector<T> & v)159 static float vectorFloatMinimum (const vector<T>& v)
160 {
161 DE_ASSERT(!v.empty());
162 return (float)*std::min_element(v.begin(), v.end());
163 }
164
165 template <typename T>
vectorFloatMaximum(const vector<T> & v)166 static float vectorFloatMaximum (const vector<T>& v)
167 {
168 DE_ASSERT(!v.empty());
169 return (float)*std::max_element(v.begin(), v.end());
170 }
171
172 template <typename T>
vectorFloatStandardDeviation(const vector<T> & v)173 static float vectorFloatStandardDeviation (const vector<T>& v)
174 {
175 float average = vectorFloatAverage(v);
176 float result = 0.0f;
177 for (int i = 0; i < (int)v.size(); i++)
178 {
179 float d = (float)v[i] - average;
180 result += d*d;
181 }
182 return deFloatSqrt(result/(float)v.size());
183 }
184
185 template <typename T>
vectorFloatRelativeStandardDeviation(const vector<T> & v)186 static float vectorFloatRelativeStandardDeviation (const vector<T>& v)
187 {
188 return hackySafeRelativeResult(vectorFloatStandardDeviation(v), vectorFloatAverage(v));
189 }
190
191 template <typename T>
vectorFloatMedianAbsoluteDeviation(const vector<T> & v)192 static float vectorFloatMedianAbsoluteDeviation (const vector<T>& v)
193 {
194 float median = vectorFloatMedian(v);
195 vector<float> absoluteDeviations (v.size());
196
197 for (int i = 0; i < (int)v.size(); i++)
198 absoluteDeviations[i] = deFloatAbs((float)v[i] - median);
199
200 return vectorFloatMedian(absoluteDeviations);
201 }
202
203 template <typename T>
vectorFloatRelativeMedianAbsoluteDeviation(const vector<T> & v)204 static float vectorFloatRelativeMedianAbsoluteDeviation (const vector<T>& v)
205 {
206 return hackySafeRelativeResult(vectorFloatMedianAbsoluteDeviation(v), vectorFloatMedian(v));
207 }
208
209 template <typename T>
vectorFloatMaximumMinusMinimum(const vector<T> & v)210 static float vectorFloatMaximumMinusMinimum (const vector<T>& v)
211 {
212 return vectorFloatMaximum(v) - vectorFloatMinimum(v);
213 }
214
215 template <typename T>
vectorFloatRelativeMaximumMinusMinimum(const vector<T> & v)216 static float vectorFloatRelativeMaximumMinusMinimum (const vector<T>& v)
217 {
218 return hackySafeRelativeResult(vectorFloatMaximumMinusMinimum(v), vectorFloatMaximum(v));
219 }
220
221 template <typename T>
vectorLowestPercentage(const vector<T> & v,float factor)222 static vector<T> vectorLowestPercentage (const vector<T>& v, float factor)
223 {
224 DE_ASSERT(0.0f < factor && factor <= 1.0f);
225
226 int targetSize = (int)(deFloatCeil(factor*(float)v.size()));
227 vector<T> temp = v;
228 std::sort(temp.begin(), temp.end());
229
230 while ((int)temp.size() > targetSize)
231 temp.pop_back();
232
233 return temp;
234 }
235
236 template <typename T>
vectorFloatFirstQuartile(const vector<T> & v)237 static float vectorFloatFirstQuartile (const vector<T>& v)
238 {
239 return vectorFloatMedian(vectorLowestPercentage(v, 0.5f));
240 }
241
242 // Helper function for combining 4 tcu::Vec4's into one tcu::Vector<float, 16>.
combineVec4ToVec16(const Vec4 & a0,const Vec4 & a1,const Vec4 & a2,const Vec4 & a3)243 static tcu::Vector<float, 16> combineVec4ToVec16 (const Vec4& a0, const Vec4& a1, const Vec4& a2, const Vec4& a3)
244 {
245 tcu::Vector<float, 16> result;
246
247 for (int vecNdx = 0; vecNdx < 4; vecNdx++)
248 {
249 const Vec4& srcVec = vecNdx == 0 ? a0 : vecNdx == 1 ? a1 : vecNdx == 2 ? a2 : a3;
250 for (int i = 0; i < 4; i++)
251 result[vecNdx*4 + i] = srcVec[i];
252 }
253
254 return result;
255 }
256
257 // Helper function for extending an n-sized (n <= 16) vector to a 16-sized vector (padded with zeros).
258 template <int Size>
vecTo16(const tcu::Vector<float,Size> & vec)259 static tcu::Vector<float, 16> vecTo16 (const tcu::Vector<float, Size>& vec)
260 {
261 DE_STATIC_ASSERT(Size <= 16);
262
263 tcu::Vector<float, 16> res(0.0f);
264
265 for (int i = 0; i < Size; i++)
266 res[i] = vec[i];
267
268 return res;
269 }
270
271 // Helper function for extending an n-sized (n <= 16) array to a 16-sized vector (padded with zeros).
272 template <int Size>
arrTo16(const tcu::Array<float,Size> & arr)273 static tcu::Vector<float, 16> arrTo16 (const tcu::Array<float, Size>& arr)
274 {
275 DE_STATIC_ASSERT(Size <= 16);
276
277 tcu::Vector<float, 16> res(0.0f);
278
279 for(int i = 0; i < Size; i++)
280 res[i] = arr[i];
281
282 return res;
283 }
284
getShaderInfoLog(const glw::Functions & gl,deUint32 shader)285 static string getShaderInfoLog (const glw::Functions& gl, deUint32 shader)
286 {
287 string result;
288 int infoLogLen = 0;
289 vector<char> infoLogBuf;
290
291 gl.getShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLogLen);
292 infoLogBuf.resize(infoLogLen + 1);
293 gl.getShaderInfoLog(shader, infoLogLen + 1, DE_NULL, &infoLogBuf[0]);
294 result = &infoLogBuf[0];
295
296 return result;
297 }
298
getProgramInfoLog(const glw::Functions & gl,deUint32 program)299 static string getProgramInfoLog (const glw::Functions& gl, deUint32 program)
300 {
301 string result;
302 int infoLogLen = 0;
303 vector<char> infoLogBuf;
304
305 gl.getProgramiv(program, GL_INFO_LOG_LENGTH, &infoLogLen);
306 infoLogBuf.resize(infoLogLen + 1);
307 gl.getProgramInfoLog(program, infoLogLen + 1, DE_NULL, &infoLogBuf[0]);
308 result = &infoLogBuf[0];
309
310 return result;
311 }
312
313 enum LightType
314 {
315 LIGHT_DIRECTIONAL = 0,
316 LIGHT_POINT,
317
318 LIGHT_LAST,
319 };
320
321 enum LoopType
322 {
323 LOOP_TYPE_STATIC = 0,
324 LOOP_TYPE_UNIFORM,
325 LOOP_TYPE_DYNAMIC,
326
327 LOOP_LAST
328 };
329
330 // For texture lookup cases: which texture lookups are inside a conditional statement.
331 enum ConditionalUsage
332 {
333 CONDITIONAL_USAGE_NONE = 0, // No conditional statements.
334 CONDITIONAL_USAGE_FIRST_HALF, // First numLookUps/2 lookups are inside a conditional statement.
335 CONDITIONAL_USAGE_EVERY_OTHER, // First, third etc. lookups are inside conditional statements.
336
337 CONDITIONAL_USAGE_LAST
338 };
339
340 enum ConditionalType
341 {
342 CONDITIONAL_TYPE_STATIC = 0,
343 CONDITIONAL_TYPE_UNIFORM,
344 CONDITIONAL_TYPE_DYNAMIC,
345
346 CONDITIONAL_TYPE_LAST
347 };
348
349 // For the invalid shader compilation tests; what kind of invalidity a shader shall contain.
350 enum ShaderValidity
351 {
352 SHADER_VALIDITY_VALID = 0,
353 SHADER_VALIDITY_INVALID_CHAR,
354 SHADER_VALIDITY_SEMANTIC_ERROR,
355
356 SHADER_VALIDITY_LAST
357 };
358
359 class ShaderCompilerCase : public TestCase
360 {
361 public:
362 struct AttribSpec
363 {
364 string name;
365 tcu::Vector<float, 16> value;
366
AttribSpecdeqp::gles2::Performance::ShaderCompilerCase::AttribSpec367 AttribSpec (const string& n, const tcu::Vector<float, 16>& v) : name(n), value(v) {}
368 };
369
370 struct UniformSpec
371 {
372 enum Type
373 {
374 TYPE_FLOAT = 0,
375 TYPE_VEC2,
376 TYPE_VEC3,
377 TYPE_VEC4,
378
379 TYPE_MAT3,
380 TYPE_MAT4,
381
382 TYPE_TEXTURE_UNIT,
383
384 TYPE_LAST
385 };
386
387 string name;
388 Type type;
389 tcu::Vector<float, 16> value;
390
UniformSpecdeqp::gles2::Performance::ShaderCompilerCase::UniformSpec391 UniformSpec (const string& n, Type t, float v) : name(n), type(t), value(v) {}
UniformSpecdeqp::gles2::Performance::ShaderCompilerCase::UniformSpec392 UniformSpec (const string& n, Type t, const tcu::Vector<float, 16>& v) : name(n), type(t), value(v) {}
393 };
394
395 ShaderCompilerCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments);
396 ~ShaderCompilerCase (void);
397
398 void init (void);
399
400 IterateResult iterate (void);
401
402 protected:
403 struct ProgramContext
404 {
405 string vertShaderSource;
406 string fragShaderSource;
407 vector<AttribSpec> vertexAttributes;
408 vector<UniformSpec> uniforms;
409 };
410
411 deUint32 getSpecializationID (int measurementNdx) const; // Return an ID that depends on the case ID, current measurement index and time; used to specialize attribute names etc. (avoid shader caching).
412 virtual ProgramContext generateShaderData (int measurementNdx) const = 0; // Generate shader sources and inputs. Attribute etc. names depend on above name specialization.
413
414 private:
415 struct Measurement
416 {
417 // \note All times in microseconds. 32-bit integers would probably suffice (would need over an hour of test case runtime to overflow), but better safe than sorry.
418 deInt64 sourceSetTime;
419 deInt64 vertexCompileTime;
420 deInt64 fragmentCompileTime;
421 deInt64 programLinkTime;
422 deInt64 firstInputSetTime;
423 deInt64 firstDrawTime;
424
425 deInt64 secondInputSetTime;
426 deInt64 secondDrawTime;
427
firstPhasedeqp::gles2::Performance::ShaderCompilerCase::Measurement428 deInt64 firstPhase (void) const { return sourceSetTime + vertexCompileTime + fragmentCompileTime + programLinkTime + firstInputSetTime + firstDrawTime; }
secondPhasedeqp::gles2::Performance::ShaderCompilerCase::Measurement429 deInt64 secondPhase (void) const { return secondInputSetTime + secondDrawTime; }
430
totalTimeWithoutDrawdeqp::gles2::Performance::ShaderCompilerCase::Measurement431 deInt64 totalTimeWithoutDraw (void) const { return firstPhase() - de::min(secondPhase(), firstInputSetTime + firstDrawTime); }
432
Measurementdeqp::gles2::Performance::ShaderCompilerCase::Measurement433 Measurement (deInt64 sourceSetTime_,
434 deInt64 vertexCompileTime_,
435 deInt64 fragmentCompileTime_,
436 deInt64 programLinkTime_,
437 deInt64 firstInputSetTime_,
438 deInt64 firstDrawTime_,
439 deInt64 secondInputSetTime_,
440 deInt64 secondDrawTime_)
441 : sourceSetTime (sourceSetTime_)
442 , vertexCompileTime (vertexCompileTime_)
443 , fragmentCompileTime (fragmentCompileTime_)
444 , programLinkTime (programLinkTime_)
445 , firstInputSetTime (firstInputSetTime_)
446 , firstDrawTime (firstDrawTime_)
447 , secondInputSetTime (secondInputSetTime_)
448 , secondDrawTime (secondDrawTime_)
449 {
450 }
451 };
452
453 struct ShadersAndProgram
454 {
455 deUint32 vertShader;
456 deUint32 fragShader;
457 deUint32 program;
458 };
459
460 struct Logs
461 {
462 string vert;
463 string frag;
464 string link;
465 };
466
467 struct BuildInfo
468 {
469 bool vertCompileSuccess;
470 bool fragCompileSuccess;
471 bool linkSuccess;
472
473 Logs logs;
474 };
475
476 ShadersAndProgram createShadersAndProgram (void) const;
477 void setShaderSources (deUint32 vertShader, deUint32 fragShader, const ProgramContext&) const;
478 bool compileShader (deUint32 shader) const;
479 bool linkAndUseProgram (deUint32 program) const;
480 void setShaderInputs (deUint32 program, const ProgramContext&) const; // Set attribute pointers and uniforms.
481 void draw (void) const; // Clear, draw and finish.
482 void cleanup (const ShadersAndProgram&, const ProgramContext&, bool linkSuccess) const; // Do GL deinitializations.
483
484 Logs getLogs (const ShadersAndProgram&) const;
485 void logProgramData (const BuildInfo&, const ProgramContext&) const;
486 bool goodEnoughMeasurements (const vector<Measurement>& measurements) const;
487
488 int m_viewportWidth;
489 int m_viewportHeight;
490
491 bool m_avoidCache; // If true, avoid caching between measurements as well (and not only between test cases).
492 bool m_addWhitespaceAndComments; // If true, add random whitespace and comments to the source (good caching should ignore those).
493 deUint32 m_startHash; // A hash from case id and time, at the time of construction.
494
495 int m_minimumMeasurementCount;
496 int m_maximumMeasurementCount;
497 };
498
499 class ShaderCompilerLightCase : public ShaderCompilerCase
500 {
501 public:
502 ShaderCompilerLightCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, int numLights, LightType lightType);
503 ~ShaderCompilerLightCase (void);
504
505 void init (void);
506 void deinit (void);
507
508 protected:
509 ProgramContext generateShaderData (int measurementNdx) const;
510
511 private:
512 int m_numLights;
513 bool m_isVertexCase;
514 LightType m_lightType;
515 glu::Texture2D* m_texture;
516 };
517
518 class ShaderCompilerTextureCase : public ShaderCompilerCase
519 {
520 public:
521 ShaderCompilerTextureCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType);
522 ~ShaderCompilerTextureCase (void);
523
524 void init (void);
525 void deinit (void);
526
527 protected:
528 ProgramContext generateShaderData (int measurementNdx) const;
529
530 private:
531 int m_numLookups;
532 vector<glu::Texture2D*> m_textures;
533 ConditionalUsage m_conditionalUsage;
534 ConditionalType m_conditionalType;
535 };
536
537 class ShaderCompilerLoopCase : public ShaderCompilerCase
538 {
539 public:
540 ShaderCompilerLoopCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, LoopType type, int numLoopIterations, int nestingDepth);
541 ~ShaderCompilerLoopCase (void);
542
543 protected:
544 ProgramContext generateShaderData (int measurementNdx) const;
545
546 private:
547 int m_numLoopIterations;
548 int m_nestingDepth;
549 bool m_isVertexCase;
550 LoopType m_type;
551 };
552
553 class ShaderCompilerOperCase : public ShaderCompilerCase
554 {
555 public:
556 ShaderCompilerOperCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, const char* oper, int numOperations);
557 ~ShaderCompilerOperCase (void);
558
559 protected:
560 ProgramContext generateShaderData (int measurementNdx) const;
561
562 private:
563 string m_oper;
564 int m_numOperations;
565 bool m_isVertexCase;
566 };
567
568 class ShaderCompilerMandelbrotCase : public ShaderCompilerCase
569 {
570 public:
571 ShaderCompilerMandelbrotCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, int numFractalIterations);
572 ~ShaderCompilerMandelbrotCase (void);
573
574 protected:
575 ProgramContext generateShaderData (int measurementNdx) const;
576
577 private:
578 int m_numFractalIterations;
579 };
580
581 class InvalidShaderCompilerCase : public TestCase
582 {
583 public:
584 // \note Similar to the ShaderValidity enum, but doesn't have a VALID type.
585 enum InvalidityType
586 {
587 INVALIDITY_INVALID_CHAR = 0,
588 INVALIDITY_SEMANTIC_ERROR,
589
590 INVALIDITY_LAST
591 };
592
593 InvalidShaderCompilerCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType);
594 ~InvalidShaderCompilerCase (void);
595
596 IterateResult iterate (void);
597
598 protected:
599 struct ProgramContext
600 {
601 string vertShaderSource;
602 string fragShaderSource;
603 };
604
605 deUint32 getSpecializationID (int measurementNdx) const; // Return an ID that depends on the case ID, current measurement index and time; used to specialize attribute names etc. (avoid shader caching).
606 virtual ProgramContext generateShaderSources (int measurementNdx) const = 0; // Generate shader sources. Attribute etc. names depend on above name specialization.
607
608 InvalidityType m_invalidityType;
609
610 private:
611 struct Measurement
612 {
613 // \note All times in microseconds. 32-bit integers would probably suffice (would need over an hour of test case runtime to overflow), but better safe than sorry.
614 deInt64 sourceSetTime;
615 deInt64 vertexCompileTime;
616 deInt64 fragmentCompileTime;
617
totalTimedeqp::gles2::Performance::InvalidShaderCompilerCase::Measurement618 deInt64 totalTime (void) const { return sourceSetTime + vertexCompileTime + fragmentCompileTime; }
619
Measurementdeqp::gles2::Performance::InvalidShaderCompilerCase::Measurement620 Measurement (deInt64 sourceSetTime_,
621 deInt64 vertexCompileTime_,
622 deInt64 fragmentCompileTime_)
623 : sourceSetTime (sourceSetTime_)
624 , vertexCompileTime (vertexCompileTime_)
625 , fragmentCompileTime (fragmentCompileTime_)
626 {
627 }
628 };
629
630 struct Shaders
631 {
632 deUint32 vertShader;
633 deUint32 fragShader;
634 };
635
636 struct Logs
637 {
638 string vert;
639 string frag;
640 };
641
642 struct BuildInfo
643 {
644 bool vertCompileSuccess;
645 bool fragCompileSuccess;
646
647 Logs logs;
648 };
649
650 Shaders createShaders (void) const;
651 void setShaderSources (const Shaders&, const ProgramContext&) const;
652 bool compileShader (deUint32 shader) const;
653 void cleanup (const Shaders&) const;
654
655 Logs getLogs (const Shaders&) const;
656 void logProgramData (const BuildInfo&, const ProgramContext&) const;
657 bool goodEnoughMeasurements (const vector<Measurement>& measurements) const;
658
659 deUint32 m_startHash; // A hash from case id and time, at the time of construction.
660
661 int m_minimumMeasurementCount;
662 int m_maximumMeasurementCount;
663 };
664
665 class InvalidShaderCompilerLightCase : public InvalidShaderCompilerCase
666 {
667 public:
668 InvalidShaderCompilerLightCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, bool isVertexCase, int numLights, LightType lightType);
669 ~InvalidShaderCompilerLightCase (void);
670
671 protected:
672 ProgramContext generateShaderSources (int measurementNdx) const;
673
674 private:
675 bool m_isVertexCase;
676 int m_numLights;
677 LightType m_lightType;
678 };
679
680 class InvalidShaderCompilerTextureCase : public InvalidShaderCompilerCase
681 {
682 public:
683 InvalidShaderCompilerTextureCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType);
684 ~InvalidShaderCompilerTextureCase (void);
685
686 protected:
687 ProgramContext generateShaderSources (int measurementNdx) const;
688
689 private:
690 int m_numLookups;
691 ConditionalUsage m_conditionalUsage;
692 ConditionalType m_conditionalType;
693 };
694
695 class InvalidShaderCompilerLoopCase : public InvalidShaderCompilerCase
696 {
697 public:
698 InvalidShaderCompilerLoopCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, bool , LoopType type, int numLoopIterations, int nestingDepth);
699 ~InvalidShaderCompilerLoopCase (void);
700
701 protected:
702 ProgramContext generateShaderSources (int measurementNdx) const;
703
704 private:
705 bool m_isVertexCase;
706 int m_numLoopIterations;
707 int m_nestingDepth;
708 LoopType m_type;
709 };
710
711 class InvalidShaderCompilerOperCase : public InvalidShaderCompilerCase
712 {
713 public:
714 InvalidShaderCompilerOperCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, bool isVertexCase, const char* oper, int numOperations);
715 ~InvalidShaderCompilerOperCase (void);
716
717 protected:
718 ProgramContext generateShaderSources (int measurementNdx) const;
719
720 private:
721 bool m_isVertexCase;
722 string m_oper;
723 int m_numOperations;
724 };
725
726 class InvalidShaderCompilerMandelbrotCase : public InvalidShaderCompilerCase
727 {
728 public:
729 InvalidShaderCompilerMandelbrotCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, int numFractalIterations);
730 ~InvalidShaderCompilerMandelbrotCase (void);
731
732 protected:
733 ProgramContext generateShaderSources (int measurementNdx) const;
734
735 private:
736 int m_numFractalIterations;
737 };
738
getNameSpecialization(deUint32 id)739 static string getNameSpecialization (deUint32 id)
740 {
741 return "_" + toStringWithPadding(id, 10);
742 }
743
744 // Substitute StringTemplate parameters for attribute/uniform/varying name and constant expression specialization as well as possible shader compilation error causes.
specializeShaderSource(const string & shaderSourceTemplate,deUint32 cacheAvoidanceID,ShaderValidity validity)745 static string specializeShaderSource (const string& shaderSourceTemplate, deUint32 cacheAvoidanceID, ShaderValidity validity)
746 {
747 std::map<string, string> params;
748 params["NAME_SPEC"] = getNameSpecialization(cacheAvoidanceID);
749 params["FLOAT01"] = de::floatToString((float)cacheAvoidanceID / (float)(std::numeric_limits<deUint32>::max()), 6);
750 params["SEMANTIC_ERROR"] = validity != SHADER_VALIDITY_SEMANTIC_ERROR ? "" : "\tmediump float invalid = sin(1.0, 2.0);\n";
751 params["INVALID_CHAR"] = validity != SHADER_VALIDITY_INVALID_CHAR ? "" : "@\n"; // \note Some implementations crash when the invalid character is the last character in the source, so use newline.
752
753 return tcu::StringTemplate(shaderSourceTemplate).specialize(params);
754 }
755
756 // Function for generating the vertex shader of a (directional or point) light case.
lightVertexTemplate(int numLights,bool isVertexCase,LightType lightType)757 static string lightVertexTemplate (int numLights, bool isVertexCase, LightType lightType)
758 {
759 string resultTemplate;
760
761 resultTemplate +=
762 "attribute highp vec4 a_position${NAME_SPEC};\n"
763 "attribute mediump vec3 a_normal${NAME_SPEC};\n"
764 "attribute mediump vec4 a_texCoord0${NAME_SPEC};\n"
765 "uniform mediump vec3 u_material_ambientColor${NAME_SPEC};\n"
766 "uniform mediump vec4 u_material_diffuseColor${NAME_SPEC};\n"
767 "uniform mediump vec3 u_material_emissiveColor${NAME_SPEC};\n"
768 "uniform mediump vec3 u_material_specularColor${NAME_SPEC};\n"
769 "uniform mediump float u_material_shininess${NAME_SPEC};\n";
770
771 for (int lightNdx = 0; lightNdx < numLights; lightNdx++)
772 {
773 string ndxStr = de::toString(lightNdx);
774
775 resultTemplate +=
776 "uniform mediump vec3 u_light" + ndxStr + "_color${NAME_SPEC};\n"
777 "uniform mediump vec3 u_light" + ndxStr + "_direction${NAME_SPEC};\n";
778
779 if (lightType == LIGHT_POINT)
780 resultTemplate +=
781 "uniform mediump vec4 u_light" + ndxStr + "_position${NAME_SPEC};\n"
782 "uniform mediump float u_light" + ndxStr + "_constantAttenuation${NAME_SPEC};\n"
783 "uniform mediump float u_light" + ndxStr + "_linearAttenuation${NAME_SPEC};\n"
784 "uniform mediump float u_light" + ndxStr + "_quadraticAttenuation${NAME_SPEC};\n";
785 }
786
787 resultTemplate +=
788 "uniform highp mat4 u_mvpMatrix${NAME_SPEC};\n"
789 "uniform highp mat4 u_modelViewMatrix${NAME_SPEC};\n"
790 "uniform mediump mat3 u_normalMatrix${NAME_SPEC};\n"
791 "uniform mediump mat4 u_texCoordMatrix0${NAME_SPEC};\n"
792 "varying mediump vec4 v_color${NAME_SPEC};\n"
793 "varying mediump vec2 v_texCoord0${NAME_SPEC};\n";
794
795 if (!isVertexCase)
796 {
797 resultTemplate += "varying mediump vec3 v_eyeNormal${NAME_SPEC};\n";
798
799 if (lightType == LIGHT_POINT)
800 resultTemplate +=
801 "varying mediump vec3 v_directionToLight${NAME_SPEC}[" + de::toString(numLights) + "];\n"
802 "varying mediump float v_distanceToLight${NAME_SPEC}[" + de::toString(numLights) + "];\n";
803 }
804
805 resultTemplate +=
806 "mediump vec3 direction (mediump vec4 from, mediump vec4 to)\n"
807 "{\n"
808 " return vec3(to.xyz * from.w - from.xyz * to.w);\n"
809 "}\n"
810 "\n"
811 "mediump vec3 computeLighting (\n"
812 " mediump vec3 directionToLight,\n"
813 " mediump vec3 halfVector,\n"
814 " mediump vec3 normal,\n"
815 " mediump vec3 lightColor,\n"
816 " mediump vec3 diffuseColor,\n"
817 " mediump vec3 specularColor,\n"
818 " mediump float shininess)\n"
819 "{\n"
820 " mediump float normalDotDirection = max(dot(normal, directionToLight), 0.0);\n"
821 " mediump vec3 color = normalDotDirection * diffuseColor * lightColor;\n"
822 "\n"
823 " if (normalDotDirection != 0.0)\n"
824 " color += pow(max(dot(normal, halfVector), 0.0), shininess) * specularColor * lightColor;\n"
825 "\n"
826 " return color;\n"
827 "}\n"
828 "\n";
829
830 if (lightType == LIGHT_POINT)
831 resultTemplate +=
832 "mediump float computeDistanceAttenuation (mediump float distToLight, mediump float constAtt, mediump float linearAtt, mediump float quadraticAtt)\n"
833 "{\n"
834 " return 1.0 / (constAtt + linearAtt * distToLight + quadraticAtt * distToLight * distToLight);\n"
835 "}\n"
836 "\n";
837
838 resultTemplate +=
839 "void main (void)\n"
840 "{\n"
841 " highp vec4 position = a_position${NAME_SPEC};\n"
842 " highp vec3 normal = a_normal${NAME_SPEC};\n"
843 " gl_Position = u_mvpMatrix${NAME_SPEC} * position * (0.95 + 0.05*${FLOAT01});\n"
844 " v_texCoord0${NAME_SPEC} = (u_texCoordMatrix0${NAME_SPEC} * a_texCoord0${NAME_SPEC}).xy;\n"
845 " mediump vec4 color = vec4(u_material_emissiveColor${NAME_SPEC}, u_material_diffuseColor${NAME_SPEC}.a);\n"
846 "\n"
847 " highp vec4 eyePosition = u_modelViewMatrix${NAME_SPEC} * position;\n"
848 " mediump vec3 eyeNormal = normalize(u_normalMatrix${NAME_SPEC} * normal);\n";
849
850 if (!isVertexCase)
851 resultTemplate += "\tv_eyeNormal${NAME_SPEC} = eyeNormal;\n";
852
853 resultTemplate += "\n";
854
855 for (int lightNdx = 0; lightNdx < numLights; lightNdx++)
856 {
857 string ndxStr = de::toString(lightNdx);
858
859 resultTemplate +=
860 " /* Light " + ndxStr + " */\n";
861
862 if (lightType == LIGHT_POINT)
863 {
864 resultTemplate +=
865 " mediump float distanceToLight" + ndxStr + " = distance(eyePosition, u_light" + ndxStr + "_position${NAME_SPEC});\n"
866 " mediump vec3 directionToLight" + ndxStr + " = normalize(direction(eyePosition, u_light" + ndxStr + "_position${NAME_SPEC}));\n";
867
868 if (isVertexCase)
869 resultTemplate +=
870 " mediump vec3 halfVector" + ndxStr + " = normalize(directionToLight" + ndxStr + " + vec3(0.0, 0.0, 1.0));\n"
871 " color.rgb += computeLighting(directionToLight" + ndxStr + ", halfVector" + ndxStr + ", eyeNormal, u_light" + ndxStr + "_color${NAME_SPEC}, u_material_diffuseColor${NAME_SPEC}.rgb, "
872 "u_material_specularColor${NAME_SPEC}, u_material_shininess${NAME_SPEC}) * computeDistanceAttenuation(distanceToLight" + ndxStr + ", u_light" + ndxStr + "_constantAttenuation${NAME_SPEC}, "
873 "u_light" + ndxStr + "_linearAttenuation${NAME_SPEC}, u_light" + ndxStr + "_quadraticAttenuation${NAME_SPEC});\n";
874 else
875 resultTemplate +=
876 " v_directionToLight${NAME_SPEC}[" + ndxStr + "] = directionToLight" + ndxStr + ";\n"
877 " v_distanceToLight${NAME_SPEC}[" + ndxStr + "] = distanceToLight" + ndxStr + ";\n";
878 }
879 else if (lightType == LIGHT_DIRECTIONAL)
880 {
881 if (isVertexCase)
882 resultTemplate +=
883 " mediump vec3 directionToLight" + ndxStr + " = -u_light" + ndxStr + "_direction${NAME_SPEC};\n"
884 " mediump vec3 halfVector" + ndxStr + " = normalize(directionToLight" + ndxStr + " + vec3(0.0, 0.0, 1.0));\n"
885 " color.rgb += computeLighting(directionToLight" + ndxStr + ", halfVector" + ndxStr + ", eyeNormal, u_light" + ndxStr + "_color${NAME_SPEC}, u_material_diffuseColor${NAME_SPEC}.rgb, u_material_specularColor${NAME_SPEC}, u_material_shininess${NAME_SPEC});\n";
886 }
887 else
888 DE_ASSERT(DE_FALSE);
889
890 resultTemplate += "\n";
891 }
892
893 resultTemplate +=
894 " v_color${NAME_SPEC} = color;\n"
895 "${SEMANTIC_ERROR}"
896 "}\n"
897 "${INVALID_CHAR}";
898
899 return resultTemplate;
900 }
901
902 // Function for generating the fragment shader of a (directional or point) light case.
lightFragmentTemplate(int numLights,bool isVertexCase,LightType lightType)903 static string lightFragmentTemplate (int numLights, bool isVertexCase, LightType lightType)
904 {
905 string resultTemplate;
906
907 if (!isVertexCase)
908 {
909 resultTemplate +=
910 "uniform mediump vec3 u_material_ambientColor${NAME_SPEC};\n"
911 "uniform mediump vec4 u_material_diffuseColor${NAME_SPEC};\n"
912 "uniform mediump vec3 u_material_emissiveColor${NAME_SPEC};\n"
913 "uniform mediump vec3 u_material_specularColor${NAME_SPEC};\n"
914 "uniform mediump float u_material_shininess${NAME_SPEC};\n";
915
916 for (int lightNdx = 0; lightNdx < numLights; lightNdx++)
917 {
918 string ndxStr = de::toString(lightNdx);
919
920 resultTemplate +=
921 "uniform mediump vec3 u_light" + ndxStr + "_color${NAME_SPEC};\n"
922 "uniform mediump vec3 u_light" + ndxStr + "_direction${NAME_SPEC};\n";
923
924 if (lightType == LIGHT_POINT)
925 resultTemplate +=
926 "uniform mediump vec4 u_light" + ndxStr + "_position${NAME_SPEC};\n"
927 "uniform mediump float u_light" + ndxStr + "_constantAttenuation${NAME_SPEC};\n"
928 "uniform mediump float u_light" + ndxStr + "_linearAttenuation${NAME_SPEC};\n"
929 "uniform mediump float u_light" + ndxStr + "_quadraticAttenuation${NAME_SPEC};\n";
930 }
931 }
932
933 resultTemplate +=
934 "uniform sampler2D u_sampler0${NAME_SPEC};\n"
935 "varying mediump vec4 v_color${NAME_SPEC};\n"
936 "varying mediump vec2 v_texCoord0${NAME_SPEC};\n";
937
938 if (!isVertexCase)
939 {
940 resultTemplate +=
941 "varying mediump vec3 v_eyeNormal${NAME_SPEC};\n";
942
943 if (lightType == LIGHT_POINT)
944 resultTemplate +=
945 "varying mediump vec3 v_directionToLight${NAME_SPEC}[" + de::toString(numLights) + "];\n"
946 "varying mediump float v_distanceToLight${NAME_SPEC}[" + de::toString(numLights) + "];\n";
947
948 resultTemplate +=
949 "mediump vec3 direction (mediump vec4 from, mediump vec4 to)\n"
950 "{\n"
951 " return vec3(to.xyz * from.w - from.xyz * to.w);\n"
952 "}\n"
953 "\n";
954
955 resultTemplate +=
956 "mediump vec3 computeLighting (\n"
957 " mediump vec3 directionToLight,\n"
958 " mediump vec3 halfVector,\n"
959 " mediump vec3 normal,\n"
960 " mediump vec3 lightColor,\n"
961 " mediump vec3 diffuseColor,\n"
962 " mediump vec3 specularColor,\n"
963 " mediump float shininess)\n"
964 "{\n"
965 " mediump float normalDotDirection = max(dot(normal, directionToLight), 0.0);\n"
966 " mediump vec3 color = normalDotDirection * diffuseColor * lightColor;\n"
967 "\n"
968 " if (normalDotDirection != 0.0)\n"
969 " color += pow(max(dot(normal, halfVector), 0.0), shininess) * specularColor * lightColor;\n"
970 "\n"
971 " return color;\n"
972 "}\n"
973 "\n";
974
975 if (lightType == LIGHT_POINT)
976 resultTemplate +=
977 "mediump float computeDistanceAttenuation (mediump float distToLight, mediump float constAtt, mediump float linearAtt, mediump float quadraticAtt)\n"
978 "{\n"
979 " return 1.0 / (constAtt + linearAtt * distToLight + quadraticAtt * distToLight * distToLight);\n"
980 "}\n"
981 "\n";
982 }
983
984 resultTemplate +=
985 "void main (void)\n"
986 "{\n"
987 " mediump vec2 texCoord0 = v_texCoord0${NAME_SPEC}.xy;\n"
988 " mediump vec4 color = v_color${NAME_SPEC};\n";
989
990 if (!isVertexCase)
991 {
992 resultTemplate +=
993 " mediump vec3 eyeNormal = normalize(v_eyeNormal${NAME_SPEC});\n"
994 "\n";
995
996 for (int lightNdx = 0; lightNdx < numLights; lightNdx++)
997 {
998 string ndxStr = de::toString(lightNdx);
999
1000 resultTemplate +=
1001 " /* Light " + ndxStr + " */\n";
1002
1003 if (lightType == LIGHT_POINT)
1004 resultTemplate +=
1005 " mediump vec3 directionToLight" + ndxStr + " = normalize(v_directionToLight${NAME_SPEC}[" + ndxStr + "]);\n"
1006 " mediump float distanceToLight" + ndxStr + " = v_distanceToLight${NAME_SPEC}[" + ndxStr + "];\n"
1007 " mediump vec3 halfVector" + ndxStr + " = normalize(directionToLight" + ndxStr + " + vec3(0.0, 0.0, 1.0));\n"
1008 " color.rgb += computeLighting(directionToLight" + ndxStr + ", halfVector" + ndxStr + ", eyeNormal, u_light" + ndxStr + "_color${NAME_SPEC}, u_material_diffuseColor${NAME_SPEC}.rgb, "
1009 "u_material_specularColor${NAME_SPEC}, u_material_shininess${NAME_SPEC}) * computeDistanceAttenuation(distanceToLight" + ndxStr + ", u_light" + ndxStr + "_constantAttenuation${NAME_SPEC}, "
1010 "u_light" + ndxStr + "_linearAttenuation${NAME_SPEC}, u_light" + ndxStr + "_quadraticAttenuation${NAME_SPEC});\n"
1011 "\n";
1012 else if (lightType == LIGHT_DIRECTIONAL)
1013 resultTemplate +=
1014 " mediump vec3 directionToLight" + ndxStr + " = -u_light" + ndxStr + "_direction${NAME_SPEC};\n"
1015 " mediump vec3 halfVector" + ndxStr + " = normalize(directionToLight" + ndxStr + " + vec3(0.0, 0.0, 1.0));\n"
1016 " color.rgb += computeLighting(directionToLight" + ndxStr + ", halfVector" + ndxStr + ", eyeNormal, u_light" + ndxStr + "_color${NAME_SPEC}, u_material_diffuseColor${NAME_SPEC}.rgb, u_material_specularColor${NAME_SPEC}, u_material_shininess${NAME_SPEC});\n"
1017 "\n";
1018 else
1019 DE_ASSERT(DE_FALSE);
1020 }
1021 }
1022
1023 resultTemplate +=
1024 " color *= texture2D(u_sampler0${NAME_SPEC}, texCoord0);\n"
1025 " gl_FragColor = color + ${FLOAT01};\n"
1026 "${SEMANTIC_ERROR}"
1027 "}\n"
1028 "${INVALID_CHAR}";
1029
1030 return resultTemplate;
1031 }
1032
1033 // Function for generating the shader attributes of a (directional or point) light case.
lightShaderAttributes(const string & nameSpecialization)1034 static vector<ShaderCompilerCase::AttribSpec> lightShaderAttributes (const string& nameSpecialization)
1035 {
1036 vector<ShaderCompilerCase::AttribSpec> result;
1037
1038 result.push_back(ShaderCompilerCase::AttribSpec("a_position" + nameSpecialization,
1039 combineVec4ToVec16(Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
1040 Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
1041 Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
1042 Vec4( 1.0f, 1.0f, 0.0f, 1.0f))));
1043
1044 result.push_back(ShaderCompilerCase::AttribSpec("a_normal" + nameSpecialization,
1045 combineVec4ToVec16(Vec4(0.0f, 0.0f, -1.0f, 0.0f),
1046 Vec4(0.0f, 0.0f, -1.0f, 0.0f),
1047 Vec4(0.0f, 0.0f, -1.0f, 0.0f),
1048 Vec4(0.0f, 0.0f, -1.0f, 0.0f))));
1049
1050 result.push_back(ShaderCompilerCase::AttribSpec("a_texCoord0" + nameSpecialization,
1051 combineVec4ToVec16(Vec4(0.0f, 0.0f, 0.0f, 0.0f),
1052 Vec4(1.0f, 0.0f, 0.0f, 0.0f),
1053 Vec4(0.0f, 1.0f, 0.0f, 0.0f),
1054 Vec4(1.0f, 1.0f, 0.0f, 0.0f))));
1055
1056 return result;
1057 }
1058
1059 // Function for generating the shader uniforms of a (directional or point) light case.
lightShaderUniforms(const string & nameSpecialization,int numLights,LightType lightType)1060 static vector<ShaderCompilerCase::UniformSpec> lightShaderUniforms (const string& nameSpecialization, int numLights, LightType lightType)
1061 {
1062 vector<ShaderCompilerCase::UniformSpec> result;
1063
1064 result.push_back(ShaderCompilerCase::UniformSpec("u_material_ambientColor" + nameSpecialization,
1065 ShaderCompilerCase::UniformSpec::TYPE_VEC3,
1066 vecTo16(Vec3(0.5f, 0.7f, 0.9f))));
1067
1068 result.push_back(ShaderCompilerCase::UniformSpec("u_material_diffuseColor" + nameSpecialization,
1069 ShaderCompilerCase:: UniformSpec::TYPE_VEC4,
1070 vecTo16(Vec4(0.3f, 0.4f, 0.5f, 1.0f))));
1071
1072 result.push_back(ShaderCompilerCase::UniformSpec("u_material_emissiveColor" + nameSpecialization,
1073 ShaderCompilerCase::UniformSpec::TYPE_VEC3,
1074 vecTo16(Vec3(0.7f, 0.2f, 0.2f))));
1075
1076 result.push_back(ShaderCompilerCase::UniformSpec("u_material_specularColor" + nameSpecialization,
1077 ShaderCompilerCase::UniformSpec::TYPE_VEC3,
1078 vecTo16(Vec3(0.2f, 0.6f, 1.0f))));
1079
1080 result.push_back(ShaderCompilerCase::UniformSpec("u_material_shininess" + nameSpecialization,
1081 ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
1082 0.8f));
1083
1084 for (int lightNdx = 0; lightNdx < numLights; lightNdx++)
1085 {
1086 string ndxStr = de::toString(lightNdx);
1087
1088 result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_color" + nameSpecialization,
1089 ShaderCompilerCase::UniformSpec::TYPE_VEC3,
1090 vecTo16(Vec3(0.8f, 0.6f, 0.3f))));
1091
1092 result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_direction" + nameSpecialization,
1093 ShaderCompilerCase::UniformSpec::TYPE_VEC3,
1094 vecTo16(Vec3(0.2f, 0.3f, 0.4f))));
1095
1096 if (lightType == LIGHT_POINT)
1097 {
1098 result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_position" + nameSpecialization,
1099 ShaderCompilerCase::UniformSpec::TYPE_VEC4,
1100 vecTo16(Vec4(1.0f, 0.6f, 0.3f, 0.2f))));
1101
1102 result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_constantAttenuation" + nameSpecialization,
1103 ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
1104 0.6f));
1105
1106 result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_linearAttenuation" + nameSpecialization,
1107 ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
1108 0.5f));
1109
1110 result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_quadraticAttenuation" + nameSpecialization,
1111 ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
1112 0.4f));
1113 }
1114 }
1115
1116 result.push_back(ShaderCompilerCase::UniformSpec("u_mvpMatrix" + nameSpecialization,
1117 ShaderCompilerCase::UniformSpec::TYPE_MAT4,
1118 arrTo16(Mat4(1.0f).getColumnMajorData())));
1119
1120 result.push_back(ShaderCompilerCase::UniformSpec("u_modelViewMatrix" + nameSpecialization,
1121 ShaderCompilerCase::UniformSpec::TYPE_MAT4,
1122 arrTo16(Mat4(1.0f).getColumnMajorData())));
1123
1124 result.push_back(ShaderCompilerCase::UniformSpec("u_normalMatrix" + nameSpecialization,
1125 ShaderCompilerCase::UniformSpec::TYPE_MAT3,
1126 arrTo16(Mat3(1.0f).getColumnMajorData())));
1127
1128 result.push_back(ShaderCompilerCase::UniformSpec("u_texCoordMatrix0" + nameSpecialization,
1129 ShaderCompilerCase::UniformSpec::TYPE_MAT4,
1130 arrTo16(Mat4(1.0f).getColumnMajorData())));
1131
1132 result.push_back(ShaderCompilerCase::UniformSpec("u_sampler0" + nameSpecialization,
1133 ShaderCompilerCase::UniformSpec::TYPE_TEXTURE_UNIT,
1134 0.0f));
1135
1136 return result;
1137 }
1138
1139 // Function for generating a vertex shader with a for loop.
loopVertexTemplate(LoopType type,bool isVertexCase,int numLoopIterations,int nestingDepth)1140 static string loopVertexTemplate (LoopType type, bool isVertexCase, int numLoopIterations, int nestingDepth)
1141 {
1142 string resultTemplate;
1143 string loopBound = type == LOOP_TYPE_STATIC ? de::toString(numLoopIterations)
1144 : type == LOOP_TYPE_UNIFORM ? "int(u_loopBound${NAME_SPEC})"
1145 : type == LOOP_TYPE_DYNAMIC ? "int(a_loopBound${NAME_SPEC})"
1146 : "";
1147
1148 DE_ASSERT(!loopBound.empty());
1149
1150 resultTemplate +=
1151 "attribute highp vec4 a_position${NAME_SPEC};\n";
1152
1153 if (type == LOOP_TYPE_DYNAMIC)
1154 resultTemplate +=
1155 "attribute mediump float a_loopBound${NAME_SPEC};\n";
1156
1157 resultTemplate +=
1158 "attribute mediump vec4 a_value${NAME_SPEC};\n"
1159 "varying mediump vec4 v_value${NAME_SPEC};\n";
1160
1161 if (isVertexCase)
1162 {
1163 if (type == LOOP_TYPE_UNIFORM)
1164 resultTemplate += "uniform mediump float u_loopBound${NAME_SPEC};\n";
1165
1166 resultTemplate +=
1167 "\n"
1168 "void main()\n"
1169 "{\n"
1170 " gl_Position = a_position${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
1171 " mediump vec4 value = a_value${NAME_SPEC};\n";
1172
1173 for (int i = 0; i < nestingDepth; i++)
1174 {
1175 string iterName = "i" + de::toString(i);
1176 resultTemplate += string(i + 1, '\t') + "for (int " + iterName + " = 0; " + iterName + " < " + loopBound + "; " + iterName + "++)\n";
1177 }
1178
1179 resultTemplate += string(nestingDepth + 1, '\t') + "value *= a_value${NAME_SPEC};\n";
1180
1181 resultTemplate +=
1182 " v_value${NAME_SPEC} = value;\n";
1183 }
1184 else
1185 {
1186 if (type == LOOP_TYPE_DYNAMIC)
1187 resultTemplate +=
1188 "varying mediump float v_loopBound${NAME_SPEC};\n";
1189
1190 resultTemplate +=
1191 "\n"
1192 "void main()\n"
1193 "{\n"
1194 " gl_Position = a_position${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
1195 " v_value${NAME_SPEC} = a_value${NAME_SPEC};\n";
1196
1197 if (type == LOOP_TYPE_DYNAMIC)
1198 resultTemplate +=
1199 " v_loopBound${NAME_SPEC} = a_loopBound${NAME_SPEC};\n";
1200 }
1201
1202 resultTemplate +=
1203 "${SEMANTIC_ERROR}"
1204 "}\n"
1205 "${INVALID_CHAR}";
1206
1207 return resultTemplate;
1208 }
1209
1210 // Function for generating a fragment shader with a for loop.
loopFragmentTemplate(LoopType type,bool isVertexCase,int numLoopIterations,int nestingDepth)1211 static string loopFragmentTemplate (LoopType type, bool isVertexCase, int numLoopIterations, int nestingDepth)
1212 {
1213 string resultTemplate;
1214 string loopBound = type == LOOP_TYPE_STATIC ? de::toString(numLoopIterations)
1215 : type == LOOP_TYPE_UNIFORM ? "int(u_loopBound${NAME_SPEC})"
1216 : type == LOOP_TYPE_DYNAMIC ? "int(v_loopBound${NAME_SPEC})"
1217 : "";
1218
1219 DE_ASSERT(!loopBound.empty());
1220
1221 resultTemplate +=
1222 "varying mediump vec4 v_value${NAME_SPEC};\n";
1223
1224 if (!isVertexCase)
1225 {
1226 if (type == LOOP_TYPE_DYNAMIC)
1227 resultTemplate +=
1228 "varying mediump float v_loopBound${NAME_SPEC};\n";
1229 else if (type == LOOP_TYPE_UNIFORM)
1230 resultTemplate +=
1231 "uniform mediump float u_loopBound${NAME_SPEC};\n";
1232
1233 resultTemplate +=
1234 "\n"
1235 "void main()\n"
1236 "{\n"
1237 " mediump vec4 value = v_value${NAME_SPEC};\n";
1238
1239 for (int i = 0; i < nestingDepth; i++)
1240 {
1241 string iterName = "i" + de::toString(i);
1242 resultTemplate += string(i + 1, '\t') + "for (int " + iterName + " = 0; " + iterName + " < " + loopBound + "; " + iterName + "++)\n";
1243 }
1244
1245 resultTemplate += string(nestingDepth + 1, '\t') + "value *= v_value${NAME_SPEC};\n";
1246
1247 resultTemplate +=
1248 " gl_FragColor = value + ${FLOAT01};\n";
1249 }
1250 else
1251 resultTemplate +=
1252 "\n"
1253 "void main()\n"
1254 "{\n"
1255 " gl_FragColor = v_value${NAME_SPEC} + ${FLOAT01};\n";
1256
1257 resultTemplate +=
1258 "${SEMANTIC_ERROR}"
1259 "}\n"
1260 "${INVALID_CHAR}";
1261
1262 return resultTemplate;
1263 }
1264
1265 // Function for generating the shader attributes for a loop case.
loopShaderAttributes(const string & nameSpecialization,LoopType type,int numLoopIterations)1266 static vector<ShaderCompilerCase::AttribSpec> loopShaderAttributes (const string& nameSpecialization, LoopType type, int numLoopIterations)
1267 {
1268 vector<ShaderCompilerCase::AttribSpec> result;
1269
1270 result.push_back(ShaderCompilerCase::AttribSpec("a_position" + nameSpecialization,
1271 combineVec4ToVec16(Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
1272 Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
1273 Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
1274 Vec4( 1.0f, 1.0f, 0.0f, 1.0f))));
1275
1276 result.push_back(ShaderCompilerCase::AttribSpec("a_value" + nameSpecialization,
1277 combineVec4ToVec16(Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
1278 Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
1279 Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
1280 Vec4( 1.0f, 1.0f, 1.0f, 1.0f))));
1281
1282 if (type == LOOP_TYPE_DYNAMIC)
1283 result.push_back(ShaderCompilerCase::AttribSpec("a_loopBound" + nameSpecialization,
1284 combineVec4ToVec16(Vec4((float)numLoopIterations, 0.0f, 0.0f, 0.0f),
1285 Vec4((float)numLoopIterations, 0.0f, 0.0f, 0.0f),
1286 Vec4((float)numLoopIterations, 0.0f, 0.0f, 0.0f),
1287 Vec4((float)numLoopIterations, 0.0f, 0.0f, 0.0f))));
1288
1289 return result;
1290 }
1291
loopShaderUniforms(const string & nameSpecialization,LoopType type,int numLoopIterations)1292 static vector<ShaderCompilerCase::UniformSpec> loopShaderUniforms (const string& nameSpecialization, LoopType type, int numLoopIterations)
1293 {
1294 vector<ShaderCompilerCase::UniformSpec> result;
1295
1296 if (type == LOOP_TYPE_UNIFORM)
1297 result.push_back(ShaderCompilerCase::UniformSpec("u_loopBound" + nameSpecialization,
1298 ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
1299 (float)numLoopIterations));
1300
1301 return result;
1302 }
1303
1304 // Function for generating the shader attributes for a case with only one attribute value in addition to the position attribute.
singleValueShaderAttributes(const string & nameSpecialization)1305 static vector<ShaderCompilerCase::AttribSpec> singleValueShaderAttributes (const string& nameSpecialization)
1306 {
1307 vector<ShaderCompilerCase::AttribSpec> result;
1308
1309 result.push_back(ShaderCompilerCase::AttribSpec("a_position" + nameSpecialization,
1310 combineVec4ToVec16(Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
1311 Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
1312 Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
1313 Vec4( 1.0f, 1.0f, 0.0f, 1.0f))));
1314
1315 result.push_back(ShaderCompilerCase::AttribSpec("a_value" + nameSpecialization,
1316 combineVec4ToVec16(Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
1317 Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
1318 Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
1319 Vec4( 1.0f, 1.0f, 1.0f, 1.0f))));
1320
1321 return result;
1322 }
1323
1324 // Function for generating a vertex shader with a binary operation chain.
binaryOpVertexTemplate(int numOperations,const char * op)1325 static string binaryOpVertexTemplate (int numOperations, const char* op)
1326 {
1327 string resultTemplate;
1328
1329 resultTemplate +=
1330 "attribute highp vec4 a_position${NAME_SPEC};\n"
1331 "attribute mediump vec4 a_value${NAME_SPEC};\n"
1332 "varying mediump vec4 v_value${NAME_SPEC};\n"
1333 "\n"
1334 "void main()\n"
1335 "{\n"
1336 " gl_Position = a_position${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
1337 " mediump vec4 value = ";
1338
1339 for (int i = 0; i < numOperations; i++)
1340 resultTemplate += string(i > 0 ? op : "") + "a_value${NAME_SPEC}";
1341
1342 resultTemplate +=
1343 ";\n"
1344 " v_value${NAME_SPEC} = value;\n"
1345 "${SEMANTIC_ERROR}"
1346 "}\n"
1347 "${INVALID_CHAR}";
1348
1349 return resultTemplate;
1350 }
1351
1352 // Function for generating a fragment shader with a binary operation chain.
binaryOpFragmentTemplate(int numOperations,const char * op)1353 static string binaryOpFragmentTemplate (int numOperations, const char* op)
1354 {
1355 string resultTemplate;
1356
1357 resultTemplate +=
1358 "varying mediump vec4 v_value${NAME_SPEC};\n"
1359 "\n"
1360 "void main()\n"
1361 "{\n"
1362 " mediump vec4 value = ";
1363
1364 for (int i = 0; i < numOperations; i++)
1365 resultTemplate += string(i > 0 ? op : "") + "v_value${NAME_SPEC}";
1366
1367 resultTemplate +=
1368 ";\n"
1369 " gl_FragColor = value + ${FLOAT01};\n"
1370 "${SEMANTIC_ERROR}"
1371 "}\n"
1372 "${INVALID_CHAR}";
1373
1374 return resultTemplate;
1375 }
1376
1377 // Function for generating a vertex that takes one attribute in addition to position and just passes it to the fragment shader as a varying.
singleVaryingVertexTemplate(void)1378 static string singleVaryingVertexTemplate (void)
1379 {
1380 const char* resultTemplate =
1381 "attribute highp vec4 a_position${NAME_SPEC};\n"
1382 "attribute mediump vec4 a_value${NAME_SPEC};\n"
1383 "varying mediump vec4 v_value${NAME_SPEC};\n"
1384 "\n"
1385 "void main()\n"
1386 "{\n"
1387 " gl_Position = a_position${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
1388 " v_value${NAME_SPEC} = a_value${NAME_SPEC};\n"
1389 "${SEMANTIC_ERROR}"
1390 "}\n"
1391 "${INVALID_CHAR}";
1392
1393 return resultTemplate;
1394 }
1395
1396 // Function for generating a fragment shader that takes a single varying and uses it as the color.
singleVaryingFragmentTemplate(void)1397 static string singleVaryingFragmentTemplate (void)
1398 {
1399 const char* resultTemplate =
1400 "varying mediump vec4 v_value${NAME_SPEC};\n"
1401 "\n"
1402 "void main()\n"
1403 "{\n"
1404 " gl_FragColor = v_value${NAME_SPEC} + ${FLOAT01};\n"
1405 "${SEMANTIC_ERROR}"
1406 "}\n"
1407 "${INVALID_CHAR}";
1408
1409 return resultTemplate;
1410 }
1411
1412 // Function for generating the vertex shader of a texture lookup case.
textureLookupVertexTemplate(ConditionalUsage conditionalUsage,ConditionalType conditionalType)1413 static string textureLookupVertexTemplate (ConditionalUsage conditionalUsage, ConditionalType conditionalType)
1414 {
1415 string resultTemplate;
1416 bool conditionVaryingNeeded = conditionalUsage != CONDITIONAL_USAGE_NONE && conditionalType == CONDITIONAL_TYPE_DYNAMIC;
1417
1418 resultTemplate +=
1419 "attribute highp vec4 a_position${NAME_SPEC};\n"
1420 "attribute mediump vec2 a_coords${NAME_SPEC};\n"
1421 "varying mediump vec2 v_coords${NAME_SPEC};\n";
1422
1423 if (conditionVaryingNeeded)
1424 resultTemplate +=
1425 "attribute mediump float a_condition${NAME_SPEC};\n"
1426 "varying mediump float v_condition${NAME_SPEC};\n";
1427
1428 resultTemplate +=
1429 "\n"
1430 "void main()\n"
1431 "{\n"
1432 " gl_Position = a_position${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
1433 " v_coords${NAME_SPEC} = a_coords${NAME_SPEC};\n";
1434
1435 if (conditionVaryingNeeded)
1436 resultTemplate +=
1437 " v_condition${NAME_SPEC} = a_condition${NAME_SPEC};\n";
1438
1439 resultTemplate +=
1440 "${SEMANTIC_ERROR}"
1441 "}\n"
1442 "${INVALID_CHAR}";
1443
1444 return resultTemplate;
1445 }
1446
1447 // Function for generating the fragment shader of a texture lookup case.
textureLookupFragmentTemplate(int numLookups,ConditionalUsage conditionalUsage,ConditionalType conditionalType)1448 static string textureLookupFragmentTemplate (int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType)
1449 {
1450 string resultTemplate;
1451
1452 resultTemplate +=
1453 "varying mediump vec2 v_coords${NAME_SPEC};\n";
1454
1455 if (conditionalUsage != CONDITIONAL_USAGE_NONE && conditionalType == CONDITIONAL_TYPE_DYNAMIC)
1456 resultTemplate +=
1457 "varying mediump float v_condition${NAME_SPEC};\n";
1458
1459 for (int i = 0; i < numLookups; i++)
1460 resultTemplate +=
1461 "uniform sampler2D u_sampler" + de::toString(i) + "${NAME_SPEC};\n";
1462
1463 if (conditionalUsage != CONDITIONAL_USAGE_NONE && conditionalType == CONDITIONAL_TYPE_UNIFORM)
1464 resultTemplate +=
1465 "uniform mediump float u_condition${NAME_SPEC};\n";
1466
1467 resultTemplate +=
1468 "\n"
1469 "void main()\n"
1470 "{\n"
1471 " mediump vec4 color = vec4(0.0);\n";
1472
1473 const char* conditionalTerm = conditionalType == CONDITIONAL_TYPE_STATIC ? "1.0 > 0.0"
1474 : conditionalType == CONDITIONAL_TYPE_UNIFORM ? "u_condition${NAME_SPEC} > 0.0"
1475 : conditionalType == CONDITIONAL_TYPE_DYNAMIC ? "v_condition${NAME_SPEC} > 0.0"
1476 : DE_NULL;
1477
1478 DE_ASSERT(conditionalTerm != DE_NULL);
1479
1480 if (conditionalUsage == CONDITIONAL_USAGE_FIRST_HALF)
1481 resultTemplate += string("") +
1482 " if (" + conditionalTerm + ")\n"
1483 " {\n";
1484
1485 for (int i = 0; i < numLookups; i++)
1486 {
1487 if (conditionalUsage == CONDITIONAL_USAGE_FIRST_HALF)
1488 {
1489 if (i < (numLookups + 1) / 2)
1490 resultTemplate += "\t";
1491 }
1492 else if (conditionalUsage == CONDITIONAL_USAGE_EVERY_OTHER)
1493 {
1494 if (i % 2 == 0)
1495 resultTemplate += string("") +
1496 " if (" + conditionalTerm + ")\n"
1497 "\t";
1498 }
1499
1500 resultTemplate +=
1501 " color += texture2D(u_sampler" + de::toString(i) + "${NAME_SPEC}, v_coords${NAME_SPEC});\n";
1502
1503 if (conditionalUsage == CONDITIONAL_USAGE_FIRST_HALF && i == (numLookups - 1) / 2)
1504 resultTemplate += "\t}\n";
1505 }
1506
1507 resultTemplate +=
1508 " gl_FragColor = color/" + de::toString(numLookups) + ".0 + ${FLOAT01};\n" +
1509 "${SEMANTIC_ERROR}"
1510 "}\n"
1511 "${INVALID_CHAR}";
1512
1513 return resultTemplate;
1514 }
1515
1516 // Function for generating the shader attributes of a texture lookup case.
textureLookupShaderAttributes(const string & nameSpecialization,ConditionalUsage conditionalUsage,ConditionalType conditionalType)1517 static vector<ShaderCompilerCase::AttribSpec> textureLookupShaderAttributes (const string& nameSpecialization, ConditionalUsage conditionalUsage, ConditionalType conditionalType)
1518 {
1519 vector<ShaderCompilerCase::AttribSpec> result;
1520
1521 result.push_back(ShaderCompilerCase::AttribSpec("a_position" + nameSpecialization,
1522 combineVec4ToVec16(Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
1523 Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
1524 Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
1525 Vec4( 1.0f, 1.0f, 0.0f, 1.0f))));
1526
1527 result.push_back(ShaderCompilerCase::AttribSpec("a_coords" + nameSpecialization,
1528 combineVec4ToVec16(Vec4(0.0f, 0.0f, 0.0f, 0.0f),
1529 Vec4(0.0f, 1.0f, 0.0f, 0.0f),
1530 Vec4(1.0f, 0.0f, 0.0f, 0.0f),
1531 Vec4(1.0f, 1.0f, 0.0f, 0.0f))));
1532
1533 if (conditionalUsage != CONDITIONAL_USAGE_NONE && conditionalType == CONDITIONAL_TYPE_DYNAMIC)
1534 result.push_back(ShaderCompilerCase::AttribSpec("a_condition" + nameSpecialization,
1535 combineVec4ToVec16(Vec4(1.0f), Vec4(1.0f), Vec4(1.0f), Vec4(1.0f))));
1536
1537 return result;
1538 }
1539
1540 // Function for generating the shader uniforms of a texture lookup case.
textureLookupShaderUniforms(const string & nameSpecialization,int numLookups,ConditionalUsage conditionalUsage,ConditionalType conditionalType)1541 static vector<ShaderCompilerCase::UniformSpec> textureLookupShaderUniforms (const string& nameSpecialization, int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType)
1542 {
1543 vector<ShaderCompilerCase::UniformSpec> result;
1544
1545 for (int i = 0; i < numLookups; i++)
1546 result.push_back(ShaderCompilerCase::UniformSpec("u_sampler" + de::toString(i) + nameSpecialization,
1547 ShaderCompilerCase::UniformSpec::TYPE_TEXTURE_UNIT,
1548 (float)i));
1549
1550 if (conditionalUsage != CONDITIONAL_USAGE_NONE && conditionalType == CONDITIONAL_TYPE_UNIFORM)
1551 result.push_back(ShaderCompilerCase::UniformSpec("u_condition" + nameSpecialization,
1552 ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
1553 1.0f));
1554
1555 return result;
1556 }
1557
mandelbrotVertexTemplate(void)1558 static string mandelbrotVertexTemplate (void)
1559 {
1560 const char* resultTemplate =
1561 "uniform highp mat4 u_mvp${NAME_SPEC};\n"
1562 "\n"
1563 "attribute highp vec4 a_vertex${NAME_SPEC};\n"
1564 "attribute highp vec4 a_coord${NAME_SPEC};\n"
1565 "\n"
1566 "varying mediump vec2 v_coord${NAME_SPEC};\n"
1567 "\n"
1568 "void main(void)\n"
1569 "{\n"
1570 " gl_Position = u_mvp${NAME_SPEC} * a_vertex${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
1571 "\n"
1572 " float xMin = -2.0;\n"
1573 " float xMax = +0.5;\n"
1574 " float yMin = -1.5;\n"
1575 " float yMax = +1.5;\n"
1576 "\n"
1577 " v_coord${NAME_SPEC}.x = a_coord${NAME_SPEC}.x * (xMax - xMin) + xMin;\n"
1578 " v_coord${NAME_SPEC}.y = a_coord${NAME_SPEC}.y * (yMax - yMin) + yMin;\n"
1579 "${SEMANTIC_ERROR}"
1580 "}\n"
1581 "${INVALID_CHAR}";
1582
1583 return resultTemplate;
1584 }
1585
mandelbrotFragmentTemplate(int numFractalIterations)1586 static string mandelbrotFragmentTemplate (int numFractalIterations)
1587 {
1588 string resultTemplate =
1589 "varying mediump vec2 v_coord${NAME_SPEC};\n"
1590 "\n"
1591 "precision mediump float;\n"
1592 "\n"
1593 "#define NUM_ITERS " + de::toString(numFractalIterations) + "\n"
1594 "\n"
1595 "void main (void)\n"
1596 "{\n"
1597 " vec2 coords = v_coord${NAME_SPEC};\n"
1598 " float u_limit = 2.0 * 2.0;\n"
1599 " vec2 tmp = vec2(0, 0);\n"
1600 " int iter;\n"
1601 "\n"
1602 " for (iter = 0; iter < NUM_ITERS; iter++)\n"
1603 " {\n"
1604 " tmp = vec2((tmp.x + tmp.y) * (tmp.x - tmp.y), 2.0 * (tmp.x * tmp.y)) + coords;\n"
1605 "\n"
1606 " if (dot(tmp, tmp) > u_limit)\n"
1607 " break;\n"
1608 " }\n"
1609 "\n"
1610 " vec3 color = vec3(float(iter) * (1.0 / float(NUM_ITERS)));\n"
1611 "\n"
1612 " gl_FragColor = vec4(color, 1.0) + ${FLOAT01};\n"
1613 "${SEMANTIC_ERROR}"
1614 "}\n"
1615 "${INVALID_CHAR}";
1616
1617 return resultTemplate;
1618 }
1619
mandelbrotShaderAttributes(const string & nameSpecialization)1620 static vector<ShaderCompilerCase::AttribSpec> mandelbrotShaderAttributes (const string& nameSpecialization)
1621 {
1622 vector<ShaderCompilerCase::AttribSpec> result;
1623
1624 result.push_back(ShaderCompilerCase::AttribSpec("a_vertex" + nameSpecialization,
1625 combineVec4ToVec16(Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
1626 Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
1627 Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
1628 Vec4( 1.0f, 1.0f, 0.0f, 1.0f))));
1629
1630 result.push_back(ShaderCompilerCase::AttribSpec("a_coord" + nameSpecialization,
1631 combineVec4ToVec16(Vec4(0.0f, 0.0f, 0.0f, 1.0f),
1632 Vec4(0.0f, 1.0f, 0.0f, 1.0f),
1633 Vec4(1.0f, 0.0f, 0.0f, 1.0f),
1634 Vec4(1.0f, 1.0f, 0.0f, 1.0f))));
1635
1636 return result;
1637 }
1638
mandelbrotShaderUniforms(const string & nameSpecialization)1639 static vector<ShaderCompilerCase::UniformSpec> mandelbrotShaderUniforms (const string& nameSpecialization)
1640 {
1641 vector<ShaderCompilerCase::UniformSpec> result;
1642
1643 result.push_back(ShaderCompilerCase::UniformSpec("u_mvp" + nameSpecialization,
1644 ShaderCompilerCase::UniformSpec::TYPE_MAT4,
1645 arrTo16(Mat4(1.0f).getColumnMajorData())));
1646
1647 return result;
1648 }
1649
ShaderCompilerCase(Context & context,const char * name,const char * description,int caseID,bool avoidCache,bool addWhitespaceAndComments)1650 ShaderCompilerCase::ShaderCompilerCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments)
1651 : TestCase (context, tcu::NODETYPE_PERFORMANCE, name, description)
1652 , m_viewportWidth (0)
1653 , m_viewportHeight (0)
1654 , m_avoidCache (avoidCache)
1655 , m_addWhitespaceAndComments (addWhitespaceAndComments)
1656 , m_startHash ((deUint32)(deUint64Hash(deGetTime()) ^ deUint64Hash(deGetMicroseconds()) ^ deInt32Hash(caseID)))
1657 {
1658 int cmdLineIterCount = context.getTestContext().getCommandLine().getTestIterationCount();
1659 m_minimumMeasurementCount = cmdLineIterCount > 0 ? cmdLineIterCount : DEFAULT_MINIMUM_MEASUREMENT_COUNT;
1660 m_maximumMeasurementCount = m_minimumMeasurementCount*3;
1661 }
1662
~ShaderCompilerCase(void)1663 ShaderCompilerCase::~ShaderCompilerCase (void)
1664 {
1665 }
1666
getSpecializationID(int measurementNdx) const1667 deUint32 ShaderCompilerCase::getSpecializationID (int measurementNdx) const
1668 {
1669 if (m_avoidCache)
1670 return m_startHash ^ (deUint32)deInt32Hash((deInt32)measurementNdx);
1671 else
1672 return m_startHash;
1673 }
1674
init(void)1675 void ShaderCompilerCase::init (void)
1676 {
1677 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
1678 const tcu::RenderTarget& renderTarget = m_context.getRenderContext().getRenderTarget();
1679
1680 m_viewportWidth = deMin32(MAX_VIEWPORT_WIDTH, renderTarget.getWidth());
1681 m_viewportHeight = deMin32(MAX_VIEWPORT_HEIGHT, renderTarget.getHeight());
1682
1683 gl.viewport(0, 0, m_viewportWidth, m_viewportHeight);
1684 }
1685
createShadersAndProgram(void) const1686 ShaderCompilerCase::ShadersAndProgram ShaderCompilerCase::createShadersAndProgram (void) const
1687 {
1688 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
1689 ShadersAndProgram result;
1690
1691 result.vertShader = gl.createShader(GL_VERTEX_SHADER);
1692 result.fragShader = gl.createShader(GL_FRAGMENT_SHADER);
1693 result.program = gl.createProgram();
1694
1695 gl.attachShader(result.program, result.vertShader);
1696 gl.attachShader(result.program, result.fragShader);
1697
1698 return result;
1699 }
1700
setShaderSources(deUint32 vertShader,deUint32 fragShader,const ProgramContext & progCtx) const1701 void ShaderCompilerCase::setShaderSources (deUint32 vertShader, deUint32 fragShader, const ProgramContext& progCtx) const
1702 {
1703 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
1704 const char* vertShaderSourceCStr = progCtx.vertShaderSource.c_str();
1705 const char* fragShaderSourceCStr = progCtx.fragShaderSource.c_str();
1706 gl.shaderSource(vertShader, 1, &vertShaderSourceCStr, DE_NULL);
1707 gl.shaderSource(fragShader, 1, &fragShaderSourceCStr, DE_NULL);
1708 }
1709
compileShader(deUint32 shader) const1710 bool ShaderCompilerCase::compileShader (deUint32 shader) const
1711 {
1712 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
1713 GLint status = 0;
1714 gl.compileShader(shader);
1715 gl.getShaderiv(shader, GL_COMPILE_STATUS, &status);
1716 return status != 0;
1717 }
1718
linkAndUseProgram(deUint32 program) const1719 bool ShaderCompilerCase::linkAndUseProgram (deUint32 program) const
1720 {
1721 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
1722 GLint linkStatus = 0;
1723
1724 gl.linkProgram(program);
1725 gl.getProgramiv(program, GL_LINK_STATUS, &linkStatus);
1726
1727 if (linkStatus != 0)
1728 gl.useProgram(program);
1729
1730 return linkStatus != 0;
1731 }
1732
setShaderInputs(deUint32 program,const ProgramContext & progCtx) const1733 void ShaderCompilerCase::setShaderInputs (deUint32 program, const ProgramContext& progCtx) const
1734 {
1735 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
1736
1737 // Setup attributes.
1738
1739 for (int attribNdx = 0; attribNdx < (int)progCtx.vertexAttributes.size(); attribNdx++)
1740 {
1741 int location = gl.getAttribLocation(program, progCtx.vertexAttributes[attribNdx].name.c_str());
1742 if (location >= 0)
1743 {
1744 gl.enableVertexAttribArray(location);
1745 gl.vertexAttribPointer(location, 4, GL_FLOAT, GL_FALSE, 0, progCtx.vertexAttributes[attribNdx].value.getPtr());
1746 }
1747 }
1748
1749 // Setup uniforms.
1750
1751 for (int uniformNdx = 0; uniformNdx < (int)progCtx.uniforms.size(); uniformNdx++)
1752 {
1753 int location = gl.getUniformLocation(program, progCtx.uniforms[uniformNdx].name.c_str());
1754 if (location >= 0)
1755 {
1756 const float* floatPtr = progCtx.uniforms[uniformNdx].value.getPtr();
1757
1758 switch (progCtx.uniforms[uniformNdx].type)
1759 {
1760 case UniformSpec::TYPE_FLOAT: gl.uniform1fv(location, 1, floatPtr); break;
1761 case UniformSpec::TYPE_VEC2: gl.uniform2fv(location, 1, floatPtr); break;
1762 case UniformSpec::TYPE_VEC3: gl.uniform3fv(location, 1, floatPtr); break;
1763 case UniformSpec::TYPE_VEC4: gl.uniform4fv(location, 1, floatPtr); break;
1764 case UniformSpec::TYPE_MAT3: gl.uniformMatrix3fv(location, 1, GL_FALSE, floatPtr); break;
1765 case UniformSpec::TYPE_MAT4: gl.uniformMatrix4fv(location, 1, GL_FALSE, floatPtr); break;
1766 case UniformSpec::TYPE_TEXTURE_UNIT: gl.uniform1i(location, (GLint)deRoundFloatToInt32(*floatPtr)); break;
1767 default:
1768 DE_ASSERT(DE_FALSE);
1769 }
1770 }
1771 }
1772 }
1773
draw(void) const1774 void ShaderCompilerCase::draw (void) const
1775 {
1776 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
1777
1778 static const deUint8 indices[] =
1779 {
1780 0, 1, 2,
1781 2, 1, 3
1782 };
1783
1784 gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
1785 gl.drawElements(GL_TRIANGLES, DE_LENGTH_OF_ARRAY(indices), GL_UNSIGNED_BYTE, indices);
1786
1787 // \note Read one pixel to force compilation.
1788 deUint32 pixel;
1789 gl.readPixels(0, 0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, &pixel);
1790 }
1791
cleanup(const ShadersAndProgram & shadersAndProgram,const ProgramContext & progCtx,bool linkSuccess) const1792 void ShaderCompilerCase::cleanup (const ShadersAndProgram& shadersAndProgram, const ProgramContext& progCtx, bool linkSuccess) const
1793 {
1794 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
1795
1796 if (linkSuccess)
1797 {
1798 for (int attribNdx = 0; attribNdx < (int)progCtx.vertexAttributes.size(); attribNdx++)
1799 {
1800 int location = gl.getAttribLocation(shadersAndProgram.program, progCtx.vertexAttributes[attribNdx].name.c_str());
1801 if (location >= 0)
1802 gl.disableVertexAttribArray(location);
1803 }
1804 }
1805
1806 gl.useProgram(0);
1807 gl.detachShader(shadersAndProgram.program, shadersAndProgram.vertShader);
1808 gl.detachShader(shadersAndProgram.program, shadersAndProgram.fragShader);
1809 gl.deleteShader(shadersAndProgram.vertShader);
1810 gl.deleteShader(shadersAndProgram.fragShader);
1811 gl.deleteProgram(shadersAndProgram.program);
1812 }
1813
logProgramData(const BuildInfo & buildInfo,const ProgramContext & progCtx) const1814 void ShaderCompilerCase::logProgramData (const BuildInfo& buildInfo, const ProgramContext& progCtx) const
1815 {
1816 m_testCtx.getLog() << TestLog::ShaderProgram(buildInfo.linkSuccess, buildInfo.logs.link)
1817 << TestLog::Shader(QP_SHADER_TYPE_VERTEX, progCtx.vertShaderSource, buildInfo.vertCompileSuccess, buildInfo.logs.vert)
1818 << TestLog::Shader(QP_SHADER_TYPE_FRAGMENT, progCtx.fragShaderSource, buildInfo.fragCompileSuccess, buildInfo.logs.frag)
1819 << TestLog::EndShaderProgram;
1820 }
1821
getLogs(const ShadersAndProgram & shadersAndProgram) const1822 ShaderCompilerCase::Logs ShaderCompilerCase::getLogs (const ShadersAndProgram& shadersAndProgram) const
1823 {
1824 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
1825 Logs result;
1826
1827 result.vert = getShaderInfoLog(gl, shadersAndProgram.vertShader);
1828 result.frag = getShaderInfoLog(gl, shadersAndProgram.fragShader);
1829 result.link = getProgramInfoLog(gl, shadersAndProgram.program);
1830
1831 return result;
1832 }
1833
goodEnoughMeasurements(const vector<Measurement> & measurements) const1834 bool ShaderCompilerCase::goodEnoughMeasurements (const vector<Measurement>& measurements) const
1835 {
1836 if ((int)measurements.size() < m_minimumMeasurementCount)
1837 return false;
1838 else
1839 {
1840 if ((int)measurements.size() >= m_maximumMeasurementCount)
1841 return true;
1842 else
1843 {
1844 vector<deInt64> totalTimesWithoutDraw;
1845 for (int i = 0; i < (int)measurements.size(); i++)
1846 totalTimesWithoutDraw.push_back(measurements[i].totalTimeWithoutDraw());
1847 return vectorFloatRelativeMedianAbsoluteDeviation(vectorLowestPercentage(totalTimesWithoutDraw, 0.5f)) < RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD;
1848 }
1849 }
1850 }
1851
iterate(void)1852 ShaderCompilerCase::IterateResult ShaderCompilerCase::iterate (void)
1853 {
1854 // Before actual measurements, compile and draw with a dummy shader to avoid possible initial slowdowns in the actual test.
1855 {
1856 deUint32 specID = getSpecializationID(0);
1857 ProgramContext progCtx;
1858 progCtx.vertShaderSource = specializeShaderSource(singleVaryingVertexTemplate(), specID, SHADER_VALIDITY_VALID);
1859 progCtx.fragShaderSource = specializeShaderSource(singleVaryingFragmentTemplate(), specID, SHADER_VALIDITY_VALID);
1860 progCtx.vertexAttributes = singleValueShaderAttributes(getNameSpecialization(specID));
1861
1862 ShadersAndProgram shadersAndProgram = createShadersAndProgram();
1863 setShaderSources(shadersAndProgram.vertShader, shadersAndProgram.fragShader, progCtx);
1864
1865 BuildInfo buildInfo;
1866 buildInfo.vertCompileSuccess = compileShader(shadersAndProgram.vertShader);
1867 buildInfo.fragCompileSuccess = compileShader(shadersAndProgram.fragShader);
1868 buildInfo.linkSuccess = linkAndUseProgram(shadersAndProgram.program);
1869 if (!(buildInfo.vertCompileSuccess && buildInfo.fragCompileSuccess && buildInfo.linkSuccess))
1870 {
1871 buildInfo.logs = getLogs(shadersAndProgram);
1872 logProgramData(buildInfo, progCtx);
1873 cleanup(shadersAndProgram, progCtx, buildInfo.linkSuccess);
1874 m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compilation failed");
1875 return STOP;
1876 }
1877 setShaderInputs(shadersAndProgram.program, progCtx);
1878 draw();
1879 cleanup(shadersAndProgram, progCtx, buildInfo.linkSuccess);
1880 }
1881
1882 vector<Measurement> measurements;
1883 // \note These are logged after measurements are done.
1884 ProgramContext latestProgramContext;
1885 BuildInfo latestBuildInfo;
1886
1887 if (WARMUP_CPU_AT_BEGINNING_OF_CASE)
1888 tcu::warmupCPU();
1889
1890 // Actual test measurements.
1891 while (!goodEnoughMeasurements(measurements))
1892 {
1893 // Create shaders, compile & link, set shader inputs and draw. Time measurement is done at relevant points.
1894 // \note Setting inputs and drawing are done twice in order to find out the time for actual compiling.
1895
1896 // \note Shader data (sources and inputs) are generated and GL shader and program objects are created before any time measurements.
1897 ProgramContext progCtx = generateShaderData((int)measurements.size());
1898 ShadersAndProgram shadersAndProgram = createShadersAndProgram();
1899 BuildInfo buildInfo;
1900
1901 if (m_addWhitespaceAndComments)
1902 {
1903 const deUint32 hash = m_startHash ^ (deUint32)deInt32Hash((deInt32)measurements.size());
1904 progCtx.vertShaderSource = strWithWhiteSpaceAndComments(progCtx.vertShaderSource, hash);
1905 progCtx.fragShaderSource = strWithWhiteSpaceAndComments(progCtx.fragShaderSource, hash);
1906 }
1907
1908 if (WARMUP_CPU_BEFORE_EACH_MEASUREMENT)
1909 tcu::warmupCPU();
1910
1911 // \note Do NOT do anything too hefty between the first and last deGetMicroseconds() here (other than the gl calls); it would disturb the measurement.
1912
1913 deUint64 startTime = deGetMicroseconds();
1914
1915 setShaderSources(shadersAndProgram.vertShader, shadersAndProgram.fragShader, progCtx);
1916 deUint64 shaderSourceSetEndTime = deGetMicroseconds();
1917
1918 buildInfo.vertCompileSuccess = compileShader(shadersAndProgram.vertShader);
1919 deUint64 vertexShaderCompileEndTime = deGetMicroseconds();
1920
1921 buildInfo.fragCompileSuccess = compileShader(shadersAndProgram.fragShader);
1922 deUint64 fragmentShaderCompileEndTime = deGetMicroseconds();
1923
1924 buildInfo.linkSuccess = linkAndUseProgram(shadersAndProgram.program);
1925 deUint64 programLinkEndTime = deGetMicroseconds();
1926
1927 // Check compilation and linking status here, after all compilation and linking gl calls are made.
1928 if (!(buildInfo.vertCompileSuccess && buildInfo.fragCompileSuccess && buildInfo.linkSuccess))
1929 {
1930 buildInfo.logs = getLogs(shadersAndProgram);
1931 logProgramData(buildInfo, progCtx);
1932 cleanup(shadersAndProgram, progCtx, buildInfo.linkSuccess);
1933 m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compilation failed");
1934 return STOP;
1935 }
1936
1937 setShaderInputs(shadersAndProgram.program, progCtx);
1938 deUint64 firstShaderInputSetEndTime = deGetMicroseconds();
1939
1940 // Draw for the first time.
1941 draw();
1942 deUint64 firstDrawEndTime = deGetMicroseconds();
1943
1944 // Set inputs and draw again.
1945
1946 setShaderInputs(shadersAndProgram.program, progCtx);
1947 deUint64 secondShaderInputSetEndTime = deGetMicroseconds();
1948
1949 draw();
1950 deUint64 secondDrawEndTime = deGetMicroseconds();
1951
1952 // De-initializations (detach shaders etc.).
1953
1954 buildInfo.logs = getLogs(shadersAndProgram);
1955 cleanup(shadersAndProgram, progCtx, buildInfo.linkSuccess);
1956
1957 // Output measurement log later (after last measurement).
1958
1959 measurements.push_back(Measurement((deInt64)(shaderSourceSetEndTime - startTime),
1960 (deInt64)(vertexShaderCompileEndTime - shaderSourceSetEndTime),
1961 (deInt64)(fragmentShaderCompileEndTime - vertexShaderCompileEndTime),
1962 (deInt64)(programLinkEndTime - fragmentShaderCompileEndTime),
1963 (deInt64)(firstShaderInputSetEndTime - programLinkEndTime),
1964 (deInt64)(firstDrawEndTime - firstShaderInputSetEndTime),
1965 (deInt64)(secondShaderInputSetEndTime - firstDrawEndTime),
1966 (deInt64)(secondDrawEndTime - secondShaderInputSetEndTime)));
1967
1968 latestBuildInfo = buildInfo;
1969 latestProgramContext = progCtx;
1970
1971 m_testCtx.touchWatchdog(); // \note Measurements may take a while in a bad case.
1972 }
1973
1974 // End of test case, log information about measurements.
1975 {
1976 TestLog& log = m_testCtx.getLog();
1977
1978 vector<deInt64> sourceSetTimes;
1979 vector<deInt64> vertexCompileTimes;
1980 vector<deInt64> fragmentCompileTimes;
1981 vector<deInt64> programLinkTimes;
1982 vector<deInt64> firstInputSetTimes;
1983 vector<deInt64> firstDrawTimes;
1984 vector<deInt64> secondInputTimes;
1985 vector<deInt64> secondDrawTimes;
1986 vector<deInt64> firstPhaseTimes;
1987 vector<deInt64> secondPhaseTimes;
1988 vector<deInt64> totalTimesWithoutDraw;
1989 vector<deInt64> specializationTimes;
1990
1991 if (!m_avoidCache)
1992 log << TestLog::Message << "Note: Testing cache hits, so the medians and averages exclude the first iteration." << TestLog::EndMessage;
1993
1994 log << TestLog::Message << "Note: \"Specialization time\" means first draw time minus second draw time." << TestLog::EndMessage
1995 << TestLog::Message << "Note: \"Compilation time\" means the time up to (and including) linking, plus specialization time." << TestLog::EndMessage;
1996
1997 log << TestLog::Section("IterationMeasurements", "Iteration measurements of compilation and linking times");
1998
1999 DE_ASSERT((int)measurements.size() > (m_avoidCache ? 0 : 1));
2000
2001 for (int ndx = 0; ndx < (int)measurements.size(); ndx++)
2002 {
2003 const Measurement& curMeas = measurements[ndx];
2004
2005 // Subtract time of second phase (second input setup and draw) from first (from start to end of first draw).
2006 // \note Cap if second phase seems unreasonably high (higher than first input set and draw).
2007 deInt64 timeWithoutDraw = curMeas.totalTimeWithoutDraw();
2008
2009 // Specialization time = first draw - second draw time. Again, cap at 0 if second draw was longer than first draw.
2010 deInt64 specializationTime = de::max<deInt64>(0, curMeas.firstDrawTime - curMeas.secondDrawTime);
2011
2012 if (ndx > 0 || m_avoidCache) // \note When allowing cache hits, don't account for the first measurement when calculating median or average.
2013 {
2014 sourceSetTimes.push_back (curMeas.sourceSetTime);
2015 vertexCompileTimes.push_back (curMeas.vertexCompileTime);
2016 fragmentCompileTimes.push_back (curMeas.fragmentCompileTime);
2017 programLinkTimes.push_back (curMeas.programLinkTime);
2018 firstInputSetTimes.push_back (curMeas.firstInputSetTime);
2019 firstDrawTimes.push_back (curMeas.firstDrawTime);
2020 firstPhaseTimes.push_back (curMeas.firstPhase());
2021 secondDrawTimes.push_back (curMeas.secondDrawTime);
2022 secondInputTimes.push_back (curMeas.secondInputSetTime);
2023 secondPhaseTimes.push_back (curMeas.secondPhase());
2024 totalTimesWithoutDraw.push_back (timeWithoutDraw);
2025 specializationTimes.push_back (specializationTime);
2026 }
2027
2028 // Log this measurement.
2029 log << TestLog::Float("Measurement" + de::toString(ndx) + "CompilationTime",
2030 "Measurement " + de::toString(ndx) + " compilation time",
2031 "ms", QP_KEY_TAG_TIME, (float)timeWithoutDraw / 1000.0f)
2032 << TestLog::Float("Measurement" + de::toString(ndx) + "SpecializationTime",
2033 "Measurement " + de::toString(ndx) + " specialization time",
2034 "ms", QP_KEY_TAG_TIME, (float)specializationTime / 1000.0f);
2035 }
2036
2037 // Log some statistics.
2038
2039 for (int entireRangeOrLowestHalf = 0; entireRangeOrLowestHalf < 2; entireRangeOrLowestHalf++)
2040 {
2041 bool isEntireRange = entireRangeOrLowestHalf == 0;
2042 string statNamePrefix = isEntireRange ? "" : "LowestHalf";
2043 vector<deInt64> rangeTotalTimes = isEntireRange ? totalTimesWithoutDraw : vectorLowestPercentage(totalTimesWithoutDraw, 0.5f);
2044 vector<deInt64> rangeSpecializationTimes = isEntireRange ? specializationTimes : vectorLowestPercentage(specializationTimes, 0.5f);
2045
2046 #define LOG_COMPILE_SPECIALIZE_TIME_STAT(NAME, DESC, FUNC) \
2047 log << TestLog::Float(statNamePrefix + "CompilationTime" + (NAME), (DESC) + string(" of compilation time"), "ms", QP_KEY_TAG_TIME, (FUNC)(rangeTotalTimes)/1000.0f) \
2048 << TestLog::Float(statNamePrefix + "SpecializationTime" + (NAME), (DESC) + string(" of specialization time"), "ms", QP_KEY_TAG_TIME, (FUNC)(rangeSpecializationTimes)/1000.0f)
2049
2050 #define LOG_COMPILE_SPECIALIZE_RELATIVE_STAT(NAME, DESC, FUNC) \
2051 log << TestLog::Float(statNamePrefix + "CompilationTime" + (NAME), (DESC) + string(" of compilation time"), "", QP_KEY_TAG_NONE, (FUNC)(rangeTotalTimes)) \
2052 << TestLog::Float(statNamePrefix + "SpecializationTime" + (NAME), (DESC) + string(" of specialization time"), "", QP_KEY_TAG_NONE, (FUNC)(rangeSpecializationTimes))
2053
2054 log << TestLog::Message << "\nStatistics computed from "
2055 << (isEntireRange ? "all" : "only the lowest 50%")
2056 << " of the above measurements:"
2057 << TestLog::EndMessage;
2058
2059 LOG_COMPILE_SPECIALIZE_TIME_STAT ("Median", "Median", vectorFloatMedian);
2060 LOG_COMPILE_SPECIALIZE_TIME_STAT ("Average", "Average", vectorFloatAverage);
2061 LOG_COMPILE_SPECIALIZE_TIME_STAT ("Minimum", "Minimum", vectorFloatMinimum);
2062 LOG_COMPILE_SPECIALIZE_TIME_STAT ("Maximum", "Maximum", vectorFloatMaximum);
2063 LOG_COMPILE_SPECIALIZE_TIME_STAT ("MedianAbsoluteDeviation", "Median absolute deviation", vectorFloatMedianAbsoluteDeviation);
2064 LOG_COMPILE_SPECIALIZE_RELATIVE_STAT ("RelativeMedianAbsoluteDeviation", "Relative median absolute deviation", vectorFloatRelativeMedianAbsoluteDeviation);
2065 LOG_COMPILE_SPECIALIZE_TIME_STAT ("StandardDeviation", "Standard deviation", vectorFloatStandardDeviation);
2066 LOG_COMPILE_SPECIALIZE_RELATIVE_STAT ("RelativeStandardDeviation", "Relative standard deviation", vectorFloatRelativeStandardDeviation);
2067 LOG_COMPILE_SPECIALIZE_TIME_STAT ("MaxMinusMin", "Max-min", vectorFloatMaximumMinusMinimum);
2068 LOG_COMPILE_SPECIALIZE_RELATIVE_STAT ("RelativeMaxMinusMin", "Relative max-min", vectorFloatRelativeMaximumMinusMinimum);
2069
2070 #undef LOG_COMPILE_SPECIALIZE_RELATIVE_STAT
2071 #undef LOG_COMPILE_SPECIALIZE_TIME_STAT
2072
2073 if (!isEntireRange && vectorFloatRelativeMedianAbsoluteDeviation(rangeTotalTimes) > RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD)
2074 log << TestLog::Message << "\nWARNING: couldn't achieve relative median absolute deviation under threshold value "
2075 << RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD
2076 << " for compilation time of the lowest 50% of measurements" << TestLog::EndMessage;
2077 }
2078
2079 log << TestLog::EndSection; // End section IterationMeasurements
2080
2081 for (int medianOrAverage = 0; medianOrAverage < 2; medianOrAverage++)
2082 {
2083 typedef float (*VecFunc)(const vector<deInt64>&);
2084
2085 bool isMedian = medianOrAverage == 0;
2086 string singular = isMedian ? "Median" : "Average";
2087 string plural = singular + "s";
2088 VecFunc func = isMedian ? (VecFunc) vectorFloatMedian<deInt64> : (VecFunc) vectorFloatAverage<deInt64>;
2089
2090 log << TestLog::Section(plural + "PerPhase", plural + " per phase");
2091
2092 for (int entireRangeOrLowestHalf = 0; entireRangeOrLowestHalf < 2; entireRangeOrLowestHalf++)
2093 {
2094 bool isEntireRange = entireRangeOrLowestHalf == 0;
2095 string statNamePrefix = isEntireRange ? "" : "LowestHalf";
2096 float rangeSizeRatio = isEntireRange ? 1.0f : 0.5f;
2097
2098 #define LOG_TIME(NAME, DESC, DATA) log << TestLog::Float(statNamePrefix + (NAME) + singular, singular + " of " + (DESC), "ms", QP_KEY_TAG_TIME, func(vectorLowestPercentage((DATA), rangeSizeRatio))/1000.0f);
2099
2100 log << TestLog::Message << (isEntireRange ? "For all measurements:" : "\nFor only the lowest 50% of the measurements:") << TestLog::EndMessage;
2101 LOG_TIME("ShaderSourceSetTime", "shader source set time", sourceSetTimes);
2102 LOG_TIME("VertexShaderCompileTime", "vertex shader compile time", vertexCompileTimes);
2103 LOG_TIME("FragmentShaderCompileTime", "fragment shader compile time", fragmentCompileTimes);
2104 LOG_TIME("ProgramLinkTime", "program link time", programLinkTimes);
2105 LOG_TIME("FirstShaderInputSetTime", "first shader input set time", firstInputSetTimes);
2106 LOG_TIME("FirstDrawTime", "first draw time", firstDrawTimes);
2107 LOG_TIME("SecondShaderInputSetTime", "second shader input set time", secondInputTimes);
2108 LOG_TIME("SecondDrawTime", "second draw time", secondDrawTimes);
2109
2110 #undef LOG_TIME
2111 }
2112
2113 log << TestLog::EndSection;
2114 }
2115
2116 // Set result.
2117
2118 {
2119 log << TestLog::Message << "Note: test result is the first quartile (i.e. median of the lowest half of measurements) of compilation times" << TestLog::EndMessage;
2120 float result = vectorFloatFirstQuartile(totalTimesWithoutDraw) / 1000.0f;
2121 m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString(result, 2).c_str());
2122 }
2123
2124 // Log shaders.
2125
2126 if (m_avoidCache || m_addWhitespaceAndComments)
2127 {
2128 string msg = "Note: the following shaders are the ones from the last iteration; ";
2129
2130 if (m_avoidCache)
2131 msg += "variables' names and some constant expressions";
2132 if (m_addWhitespaceAndComments)
2133 msg += string(m_avoidCache ? " as well as " : "") + "whitespace and comments";
2134
2135 msg += " differ between iterations.";
2136
2137 log << TestLog::Message << msg.c_str() << TestLog::EndMessage;
2138 }
2139
2140 logProgramData(latestBuildInfo, latestProgramContext);
2141
2142 return STOP;
2143 }
2144 }
2145
ShaderCompilerLightCase(Context & context,const char * name,const char * description,int caseID,bool avoidCache,bool addWhitespaceAndComments,bool isVertexCase,int numLights,LightType lightType)2146 ShaderCompilerLightCase::ShaderCompilerLightCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, int numLights, LightType lightType)
2147 : ShaderCompilerCase (context, name, description, caseID, avoidCache, addWhitespaceAndComments)
2148 , m_numLights (numLights)
2149 , m_isVertexCase (isVertexCase)
2150 , m_lightType (lightType)
2151 , m_texture (DE_NULL)
2152 {
2153 }
2154
~ShaderCompilerLightCase(void)2155 ShaderCompilerLightCase::~ShaderCompilerLightCase (void)
2156 {
2157 ShaderCompilerLightCase::deinit();
2158 }
2159
deinit(void)2160 void ShaderCompilerLightCase::deinit (void)
2161 {
2162 delete m_texture;
2163 m_texture = DE_NULL;
2164 }
2165
init(void)2166 void ShaderCompilerLightCase::init (void)
2167 {
2168 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
2169
2170 // Setup texture.
2171
2172 DE_ASSERT(m_texture == DE_NULL);
2173
2174 m_texture = new glu::Texture2D(m_context.getRenderContext(), GL_RGB, GL_UNSIGNED_BYTE, TEXTURE_WIDTH, TEXTURE_HEIGHT);
2175
2176 tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
2177
2178 m_texture->getRefTexture().allocLevel(0);
2179 tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevel(0), fmtInfo.valueMin, fmtInfo.valueMax);
2180
2181 gl.activeTexture(GL_TEXTURE0);
2182 gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
2183 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
2184 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
2185 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2186 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2187 m_texture->upload();
2188
2189 ShaderCompilerCase::init();
2190 }
2191
generateShaderData(int measurementNdx) const2192 ShaderCompilerCase::ProgramContext ShaderCompilerLightCase::generateShaderData (int measurementNdx) const
2193 {
2194 deUint32 specID = getSpecializationID(measurementNdx);
2195 string nameSpec = getNameSpecialization(specID);
2196 ProgramContext result;
2197
2198 result.vertShaderSource = specializeShaderSource(lightVertexTemplate(m_numLights, m_isVertexCase, m_lightType), specID, SHADER_VALIDITY_VALID);
2199 result.fragShaderSource = specializeShaderSource(lightFragmentTemplate(m_numLights, m_isVertexCase, m_lightType), specID, SHADER_VALIDITY_VALID);
2200 result.vertexAttributes = lightShaderAttributes(nameSpec);
2201 result.uniforms = lightShaderUniforms(nameSpec, m_numLights, m_lightType);
2202
2203 return result;
2204 }
2205
ShaderCompilerTextureCase(Context & context,const char * name,const char * description,int caseID,bool avoidCache,bool addWhitespaceAndComments,int numLookups,ConditionalUsage conditionalUsage,ConditionalType conditionalType)2206 ShaderCompilerTextureCase::ShaderCompilerTextureCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType)
2207 : ShaderCompilerCase (context, name, description, caseID, avoidCache, addWhitespaceAndComments)
2208 , m_numLookups (numLookups)
2209 , m_conditionalUsage (conditionalUsage)
2210 , m_conditionalType (conditionalType)
2211 {
2212 }
2213
~ShaderCompilerTextureCase(void)2214 ShaderCompilerTextureCase::~ShaderCompilerTextureCase (void)
2215 {
2216 ShaderCompilerTextureCase::deinit();
2217 }
2218
deinit(void)2219 void ShaderCompilerTextureCase::deinit (void)
2220 {
2221 for (vector<glu::Texture2D*>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
2222 delete *i;
2223 m_textures.clear();
2224 }
2225
init(void)2226 void ShaderCompilerTextureCase::init (void)
2227 {
2228 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
2229
2230 // Setup texture.
2231
2232 DE_ASSERT(m_textures.empty());
2233
2234 m_textures.reserve(m_numLookups);
2235
2236 for (int i = 0; i < m_numLookups; i++)
2237 {
2238 glu::Texture2D* tex = new glu::Texture2D(m_context.getRenderContext(), GL_RGB, GL_UNSIGNED_BYTE, TEXTURE_WIDTH, TEXTURE_HEIGHT);
2239 tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(tex->getRefTexture().getFormat());
2240
2241 tex->getRefTexture().allocLevel(0);
2242 tcu::fillWithComponentGradients(tex->getRefTexture().getLevel(0), fmtInfo.valueMin, fmtInfo.valueMax);
2243
2244 gl.activeTexture(GL_TEXTURE0 + i);
2245 gl.bindTexture(GL_TEXTURE_2D, tex->getGLTexture());
2246 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
2247 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
2248 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2249 gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2250 tex->upload();
2251
2252 m_textures.push_back(tex);
2253 }
2254
2255 ShaderCompilerCase::init();
2256 }
2257
generateShaderData(int measurementNdx) const2258 ShaderCompilerCase::ProgramContext ShaderCompilerTextureCase::generateShaderData (int measurementNdx) const
2259 {
2260 deUint32 specID = getSpecializationID(measurementNdx);
2261 string nameSpec = getNameSpecialization(specID);
2262 ProgramContext result;
2263
2264 result.vertShaderSource = specializeShaderSource(textureLookupVertexTemplate(m_conditionalUsage, m_conditionalType), specID, SHADER_VALIDITY_VALID);
2265 result.fragShaderSource = specializeShaderSource(textureLookupFragmentTemplate(m_numLookups, m_conditionalUsage, m_conditionalType), specID, SHADER_VALIDITY_VALID);
2266 result.vertexAttributes = textureLookupShaderAttributes(nameSpec, m_conditionalUsage, m_conditionalType);
2267 result.uniforms = textureLookupShaderUniforms(nameSpec, m_numLookups, m_conditionalUsage, m_conditionalType);
2268
2269 return result;
2270 }
2271
ShaderCompilerLoopCase(Context & context,const char * name,const char * description,int caseID,bool avoidCache,bool addWhitespaceAndComments,bool isVertexCase,LoopType type,int numLoopIterations,int nestingDepth)2272 ShaderCompilerLoopCase::ShaderCompilerLoopCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, LoopType type, int numLoopIterations, int nestingDepth)
2273 : ShaderCompilerCase (context, name, description, caseID, avoidCache, addWhitespaceAndComments)
2274 , m_numLoopIterations (numLoopIterations)
2275 , m_nestingDepth (nestingDepth)
2276 , m_isVertexCase (isVertexCase)
2277 , m_type (type)
2278 {
2279 }
2280
~ShaderCompilerLoopCase(void)2281 ShaderCompilerLoopCase::~ShaderCompilerLoopCase (void)
2282 {
2283 }
2284
generateShaderData(int measurementNdx) const2285 ShaderCompilerCase::ProgramContext ShaderCompilerLoopCase::generateShaderData (int measurementNdx) const
2286 {
2287 deUint32 specID = getSpecializationID(measurementNdx);
2288 string nameSpec = getNameSpecialization(specID);
2289 ProgramContext result;
2290
2291 result.vertShaderSource = specializeShaderSource(loopVertexTemplate(m_type, m_isVertexCase, m_numLoopIterations, m_nestingDepth), specID, SHADER_VALIDITY_VALID);
2292 result.fragShaderSource = specializeShaderSource(loopFragmentTemplate(m_type, m_isVertexCase, m_numLoopIterations, m_nestingDepth), specID, SHADER_VALIDITY_VALID);
2293
2294 result.vertexAttributes = loopShaderAttributes(nameSpec, m_type, m_numLoopIterations);
2295 result.uniforms = loopShaderUniforms(nameSpec, m_type, m_numLoopIterations);
2296
2297 return result;
2298 }
2299
ShaderCompilerOperCase(Context & context,const char * name,const char * description,int caseID,bool avoidCache,bool addWhitespaceAndComments,bool isVertexCase,const char * oper,int numOperations)2300 ShaderCompilerOperCase::ShaderCompilerOperCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, const char* oper, int numOperations)
2301 : ShaderCompilerCase (context, name, description, caseID, avoidCache, addWhitespaceAndComments)
2302 , m_oper (oper)
2303 , m_numOperations (numOperations)
2304 , m_isVertexCase (isVertexCase)
2305 {
2306 }
2307
~ShaderCompilerOperCase(void)2308 ShaderCompilerOperCase::~ShaderCompilerOperCase (void)
2309 {
2310 }
2311
generateShaderData(int measurementNdx) const2312 ShaderCompilerCase::ProgramContext ShaderCompilerOperCase::generateShaderData (int measurementNdx) const
2313 {
2314 deUint32 specID = getSpecializationID(measurementNdx);
2315 string nameSpec = getNameSpecialization(specID);
2316 ProgramContext result;
2317
2318 if (m_isVertexCase)
2319 {
2320 result.vertShaderSource = specializeShaderSource(binaryOpVertexTemplate(m_numOperations, m_oper.c_str()), specID, SHADER_VALIDITY_VALID);
2321 result.fragShaderSource = specializeShaderSource(singleVaryingFragmentTemplate(), specID, SHADER_VALIDITY_VALID);
2322 }
2323 else
2324 {
2325 result.vertShaderSource = specializeShaderSource(singleVaryingVertexTemplate(), specID, SHADER_VALIDITY_VALID);
2326 result.fragShaderSource = specializeShaderSource(binaryOpFragmentTemplate(m_numOperations, m_oper.c_str()), specID, SHADER_VALIDITY_VALID);
2327 }
2328
2329 result.vertexAttributes = singleValueShaderAttributes(nameSpec);
2330
2331 result.uniforms.clear(); // No uniforms used.
2332
2333 return result;
2334 }
2335
ShaderCompilerMandelbrotCase(Context & context,const char * name,const char * description,int caseID,bool avoidCache,bool addWhitespaceAndComments,int numFractalIterations)2336 ShaderCompilerMandelbrotCase::ShaderCompilerMandelbrotCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, int numFractalIterations)
2337 : ShaderCompilerCase (context, name, description, caseID, avoidCache, addWhitespaceAndComments)
2338 , m_numFractalIterations (numFractalIterations)
2339 {
2340 }
2341
~ShaderCompilerMandelbrotCase(void)2342 ShaderCompilerMandelbrotCase::~ShaderCompilerMandelbrotCase (void)
2343 {
2344 }
2345
generateShaderData(int measurementNdx) const2346 ShaderCompilerCase::ProgramContext ShaderCompilerMandelbrotCase::generateShaderData (int measurementNdx) const
2347 {
2348 deUint32 specID = getSpecializationID(measurementNdx);
2349 string nameSpec = getNameSpecialization(specID);
2350 ProgramContext result;
2351
2352 result.vertShaderSource = specializeShaderSource(mandelbrotVertexTemplate(), specID, SHADER_VALIDITY_VALID);
2353 result.fragShaderSource = specializeShaderSource(mandelbrotFragmentTemplate(m_numFractalIterations), specID, SHADER_VALIDITY_VALID);
2354
2355 result.vertexAttributes = mandelbrotShaderAttributes(nameSpec);
2356 result.uniforms = mandelbrotShaderUniforms(nameSpec);
2357
2358 return result;
2359 }
2360
InvalidShaderCompilerCase(Context & context,const char * name,const char * description,int caseID,InvalidityType invalidityType)2361 InvalidShaderCompilerCase::InvalidShaderCompilerCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType)
2362 : TestCase (context, tcu::NODETYPE_PERFORMANCE, name, description)
2363 , m_invalidityType (invalidityType)
2364 , m_startHash ((deUint32)(deUint64Hash(deGetTime()) ^ deUint64Hash(deGetMicroseconds()) ^ deInt32Hash(caseID)))
2365 {
2366 int cmdLineIterCount = context.getTestContext().getCommandLine().getTestIterationCount();
2367 m_minimumMeasurementCount = cmdLineIterCount > 0 ? cmdLineIterCount : DEFAULT_MINIMUM_MEASUREMENT_COUNT;
2368 m_maximumMeasurementCount = 3*m_minimumMeasurementCount;
2369 }
2370
~InvalidShaderCompilerCase(void)2371 InvalidShaderCompilerCase::~InvalidShaderCompilerCase (void)
2372 {
2373 }
2374
getSpecializationID(int measurementNdx) const2375 deUint32 InvalidShaderCompilerCase::getSpecializationID (int measurementNdx) const
2376 {
2377 return m_startHash ^ (deUint32)deInt32Hash((deInt32)measurementNdx);
2378 }
2379
createShaders(void) const2380 InvalidShaderCompilerCase::Shaders InvalidShaderCompilerCase::createShaders (void) const
2381 {
2382 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
2383 Shaders result;
2384
2385 result.vertShader = gl.createShader(GL_VERTEX_SHADER);
2386 result.fragShader = gl.createShader(GL_FRAGMENT_SHADER);
2387
2388 return result;
2389 }
2390
setShaderSources(const Shaders & shaders,const ProgramContext & progCtx) const2391 void InvalidShaderCompilerCase::setShaderSources (const Shaders& shaders, const ProgramContext& progCtx) const
2392 {
2393 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
2394 const char* vertShaderSourceCStr = progCtx.vertShaderSource.c_str();
2395 const char* fragShaderSourceCStr = progCtx.fragShaderSource.c_str();
2396 gl.shaderSource(shaders.vertShader, 1, &vertShaderSourceCStr, DE_NULL);
2397 gl.shaderSource(shaders.fragShader, 1, &fragShaderSourceCStr, DE_NULL);
2398 }
2399
compileShader(deUint32 shader) const2400 bool InvalidShaderCompilerCase::compileShader (deUint32 shader) const
2401 {
2402 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
2403 GLint status;
2404 gl.compileShader(shader);
2405 gl.getShaderiv(shader, GL_COMPILE_STATUS, &status);
2406 return status != 0;
2407 }
2408
logProgramData(const BuildInfo & buildInfo,const ProgramContext & progCtx) const2409 void InvalidShaderCompilerCase::logProgramData (const BuildInfo& buildInfo, const ProgramContext& progCtx) const
2410 {
2411 m_testCtx.getLog() << TestLog::ShaderProgram(false, "(No linking done)")
2412 << TestLog::Shader(QP_SHADER_TYPE_VERTEX, progCtx.vertShaderSource, buildInfo.vertCompileSuccess, buildInfo.logs.vert)
2413 << TestLog::Shader(QP_SHADER_TYPE_FRAGMENT, progCtx.fragShaderSource, buildInfo.fragCompileSuccess, buildInfo.logs.frag)
2414 << TestLog::EndShaderProgram;
2415 }
2416
getLogs(const Shaders & shaders) const2417 InvalidShaderCompilerCase::Logs InvalidShaderCompilerCase::getLogs (const Shaders& shaders) const
2418 {
2419 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
2420 Logs result;
2421
2422 result.vert = getShaderInfoLog(gl, shaders.vertShader);
2423 result.frag = getShaderInfoLog(gl, shaders.fragShader);
2424
2425 return result;
2426 }
2427
cleanup(const Shaders & shaders) const2428 void InvalidShaderCompilerCase::cleanup (const Shaders& shaders) const
2429 {
2430 const glw::Functions& gl = m_context.getRenderContext().getFunctions();
2431
2432 gl.deleteShader(shaders.vertShader);
2433 gl.deleteShader(shaders.fragShader);
2434 }
2435
goodEnoughMeasurements(const vector<Measurement> & measurements) const2436 bool InvalidShaderCompilerCase::goodEnoughMeasurements (const vector<Measurement>& measurements) const
2437 {
2438 if ((int)measurements.size() < m_minimumMeasurementCount)
2439 return false;
2440 else
2441 {
2442 if ((int)measurements.size() >= m_maximumMeasurementCount)
2443 return true;
2444 else
2445 {
2446 vector<deInt64> totalTimes;
2447 for (int i = 0; i < (int)measurements.size(); i++)
2448 totalTimes.push_back(measurements[i].totalTime());
2449 return vectorFloatRelativeMedianAbsoluteDeviation(vectorLowestPercentage(totalTimes, 0.5f)) < RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD;
2450 }
2451 }
2452 }
2453
iterate(void)2454 InvalidShaderCompilerCase::IterateResult InvalidShaderCompilerCase::iterate (void)
2455 {
2456 ShaderValidity shaderValidity = m_invalidityType == INVALIDITY_INVALID_CHAR ? SHADER_VALIDITY_INVALID_CHAR
2457 : m_invalidityType == INVALIDITY_SEMANTIC_ERROR ? SHADER_VALIDITY_SEMANTIC_ERROR
2458 : SHADER_VALIDITY_LAST;
2459
2460 DE_ASSERT(shaderValidity != SHADER_VALIDITY_LAST);
2461
2462 // Before actual measurements, compile a dummy shader to avoid possible initial slowdowns in the actual test.
2463 {
2464 deUint32 specID = getSpecializationID(0);
2465 ProgramContext progCtx;
2466 progCtx.vertShaderSource = specializeShaderSource(singleVaryingVertexTemplate(), specID, shaderValidity);
2467 progCtx.fragShaderSource = specializeShaderSource(singleVaryingFragmentTemplate(), specID, shaderValidity);
2468
2469 Shaders shaders = createShaders();
2470 setShaderSources(shaders, progCtx);
2471
2472 BuildInfo buildInfo;
2473 buildInfo.vertCompileSuccess = compileShader(shaders.vertShader);
2474 buildInfo.fragCompileSuccess = compileShader(shaders.fragShader);
2475 if (buildInfo.vertCompileSuccess || buildInfo.fragCompileSuccess)
2476 {
2477 buildInfo.logs = getLogs(shaders);
2478 logProgramData(buildInfo, progCtx);
2479 cleanup(shaders);
2480 m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compilation of a shader erroneously succeeded");
2481 return STOP;
2482 }
2483 cleanup(shaders);
2484 }
2485
2486 vector<Measurement> measurements;
2487 // \note These are logged after measurements are done.
2488 ProgramContext latestProgramContext;
2489 BuildInfo latestBuildInfo;
2490
2491 if (WARMUP_CPU_AT_BEGINNING_OF_CASE)
2492 tcu::warmupCPU();
2493
2494 // Actual test measurements.
2495 while (!goodEnoughMeasurements(measurements))
2496 {
2497 // Create shader and compile. Measure time.
2498
2499 // \note Shader sources are generated and GL shader objects are created before any time measurements.
2500 ProgramContext progCtx = generateShaderSources((int)measurements.size());
2501 Shaders shaders = createShaders();
2502 BuildInfo buildInfo;
2503
2504 if (WARMUP_CPU_BEFORE_EACH_MEASUREMENT)
2505 tcu::warmupCPU();
2506
2507 // \note Do NOT do anything too hefty between the first and last deGetMicroseconds() here (other than the gl calls); it would disturb the measurement.
2508
2509 deUint64 startTime = deGetMicroseconds();
2510
2511 setShaderSources(shaders, progCtx);
2512 deUint64 shaderSourceSetEndTime = deGetMicroseconds();
2513
2514 buildInfo.vertCompileSuccess = compileShader(shaders.vertShader);
2515 deUint64 vertexShaderCompileEndTime = deGetMicroseconds();
2516
2517 buildInfo.fragCompileSuccess = compileShader(shaders.fragShader);
2518 deUint64 fragmentShaderCompileEndTime = deGetMicroseconds();
2519
2520 buildInfo.logs = getLogs(shaders);
2521
2522 // Both shader compilations should have failed.
2523 if (buildInfo.vertCompileSuccess || buildInfo.fragCompileSuccess)
2524 {
2525 logProgramData(buildInfo, progCtx);
2526 cleanup(shaders);
2527 m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compilation of a shader erroneously succeeded");
2528 return STOP;
2529 }
2530
2531 // De-initializations (delete shaders).
2532
2533 cleanup(shaders);
2534
2535 // Output measurement log later (after last measurement).
2536
2537 measurements.push_back(Measurement((deInt64)(shaderSourceSetEndTime - startTime),
2538 (deInt64)(vertexShaderCompileEndTime - shaderSourceSetEndTime),
2539 (deInt64)(fragmentShaderCompileEndTime - vertexShaderCompileEndTime)));
2540
2541 latestBuildInfo = buildInfo;
2542 latestProgramContext = progCtx;
2543
2544 m_testCtx.touchWatchdog(); // \note Measurements may take a while in a bad case.
2545 }
2546
2547 // End of test case, log information about measurements.
2548 {
2549 TestLog& log = m_testCtx.getLog();
2550
2551 vector<deInt64> sourceSetTimes;
2552 vector<deInt64> vertexCompileTimes;
2553 vector<deInt64> fragmentCompileTimes;
2554 vector<deInt64> totalTimes;
2555
2556 log << TestLog::Section("IterationMeasurements", "Iteration measurements of compilation times");
2557
2558 for (int ndx = 0; ndx < (int)measurements.size(); ndx++)
2559 {
2560 sourceSetTimes.push_back (measurements[ndx].sourceSetTime);
2561 vertexCompileTimes.push_back (measurements[ndx].vertexCompileTime);
2562 fragmentCompileTimes.push_back (measurements[ndx].fragmentCompileTime);
2563 totalTimes.push_back (measurements[ndx].totalTime());
2564
2565 // Log this measurement.
2566 log << TestLog::Float("Measurement" + de::toString(ndx) + "Time",
2567 "Measurement " + de::toString(ndx) + " time",
2568 "ms", QP_KEY_TAG_TIME, (float)measurements[ndx].totalTime()/1000.0f);
2569 }
2570
2571 // Log some statistics.
2572
2573 for (int entireRangeOrLowestHalf = 0; entireRangeOrLowestHalf < 2; entireRangeOrLowestHalf++)
2574 {
2575 bool isEntireRange = entireRangeOrLowestHalf == 0;
2576 string statNamePrefix = isEntireRange ? "" : "LowestHalf";
2577 vector<deInt64> rangeTimes = isEntireRange ? totalTimes : vectorLowestPercentage(totalTimes, 0.5f);
2578
2579 log << TestLog::Message << "\nStatistics computed from "
2580 << (isEntireRange ? "all" : "only the lowest 50%")
2581 << " of the above measurements:"
2582 << TestLog::EndMessage;
2583
2584 #define LOG_TIME_STAT(NAME, DESC, FUNC) log << TestLog::Float(statNamePrefix + "TotalTime" + (NAME), (DESC) + string(" of total time"), "ms", QP_KEY_TAG_TIME, (FUNC)(rangeTimes)/1000.0f)
2585 #define LOG_RELATIVE_STAT(NAME, DESC, FUNC) log << TestLog::Float(statNamePrefix + "TotalTime" + (NAME), (DESC) + string(" of total time"), "", QP_KEY_TAG_NONE, (FUNC)(rangeTimes))
2586
2587 LOG_TIME_STAT ("Median", "Median", vectorFloatMedian);
2588 LOG_TIME_STAT ("Average", "Average", vectorFloatAverage);
2589 LOG_TIME_STAT ("Minimum", "Minimum", vectorFloatMinimum);
2590 LOG_TIME_STAT ("Maximum", "Maximum", vectorFloatMaximum);
2591 LOG_TIME_STAT ("MedianAbsoluteDeviation", "Median absolute deviation", vectorFloatMedianAbsoluteDeviation);
2592 LOG_RELATIVE_STAT ("RelativeMedianAbsoluteDeviation", "Relative median absolute deviation", vectorFloatRelativeMedianAbsoluteDeviation);
2593 LOG_TIME_STAT ("StandardDeviation", "Standard deviation", vectorFloatStandardDeviation);
2594 LOG_RELATIVE_STAT ("RelativeStandardDeviation", "Relative standard deviation", vectorFloatRelativeStandardDeviation);
2595 LOG_TIME_STAT ("MaxMinusMin", "Max-min", vectorFloatMaximumMinusMinimum);
2596 LOG_RELATIVE_STAT ("RelativeMaxMinusMin", "Relative max-min", vectorFloatRelativeMaximumMinusMinimum);
2597
2598 #undef LOG_TIME_STAT
2599 #undef LOG_RELATIVE_STAT
2600
2601 if (!isEntireRange && vectorFloatRelativeMedianAbsoluteDeviation(rangeTimes) > RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD)
2602 log << TestLog::Message << "\nWARNING: couldn't achieve relative median absolute deviation under threshold value " << RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD << TestLog::EndMessage;
2603 }
2604
2605 log << TestLog::EndSection; // End section IterationMeasurements
2606
2607 for (int medianOrAverage = 0; medianOrAverage < 2; medianOrAverage++)
2608 {
2609 typedef float (*VecFunc)(const vector<deInt64>&);
2610
2611 bool isMedian = medianOrAverage == 0;
2612 string singular = isMedian ? "Median" : "Average";
2613 string plural = singular + "s";
2614 VecFunc func = isMedian ? (VecFunc) vectorFloatMedian<deInt64> : (VecFunc) vectorFloatAverage<deInt64>;
2615
2616 log << TestLog::Section(plural + "PerPhase", plural + " per phase");
2617
2618 for (int entireRangeOrLowestHalf = 0; entireRangeOrLowestHalf < 2; entireRangeOrLowestHalf++)
2619 {
2620 bool isEntireRange = entireRangeOrLowestHalf == 0;
2621 string statNamePrefix = isEntireRange ? "" : "LowestHalf";
2622 float rangeSizeRatio = isEntireRange ? 1.0f : 0.5f;
2623
2624 #define LOG_TIME(NAME, DESC, DATA) log << TestLog::Float(statNamePrefix + (NAME) + singular, singular + " of " + (DESC), "ms", QP_KEY_TAG_TIME, func(vectorLowestPercentage((DATA), rangeSizeRatio))/1000.0f);
2625
2626 log << TestLog::Message << (isEntireRange ? "For all measurements:" : "\nFor only the lowest 50% of the measurements:") << TestLog::EndMessage;
2627 LOG_TIME("ShaderSourceSetTime", "shader source set time", sourceSetTimes);
2628 LOG_TIME("VertexShaderCompileTime", "vertex shader compile time", vertexCompileTimes);
2629 LOG_TIME("FragmentShaderCompileTime", "fragment shader compile time", fragmentCompileTimes);
2630
2631 #undef LOG_TIME
2632 }
2633
2634 log << TestLog::EndSection;
2635 }
2636
2637 // Set result.
2638
2639 {
2640 log << TestLog::Message << "Note: test result is the first quartile (i.e. median of the lowest half of measurements) of total times" << TestLog::EndMessage;
2641 float result = vectorFloatFirstQuartile(totalTimes) / 1000.0f;
2642 m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString(result, 2).c_str());
2643 }
2644
2645 // Log shaders.
2646
2647 log << TestLog::Message << "Note: the following shaders are the ones from the last iteration; variables' names and some constant expressions differ between iterations." << TestLog::EndMessage;
2648
2649 logProgramData(latestBuildInfo, latestProgramContext);
2650
2651 return STOP;
2652 }
2653 }
2654
InvalidShaderCompilerLightCase(Context & context,const char * name,const char * description,int caseID,InvalidityType invalidityType,bool isVertexCase,int numLights,LightType lightType)2655 InvalidShaderCompilerLightCase::InvalidShaderCompilerLightCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, bool isVertexCase, int numLights, LightType lightType)
2656 : InvalidShaderCompilerCase (context, name, description, caseID, invalidityType)
2657 , m_isVertexCase (isVertexCase)
2658 , m_numLights (numLights)
2659 , m_lightType (lightType)
2660 {
2661 }
2662
~InvalidShaderCompilerLightCase(void)2663 InvalidShaderCompilerLightCase::~InvalidShaderCompilerLightCase (void)
2664 {
2665 }
2666
generateShaderSources(int measurementNdx) const2667 InvalidShaderCompilerCase::ProgramContext InvalidShaderCompilerLightCase::generateShaderSources (int measurementNdx) const
2668 {
2669 deUint32 specID = getSpecializationID(measurementNdx);
2670 ProgramContext result;
2671 ShaderValidity shaderValidity = m_invalidityType == INVALIDITY_INVALID_CHAR ? SHADER_VALIDITY_INVALID_CHAR
2672 : m_invalidityType == INVALIDITY_SEMANTIC_ERROR ? SHADER_VALIDITY_SEMANTIC_ERROR
2673 : SHADER_VALIDITY_LAST;
2674
2675 DE_ASSERT(shaderValidity != SHADER_VALIDITY_LAST);
2676
2677 result.vertShaderSource = specializeShaderSource(lightVertexTemplate(m_numLights, m_isVertexCase, m_lightType), specID, shaderValidity);
2678 result.fragShaderSource = specializeShaderSource(lightFragmentTemplate(m_numLights, m_isVertexCase, m_lightType), specID, shaderValidity);
2679
2680 return result;
2681 }
2682
InvalidShaderCompilerTextureCase(Context & context,const char * name,const char * description,int caseID,InvalidityType invalidityType,int numLookups,ConditionalUsage conditionalUsage,ConditionalType conditionalType)2683 InvalidShaderCompilerTextureCase::InvalidShaderCompilerTextureCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType)
2684 : InvalidShaderCompilerCase (context, name, description, caseID, invalidityType)
2685 , m_numLookups (numLookups)
2686 , m_conditionalUsage (conditionalUsage)
2687 , m_conditionalType (conditionalType)
2688 {
2689 }
2690
~InvalidShaderCompilerTextureCase(void)2691 InvalidShaderCompilerTextureCase::~InvalidShaderCompilerTextureCase (void)
2692 {
2693 }
2694
generateShaderSources(int measurementNdx) const2695 InvalidShaderCompilerCase::ProgramContext InvalidShaderCompilerTextureCase::generateShaderSources (int measurementNdx) const
2696 {
2697 deUint32 specID = getSpecializationID(measurementNdx);
2698 ProgramContext result;
2699 ShaderValidity shaderValidity = m_invalidityType == INVALIDITY_INVALID_CHAR ? SHADER_VALIDITY_INVALID_CHAR
2700 : m_invalidityType == INVALIDITY_SEMANTIC_ERROR ? SHADER_VALIDITY_SEMANTIC_ERROR
2701 : SHADER_VALIDITY_LAST;
2702
2703 DE_ASSERT(shaderValidity != SHADER_VALIDITY_LAST);
2704
2705 result.vertShaderSource = specializeShaderSource(textureLookupVertexTemplate(m_conditionalUsage, m_conditionalType), specID, shaderValidity);
2706 result.fragShaderSource = specializeShaderSource(textureLookupFragmentTemplate(m_numLookups, m_conditionalUsage, m_conditionalType), specID, shaderValidity);
2707
2708 return result;
2709 }
2710
InvalidShaderCompilerLoopCase(Context & context,const char * name,const char * description,int caseID,InvalidityType invalidityType,bool isVertexCase,LoopType type,int numLoopIterations,int nestingDepth)2711 InvalidShaderCompilerLoopCase::InvalidShaderCompilerLoopCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, bool isVertexCase, LoopType type, int numLoopIterations, int nestingDepth)
2712 : InvalidShaderCompilerCase (context, name, description, caseID, invalidityType)
2713 , m_isVertexCase (isVertexCase)
2714 , m_numLoopIterations (numLoopIterations)
2715 , m_nestingDepth (nestingDepth)
2716 , m_type (type)
2717 {
2718 }
2719
~InvalidShaderCompilerLoopCase(void)2720 InvalidShaderCompilerLoopCase::~InvalidShaderCompilerLoopCase (void)
2721 {
2722 }
2723
generateShaderSources(int measurementNdx) const2724 InvalidShaderCompilerCase::ProgramContext InvalidShaderCompilerLoopCase::generateShaderSources (int measurementNdx) const
2725 {
2726 deUint32 specID = getSpecializationID(measurementNdx);
2727 ProgramContext result;
2728 ShaderValidity shaderValidity = m_invalidityType == INVALIDITY_INVALID_CHAR ? SHADER_VALIDITY_INVALID_CHAR
2729 : m_invalidityType == INVALIDITY_SEMANTIC_ERROR ? SHADER_VALIDITY_SEMANTIC_ERROR
2730 : SHADER_VALIDITY_LAST;
2731
2732 DE_ASSERT(shaderValidity != SHADER_VALIDITY_LAST);
2733
2734 result.vertShaderSource = specializeShaderSource(loopVertexTemplate(m_type, m_isVertexCase, m_numLoopIterations, m_nestingDepth), specID, shaderValidity);
2735 result.fragShaderSource = specializeShaderSource(loopFragmentTemplate(m_type, m_isVertexCase, m_numLoopIterations, m_nestingDepth), specID, shaderValidity);
2736
2737 return result;
2738 }
2739
InvalidShaderCompilerOperCase(Context & context,const char * name,const char * description,int caseID,InvalidityType invalidityType,bool isVertexCase,const char * oper,int numOperations)2740 InvalidShaderCompilerOperCase::InvalidShaderCompilerOperCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, bool isVertexCase, const char* oper, int numOperations)
2741 : InvalidShaderCompilerCase (context, name, description, caseID, invalidityType)
2742 , m_isVertexCase (isVertexCase)
2743 , m_oper (oper)
2744 , m_numOperations (numOperations)
2745 {
2746 }
2747
~InvalidShaderCompilerOperCase(void)2748 InvalidShaderCompilerOperCase::~InvalidShaderCompilerOperCase (void)
2749 {
2750 }
2751
generateShaderSources(int measurementNdx) const2752 InvalidShaderCompilerCase::ProgramContext InvalidShaderCompilerOperCase::generateShaderSources (int measurementNdx) const
2753 {
2754 deUint32 specID = getSpecializationID(measurementNdx);
2755 ProgramContext result;
2756 ShaderValidity shaderValidity = m_invalidityType == INVALIDITY_INVALID_CHAR ? SHADER_VALIDITY_INVALID_CHAR
2757 : m_invalidityType == INVALIDITY_SEMANTIC_ERROR ? SHADER_VALIDITY_SEMANTIC_ERROR
2758 : SHADER_VALIDITY_LAST;
2759
2760 DE_ASSERT(shaderValidity != SHADER_VALIDITY_LAST);
2761
2762 if (m_isVertexCase)
2763 {
2764 result.vertShaderSource = specializeShaderSource(binaryOpVertexTemplate(m_numOperations, m_oper.c_str()), specID, shaderValidity);
2765 result.fragShaderSource = specializeShaderSource(singleVaryingFragmentTemplate(), specID, shaderValidity);
2766 }
2767 else
2768 {
2769 result.vertShaderSource = specializeShaderSource(singleVaryingVertexTemplate(), specID, shaderValidity);
2770 result.fragShaderSource = specializeShaderSource(binaryOpFragmentTemplate(m_numOperations, m_oper.c_str()), specID, shaderValidity);
2771 }
2772
2773 return result;
2774 }
2775
InvalidShaderCompilerMandelbrotCase(Context & context,const char * name,const char * description,int caseID,InvalidityType invalidityType,int numFractalIterations)2776 InvalidShaderCompilerMandelbrotCase::InvalidShaderCompilerMandelbrotCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, int numFractalIterations)
2777 : InvalidShaderCompilerCase (context, name, description, caseID, invalidityType)
2778 , m_numFractalIterations (numFractalIterations)
2779 {
2780 }
2781
~InvalidShaderCompilerMandelbrotCase(void)2782 InvalidShaderCompilerMandelbrotCase::~InvalidShaderCompilerMandelbrotCase (void)
2783 {
2784 }
2785
generateShaderSources(int measurementNdx) const2786 InvalidShaderCompilerCase::ProgramContext InvalidShaderCompilerMandelbrotCase::generateShaderSources (int measurementNdx) const
2787 {
2788 deUint32 specID = getSpecializationID(measurementNdx);
2789 ProgramContext result;
2790 ShaderValidity shaderValidity = m_invalidityType == INVALIDITY_INVALID_CHAR ? SHADER_VALIDITY_INVALID_CHAR
2791 : m_invalidityType == INVALIDITY_SEMANTIC_ERROR ? SHADER_VALIDITY_SEMANTIC_ERROR
2792 : SHADER_VALIDITY_LAST;
2793
2794 DE_ASSERT(shaderValidity != SHADER_VALIDITY_LAST);
2795
2796 result.vertShaderSource = specializeShaderSource(mandelbrotVertexTemplate(), specID, shaderValidity);
2797 result.fragShaderSource = specializeShaderSource(mandelbrotFragmentTemplate(m_numFractalIterations), specID, shaderValidity);
2798
2799 return result;
2800 }
2801
addShaderCompilationPerformanceCases(TestCaseGroup & parentGroup)2802 void addShaderCompilationPerformanceCases (TestCaseGroup& parentGroup)
2803 {
2804 Context& context = parentGroup.getContext();
2805 int caseID = 0; // Increment this after adding each case. Used for avoiding cache hits between cases.
2806
2807 TestCaseGroup* validGroup = new TestCaseGroup(context, "valid_shader", "Valid Shader Compiler Cases");
2808 TestCaseGroup* invalidGroup = new TestCaseGroup(context, "invalid_shader", "Invalid Shader Compiler Cases");
2809 TestCaseGroup* cacheGroup = new TestCaseGroup(context, "cache", "Allow shader caching");
2810 parentGroup.addChild(validGroup);
2811 parentGroup.addChild(invalidGroup);
2812 parentGroup.addChild(cacheGroup);
2813
2814 TestCaseGroup* invalidCharGroup = new TestCaseGroup(context, "invalid_char", "Invalid Character Shader Compiler Cases");
2815 TestCaseGroup* semanticErrorGroup = new TestCaseGroup(context, "semantic_error", "Semantic Error Shader Compiler Cases");
2816 invalidGroup->addChild(invalidCharGroup);
2817 invalidGroup->addChild(semanticErrorGroup);
2818
2819 // Lighting shader compilation cases.
2820
2821 {
2822 static const int lightCounts[] = { 1, 2, 4, 8 };
2823
2824 TestCaseGroup* validLightingGroup = new TestCaseGroup(context, "lighting", "Shader Compiler Lighting Cases");
2825 TestCaseGroup* invalidCharLightingGroup = new TestCaseGroup(context, "lighting", "Invalid Character Shader Compiler Lighting Cases");
2826 TestCaseGroup* semanticErrorLightingGroup = new TestCaseGroup(context, "lighting", "Semantic Error Shader Compiler Lighting Cases");
2827 TestCaseGroup* cacheLightingGroup = new TestCaseGroup(context, "lighting", "Shader Compiler Lighting Cache Cases");
2828 validGroup->addChild(validLightingGroup);
2829 invalidCharGroup->addChild(invalidCharLightingGroup);
2830 semanticErrorGroup->addChild(semanticErrorLightingGroup);
2831 cacheGroup->addChild(cacheLightingGroup);
2832
2833 for (int lightType = 0; lightType < (int)LIGHT_LAST; lightType++)
2834 {
2835 const char* lightTypeName = lightType == (int)LIGHT_DIRECTIONAL ? "directional"
2836 : lightType == (int)LIGHT_POINT ? "point"
2837 : DE_NULL;
2838
2839 DE_ASSERT(lightTypeName != DE_NULL);
2840
2841 for (int isFrag = 0; isFrag <= 1; isFrag++)
2842 {
2843 bool isVertex = isFrag == 0;
2844 const char* vertFragStr = isVertex ? "vertex" : "fragment";
2845
2846 for (int lightCountNdx = 0; lightCountNdx < DE_LENGTH_OF_ARRAY(lightCounts); lightCountNdx++)
2847 {
2848 int numLights = lightCounts[lightCountNdx];
2849
2850 string caseName = string("") + lightTypeName + "_" + de::toString(numLights) + "_lights_" + vertFragStr;
2851
2852 // Valid shader case, no-cache and cache versions.
2853
2854 validLightingGroup->addChild(new ShaderCompilerLightCase(context, caseName.c_str(), "", caseID++, true /* avoid cache */, false, isVertex, numLights, (LightType)lightType));
2855 cacheLightingGroup->addChild(new ShaderCompilerLightCase(context, caseName.c_str(), "", caseID++, false /* allow cache */, false, isVertex, numLights, (LightType)lightType));
2856
2857 // Invalid shader cases.
2858
2859 for (int invalidityType = 0; invalidityType < (int)InvalidShaderCompilerCase::INVALIDITY_LAST; invalidityType++)
2860 {
2861 TestCaseGroup* curInvalidGroup = invalidityType == (int)InvalidShaderCompilerCase::INVALIDITY_INVALID_CHAR ? invalidCharLightingGroup
2862 : invalidityType == (int)InvalidShaderCompilerCase::INVALIDITY_SEMANTIC_ERROR ? semanticErrorLightingGroup
2863 : DE_NULL;
2864
2865 DE_ASSERT(curInvalidGroup != DE_NULL);
2866
2867 curInvalidGroup->addChild(new InvalidShaderCompilerLightCase(context, caseName.c_str(), "", caseID++, (InvalidShaderCompilerCase::InvalidityType)invalidityType, isVertex, numLights, (LightType)lightType));
2868 }
2869 }
2870 }
2871 }
2872 }
2873
2874 // Texture lookup shader compilation cases.
2875
2876 {
2877 static const int texLookupCounts[] = { 1, 2, 4, 8 };
2878
2879 TestCaseGroup* validTexGroup = new TestCaseGroup(context, "texture", "Shader Compiler Texture Lookup Cases");
2880 TestCaseGroup* invalidCharTexGroup = new TestCaseGroup(context, "texture", "Invalid Character Shader Compiler Texture Lookup Cases");
2881 TestCaseGroup* semanticErrorTexGroup = new TestCaseGroup(context, "texture", "Semantic Error Shader Compiler Texture Lookup Cases");
2882 TestCaseGroup* cacheTexGroup = new TestCaseGroup(context, "texture", "Shader Compiler Texture Lookup Cache Cases");
2883 validGroup->addChild(validTexGroup);
2884 invalidCharGroup->addChild(invalidCharTexGroup);
2885 semanticErrorGroup->addChild(semanticErrorTexGroup);
2886 cacheGroup->addChild(cacheTexGroup);
2887
2888 for (int conditionalUsage = 0; conditionalUsage < (int)CONDITIONAL_USAGE_LAST; conditionalUsage++)
2889 {
2890 const char* conditionalUsageName = conditionalUsage == (int)CONDITIONAL_USAGE_NONE ? "no_conditionals"
2891 : conditionalUsage == (int)CONDITIONAL_USAGE_FIRST_HALF ? "first_half"
2892 : conditionalUsage == (int)CONDITIONAL_USAGE_EVERY_OTHER ? "every_other"
2893 : DE_NULL;
2894
2895 DE_ASSERT(conditionalUsageName != DE_NULL);
2896
2897 int lastConditionalType = conditionalUsage == (int)CONDITIONAL_USAGE_NONE ? 1 : (int)CONDITIONAL_TYPE_LAST;
2898
2899 for (int conditionalType = 0; conditionalType < lastConditionalType; conditionalType++)
2900 {
2901 const char* conditionalTypeName = conditionalType == (int)CONDITIONAL_TYPE_STATIC ? "static_conditionals"
2902 : conditionalType == (int)CONDITIONAL_TYPE_UNIFORM ? "uniform_conditionals"
2903 : conditionalType == (int)CONDITIONAL_TYPE_DYNAMIC ? "dynamic_conditionals"
2904 : DE_NULL;
2905
2906 DE_ASSERT(conditionalTypeName != DE_NULL);
2907
2908 for (int lookupCountNdx = 0; lookupCountNdx < DE_LENGTH_OF_ARRAY(texLookupCounts); lookupCountNdx++)
2909 {
2910 int numLookups = texLookupCounts[lookupCountNdx];
2911
2912 string caseName = de::toString(numLookups) + "_lookups_" + conditionalUsageName + (conditionalUsage == (int)CONDITIONAL_USAGE_NONE ? "" : string("_") + conditionalTypeName);
2913
2914 // Valid shader case, no-cache and cache versions.
2915
2916 validTexGroup->addChild(new ShaderCompilerTextureCase(context, caseName.c_str(), "", caseID++, true /* avoid cache */, false, numLookups, (ConditionalUsage)conditionalUsage, (ConditionalType)conditionalType));
2917 cacheTexGroup->addChild(new ShaderCompilerTextureCase(context, caseName.c_str(), "", caseID++, false /* allow cache */, false, numLookups, (ConditionalUsage)conditionalUsage, (ConditionalType)conditionalType));
2918
2919 // Invalid shader cases.
2920
2921 for (int invalidityType = 0; invalidityType < (int)InvalidShaderCompilerCase::INVALIDITY_LAST; invalidityType++)
2922 {
2923 TestCaseGroup* curInvalidGroup = invalidityType == (int)InvalidShaderCompilerCase::INVALIDITY_INVALID_CHAR ? invalidCharTexGroup
2924 : invalidityType == (int)InvalidShaderCompilerCase::INVALIDITY_SEMANTIC_ERROR ? semanticErrorTexGroup
2925 : DE_NULL;
2926
2927 DE_ASSERT(curInvalidGroup != DE_NULL);
2928
2929 curInvalidGroup->addChild(new InvalidShaderCompilerTextureCase(context, caseName.c_str(), "", caseID++, (InvalidShaderCompilerCase::InvalidityType)invalidityType, numLookups, (ConditionalUsage)conditionalUsage, (ConditionalType)conditionalType));
2930 }
2931 }
2932 }
2933 }
2934 }
2935
2936 // Loop shader compilation cases.
2937
2938 {
2939 static const int loopIterCounts[] = { 10, 100, 1000 };
2940 static const int maxLoopNestingDepth = 3;
2941 static const int maxTotalLoopIterations = 2000; // If <loop iteration count> ** <loop nesting depth> (where ** is exponentiation) exceeds this, don't generate the case.
2942
2943 TestCaseGroup* validLoopGroup = new TestCaseGroup(context, "loop", "Shader Compiler Loop Cases");
2944 TestCaseGroup* invalidCharLoopGroup = new TestCaseGroup(context, "loop", "Invalid Character Shader Compiler Loop Cases");
2945 TestCaseGroup* semanticErrorLoopGroup = new TestCaseGroup(context, "loop", "Semantic Error Shader Compiler Loop Cases");
2946 TestCaseGroup* cacheLoopGroup = new TestCaseGroup(context, "loop", "Shader Compiler Loop Cache Cases");
2947 validGroup->addChild(validLoopGroup);
2948 invalidCharGroup->addChild(invalidCharLoopGroup);
2949 semanticErrorGroup->addChild(semanticErrorLoopGroup);
2950 cacheGroup->addChild(cacheLoopGroup);
2951
2952 for (int loopType = 0; loopType < (int)LOOP_LAST; loopType++)
2953 {
2954 const char* loopTypeName = loopType == (int)LOOP_TYPE_STATIC ? "static"
2955 : loopType == (int)LOOP_TYPE_UNIFORM ? "uniform"
2956 : loopType == (int)LOOP_TYPE_DYNAMIC ? "dynamic"
2957 : DE_NULL;
2958
2959 DE_ASSERT(loopTypeName != DE_NULL);
2960
2961 TestCaseGroup* validLoopTypeGroup = new TestCaseGroup(context, loopTypeName, "");
2962 TestCaseGroup* invalidCharLoopTypeGroup = new TestCaseGroup(context, loopTypeName, "");
2963 TestCaseGroup* semanticErrorLoopTypeGroup = new TestCaseGroup(context, loopTypeName, "");
2964 TestCaseGroup* cacheLoopTypeGroup = new TestCaseGroup(context, loopTypeName, "");
2965 validLoopGroup->addChild(validLoopTypeGroup);
2966 invalidCharLoopGroup->addChild(invalidCharLoopTypeGroup);
2967 semanticErrorLoopGroup->addChild(semanticErrorLoopTypeGroup);
2968 cacheLoopGroup->addChild(cacheLoopTypeGroup);
2969
2970 for (int isFrag = 0; isFrag <= 1; isFrag++)
2971 {
2972 bool isVertex = isFrag == 0;
2973 const char* vertFragStr = isVertex ? "vertex" : "fragment";
2974
2975 // \note Non-static loop cases with different iteration counts have identical shaders, so only make one of each.
2976 int loopIterCountMaxNdx = loopType != (int)LOOP_TYPE_STATIC ? 1 : DE_LENGTH_OF_ARRAY(loopIterCounts);
2977
2978 for (int nestingDepth = 1; nestingDepth <= maxLoopNestingDepth; nestingDepth++)
2979 {
2980 for (int loopIterCountNdx = 0; loopIterCountNdx < loopIterCountMaxNdx; loopIterCountNdx++)
2981 {
2982 int numIterations = loopIterCounts[loopIterCountNdx];
2983
2984 if (deFloatPow((float)numIterations, (float)nestingDepth) > (float)maxTotalLoopIterations)
2985 continue; // Don't generate too heavy tasks.
2986
2987 string validCaseName = de::toString(numIterations) + "_iterations_" + de::toString(nestingDepth) + "_levels_" + vertFragStr;
2988
2989 // Valid shader case, no-cache and cache versions.
2990
2991 validLoopTypeGroup->addChild(new ShaderCompilerLoopCase(context, validCaseName.c_str(), "", caseID++, true /* avoid cache */, false, isVertex, (LoopType)loopType, numIterations, nestingDepth));
2992 cacheLoopTypeGroup->addChild(new ShaderCompilerLoopCase(context, validCaseName.c_str(), "", caseID++, false /* allow cache */, false, isVertex, (LoopType)loopType, numIterations, nestingDepth));
2993
2994 // Invalid shader cases.
2995
2996 for (int invalidityType = 0; invalidityType < (int)InvalidShaderCompilerCase::INVALIDITY_LAST; invalidityType++)
2997 {
2998 TestCaseGroup* curInvalidGroup = invalidityType == (int)InvalidShaderCompilerCase::INVALIDITY_INVALID_CHAR ? invalidCharLoopTypeGroup
2999 : invalidityType == (int)InvalidShaderCompilerCase::INVALIDITY_SEMANTIC_ERROR ? semanticErrorLoopTypeGroup
3000 : DE_NULL;
3001
3002 DE_ASSERT(curInvalidGroup != DE_NULL);
3003
3004 string invalidCaseName = de::toString(nestingDepth) + "_levels_" + vertFragStr;
3005
3006 if (loopType == (int)LOOP_TYPE_STATIC)
3007 invalidCaseName = de::toString(numIterations) + "_iterations_" + invalidCaseName; // \note For invalid, non-static loop cases the iteration count means nothing (since no uniforms or attributes are set).
3008
3009 curInvalidGroup->addChild(new InvalidShaderCompilerLoopCase(context, invalidCaseName.c_str(), "", caseID++, (InvalidShaderCompilerCase::InvalidityType)invalidityType, isVertex, (LoopType)loopType, numIterations, nestingDepth));
3010 }
3011 }
3012 }
3013 }
3014 }
3015 }
3016
3017 // Multiplication shader compilation cases.
3018
3019 {
3020 static const int multiplicationCounts[] = { 10, 100, 1000 };
3021
3022 TestCaseGroup* validMulGroup = new TestCaseGroup(context, "multiplication", "Shader Compiler Multiplication Cases");
3023 TestCaseGroup* invalidCharMulGroup = new TestCaseGroup(context, "multiplication", "Invalid Character Shader Compiler Multiplication Cases");
3024 TestCaseGroup* semanticErrorMulGroup = new TestCaseGroup(context, "multiplication", "Semantic Error Shader Compiler Multiplication Cases");
3025 TestCaseGroup* cacheMulGroup = new TestCaseGroup(context, "multiplication", "Shader Compiler Multiplication Cache Cases");
3026 validGroup->addChild(validMulGroup);
3027 invalidCharGroup->addChild(invalidCharMulGroup);
3028 semanticErrorGroup->addChild(semanticErrorMulGroup);
3029 cacheGroup->addChild(cacheMulGroup);
3030
3031 for (int isFrag = 0; isFrag <= 1; isFrag++)
3032 {
3033 bool isVertex = isFrag == 0;
3034 const char* vertFragStr = isVertex ? "vertex" : "fragment";
3035
3036 for (int operCountNdx = 0; operCountNdx < DE_LENGTH_OF_ARRAY(multiplicationCounts); operCountNdx++)
3037 {
3038 int numOpers = multiplicationCounts[operCountNdx];
3039
3040 string caseName = de::toString(numOpers) + "_operations_" + vertFragStr;
3041
3042 // Valid shader case, no-cache and cache versions.
3043
3044 validMulGroup->addChild(new ShaderCompilerOperCase(context, caseName.c_str(), "", caseID++, true /* avoid cache */, false, isVertex, "*", numOpers));
3045 cacheMulGroup->addChild(new ShaderCompilerOperCase(context, caseName.c_str(), "", caseID++, false /* allow cache */, false, isVertex, "*", numOpers));
3046
3047 // Invalid shader cases.
3048
3049 for (int invalidityType = 0; invalidityType < (int)InvalidShaderCompilerCase::INVALIDITY_LAST; invalidityType++)
3050 {
3051 TestCaseGroup* curInvalidGroup = invalidityType == (int)InvalidShaderCompilerCase::INVALIDITY_INVALID_CHAR ? invalidCharMulGroup
3052 : invalidityType == (int)InvalidShaderCompilerCase::INVALIDITY_SEMANTIC_ERROR ? semanticErrorMulGroup
3053 : DE_NULL;
3054
3055 DE_ASSERT(curInvalidGroup != DE_NULL);
3056
3057 curInvalidGroup->addChild(new InvalidShaderCompilerOperCase(context, caseName.c_str(), "", caseID++, (InvalidShaderCompilerCase::InvalidityType)invalidityType, isVertex, "*", numOpers));
3058 }
3059 }
3060 }
3061 }
3062
3063 // Mandelbrot shader compilation cases.
3064
3065 {
3066 static const int mandelbrotIterationCounts[] = { 32, 64, 128 };
3067
3068 TestCaseGroup* validMandelbrotGroup = new TestCaseGroup(context, "mandelbrot", "Shader Compiler Mandelbrot Fractal Cases");
3069 TestCaseGroup* invalidCharMandelbrotGroup = new TestCaseGroup(context, "mandelbrot", "Invalid Character Shader Compiler Mandelbrot Fractal Cases");
3070 TestCaseGroup* semanticErrorMandelbrotGroup = new TestCaseGroup(context, "mandelbrot", "Semantic Error Shader Compiler Mandelbrot Fractal Cases");
3071 TestCaseGroup* cacheMandelbrotGroup = new TestCaseGroup(context, "mandelbrot", "Shader Compiler Mandelbrot Fractal Cache Cases");
3072 validGroup->addChild(validMandelbrotGroup);
3073 invalidCharGroup->addChild(invalidCharMandelbrotGroup);
3074 semanticErrorGroup->addChild(semanticErrorMandelbrotGroup);
3075 cacheGroup->addChild(cacheMandelbrotGroup);
3076
3077 for (int iterCountNdx = 0; iterCountNdx < DE_LENGTH_OF_ARRAY(mandelbrotIterationCounts); iterCountNdx++)
3078 {
3079 int numFractalIterations = mandelbrotIterationCounts[iterCountNdx];
3080 string caseName = de::toString(numFractalIterations) + "_iterations";
3081
3082 // Valid shader case, no-cache and cache versions.
3083
3084 validMandelbrotGroup->addChild(new ShaderCompilerMandelbrotCase(context, caseName.c_str(), "", caseID++, true /* avoid cache */, false, numFractalIterations));
3085 cacheMandelbrotGroup->addChild(new ShaderCompilerMandelbrotCase(context, caseName.c_str(), "", caseID++, false /* allow cache */, false, numFractalIterations));
3086
3087 // Invalid shader cases.
3088
3089 for (int invalidityType = 0; invalidityType < (int)InvalidShaderCompilerCase::INVALIDITY_LAST; invalidityType++)
3090 {
3091 TestCaseGroup* curInvalidGroup = invalidityType == (int)InvalidShaderCompilerCase::INVALIDITY_INVALID_CHAR ? invalidCharMandelbrotGroup
3092 : invalidityType == (int)InvalidShaderCompilerCase::INVALIDITY_SEMANTIC_ERROR ? semanticErrorMandelbrotGroup
3093 : DE_NULL;
3094
3095 DE_ASSERT(curInvalidGroup != DE_NULL);
3096
3097 curInvalidGroup->addChild(new InvalidShaderCompilerMandelbrotCase(context, caseName.c_str(), "", caseID++, (InvalidShaderCompilerCase::InvalidityType)invalidityType, numFractalIterations));
3098 }
3099 }
3100 }
3101
3102 // Cases testing cache behaviour when whitespace and comments are added.
3103
3104 {
3105 TestCaseGroup* whitespaceCommentCacheGroup = new TestCaseGroup(context, "cache_whitespace_comment", "Cases testing the effect of whitespace and comments on caching");
3106 parentGroup.addChild(whitespaceCommentCacheGroup);
3107
3108 // \note Add just a small subset of the cases that were added above for the main performance tests.
3109
3110 // Cases with both vertex and fragment variants.
3111 for (int isFrag = 0; isFrag <= 1; isFrag++)
3112 {
3113 bool isVertex = isFrag == 0;
3114 string vtxFragSuffix = isVertex ? "_vertex" : "_fragment";
3115 string dirLightName = "directional_2_lights" + vtxFragSuffix;
3116 string loopName = "static_loop_100_iterations" + vtxFragSuffix;
3117 string multCase = "multiplication_100_operations" + vtxFragSuffix;
3118
3119 whitespaceCommentCacheGroup->addChild(new ShaderCompilerLightCase(context, dirLightName.c_str(), "", caseID++, false, true, isVertex, 2, LIGHT_DIRECTIONAL));
3120 whitespaceCommentCacheGroup->addChild(new ShaderCompilerLoopCase(context, loopName.c_str(), "", caseID++, false, true, isVertex, LOOP_TYPE_STATIC, 100, 1));
3121 whitespaceCommentCacheGroup->addChild(new ShaderCompilerOperCase(context, multCase.c_str(), "", caseID++, false, true, isVertex, "*", 100));
3122 }
3123
3124 // Cases that don't have vertex and fragment variants.
3125 whitespaceCommentCacheGroup->addChild(new ShaderCompilerTextureCase(context, "texture_4_lookups", "", caseID++, false, true, 4, CONDITIONAL_USAGE_NONE, CONDITIONAL_TYPE_STATIC));
3126 whitespaceCommentCacheGroup->addChild(new ShaderCompilerMandelbrotCase(context, "mandelbrot_32_operations", "", caseID++, false, true, 32));
3127 }
3128 }
3129
3130 } // Performance
3131 } // gles2
3132 } // deqp
3133