1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL ES 2.0 Module
3 * -------------------------------------------------
4 *
5 * Copyright 2014 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief Shader operator performance tests.
22 *//*--------------------------------------------------------------------*/
23
24 #include "es2pShaderOperatorTests.hpp"
25 #include "glsCalibration.hpp"
26 #include "gluShaderUtil.hpp"
27 #include "gluShaderProgram.hpp"
28 #include "gluPixelTransfer.hpp"
29 #include "tcuTestLog.hpp"
30 #include "tcuRenderTarget.hpp"
31 #include "tcuCommandLine.hpp"
32 #include "tcuSurface.hpp"
33 #include "deStringUtil.hpp"
34 #include "deSharedPtr.hpp"
35 #include "deClock.h"
36 #include "deMath.h"
37
38 #include "glwEnums.hpp"
39 #include "glwFunctions.hpp"
40
41 #include <map>
42 #include <algorithm>
43 #include <limits>
44 #include <set>
45
46 namespace deqp
47 {
48 namespace gles2
49 {
50 namespace Performance
51 {
52
53 using namespace gls;
54 using namespace glu;
55 using tcu::Vec2;
56 using tcu::Vec4;
57 using tcu::TestLog;
58 using de::SharedPtr;
59
60 using std::string;
61 using std::vector;
62
63 #define MEASUREMENT_FAIL() throw tcu::InternalError("Unable to get sensible measurements for estimation", DE_NULL, __FILE__, __LINE__)
64
65 // Number of measurements in OperatorPerformanceCase for each workload size, unless specified otherwise by a command line argument.
66 static const int DEFAULT_NUM_MEASUREMENTS_PER_WORKLOAD = 3;
67 // How many different workload sizes are used by OperatorPerformanceCase.
68 static const int NUM_WORKLOADS = 8;
69 // Maximum workload size that can be attempted. In a sensible case, this most likely won't be reached.
70 static const int MAX_WORKLOAD_SIZE = 1<<29;
71
72 // BinaryOpCase-specific constants for shader generation.
73 static const int BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS = 4;
74 static const int BINARY_OPERATOR_CASE_SMALL_PROGRAM_UNROLL_AMOUNT = 2;
75 static const int BINARY_OPERATOR_CASE_BIG_PROGRAM_UNROLL_AMOUNT = 4;
76
77 // FunctionCase-specific constants for shader generation.
78 static const int FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS = 4;
79
80 static const char* const s_swizzles[][4] =
81 {
82 { "x", "yx", "yzx", "wzyx" },
83 { "y", "zy", "wyz", "xwzy" },
84 { "z", "wy", "zxy", "yzwx" },
85 { "w", "xw", "yxw", "zyxw" }
86 };
87
88 template <int N>
mean(const vector<tcu::Vector<float,N>> & data)89 static tcu::Vector<float, N> mean (const vector<tcu::Vector<float, N> >& data)
90 {
91 tcu::Vector<float, N> sum(0.0f);
92 for (int i = 0; i < (int)data.size(); i++)
93 sum += data[i];
94 return sum / tcu::Vector<float, N>((float)data.size());
95 }
96
uniformNfv(const glw::Functions & gl,int n,int location,int count,const float * data)97 static void uniformNfv (const glw::Functions& gl, int n, int location, int count, const float* data)
98 {
99 switch (n)
100 {
101 case 1: gl.uniform1fv(location, count, data); break;
102 case 2: gl.uniform2fv(location, count, data); break;
103 case 3: gl.uniform3fv(location, count, data); break;
104 case 4: gl.uniform4fv(location, count, data); break;
105 default: DE_ASSERT(false);
106 }
107 }
108
uniformNiv(const glw::Functions & gl,int n,int location,int count,const int * data)109 static void uniformNiv (const glw::Functions& gl, int n, int location, int count, const int* data)
110 {
111 switch (n)
112 {
113 case 1: gl.uniform1iv(location, count, data); break;
114 case 2: gl.uniform2iv(location, count, data); break;
115 case 3: gl.uniform3iv(location, count, data); break;
116 case 4: gl.uniform4iv(location, count, data); break;
117 default: DE_ASSERT(false);
118 }
119 }
120
uniformMatrixNfv(const glw::Functions & gl,int n,int location,int count,const float * data)121 static void uniformMatrixNfv (const glw::Functions& gl, int n, int location, int count, const float* data)
122 {
123 switch (n)
124 {
125 case 2: gl.uniformMatrix2fv(location, count, GL_FALSE, &data[0]); break;
126 case 3: gl.uniformMatrix3fv(location, count, GL_FALSE, &data[0]); break;
127 case 4: gl.uniformMatrix4fv(location, count, GL_FALSE, &data[0]); break;
128 default: DE_ASSERT(false);
129 }
130 }
131
getDataTypeFloatOrVec(int size)132 static glu::DataType getDataTypeFloatOrVec (int size)
133 {
134 return size == 1 ? glu::TYPE_FLOAT : glu::getDataTypeFloatVec(size);
135 }
136
getIterationCountOrDefault(const tcu::CommandLine & cmdLine,int def)137 static int getIterationCountOrDefault (const tcu::CommandLine& cmdLine, int def)
138 {
139 const int cmdLineVal = cmdLine.getTestIterationCount();
140 return cmdLineVal > 0 ? cmdLineVal : def;
141 }
142
lineParamsString(const LineParameters & params)143 static string lineParamsString (const LineParameters& params)
144 {
145 return "y = " + de::toString(params.offset) + " + " + de::toString(params.coefficient) + "*x";
146 }
147
148 namespace
149 {
150
151 /*--------------------------------------------------------------------*//*!
152 * \brief Abstract class for measuring shader operator performance.
153 *
154 * This class draws multiple times with different workload sizes (set
155 * via a uniform, by subclass). Time for each frame is measured, and the
156 * slope of the workload size vs frame time data is estimated. This slope
157 * tells us the estimated increase in frame time caused by a workload
158 * increase of 1 unit (what 1 workload unit means is up to subclass).
159 *
160 * Generally, the shaders contain not just the operation we're interested
161 * in (e.g. addition) but also some other stuff (e.g. loop overhead). To
162 * eliminate this cost, we actually do the stuff described in the above
163 * paragraph with multiple programs (usually two), which contain different
164 * kinds of workload (e.g. different loop contents). Then we can (in
165 * theory) compute the cost of just one operation in a subclass-dependent
166 * manner.
167 *
168 * At this point, the result tells us the increase in frame time caused
169 * by the addition of one operation. Dividing this by the amount of
170 * draw calls in a frame, and further by the amount of vertices or
171 * fragments in a draw call, we get the time cost of one operation.
172 *
173 * In reality, there sometimes isn't just a trivial linear dependence
174 * between workload size and frame time. Instead, there tends to be some
175 * amount of initial "free" operations. That is, it may be that all
176 * workload sizes below some positive integer C yield the same frame time,
177 * and only workload sizes beyond C increase the frame time in a supposedly
178 * linear manner. Graphically, this means that there graph consists of two
179 * parts: a horizontal left part, and a linearly increasing right part; the
180 * right part starts where the left parts ends. The principal task of these
181 * tests is to look at the slope of the increasing right part. Additionally
182 * an estimate for the amount of initial free operations is calculated.
183 * Note that it is also normal to get graphs where the horizontal left part
184 * is of zero width, i.e. there are no free operations.
185 *//*--------------------------------------------------------------------*/
186 class OperatorPerformanceCase : public tcu::TestCase
187 {
188 public:
189 enum CaseType
190 {
191 CASETYPE_VERTEX = 0,
192 CASETYPE_FRAGMENT,
193
194 CASETYPE_LAST
195 };
196
197 struct InitialCalibration
198 {
199 int initialNumCalls;
InitialCalibrationdeqp::gles2::Performance::__anona8c3c8290111::OperatorPerformanceCase::InitialCalibration200 InitialCalibration (void) : initialNumCalls(1) {}
201 };
202
203 typedef SharedPtr<InitialCalibration> InitialCalibrationStorage;
204
205 OperatorPerformanceCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const char* name, const char* description,
206 CaseType caseType, int numWorkloads, const InitialCalibrationStorage& initialCalibrationStorage);
207 ~OperatorPerformanceCase (void);
208
209 void init (void);
210 void deinit (void);
211
212 IterateResult iterate (void);
213
214 struct AttribSpec
215 {
AttribSpecdeqp::gles2::Performance::__anona8c3c8290111::OperatorPerformanceCase::AttribSpec216 AttribSpec (const char* name_, const tcu::Vec4& p00_, const tcu::Vec4& p01_, const tcu::Vec4& p10_, const tcu::Vec4& p11_)
217 : name (name_)
218 , p00 (p00_)
219 , p01 (p01_)
220 , p10 (p10_)
221 , p11 (p11_)
222 {
223 }
224
AttribSpecdeqp::gles2::Performance::__anona8c3c8290111::OperatorPerformanceCase::AttribSpec225 AttribSpec (void) {}
226
227 std::string name;
228 tcu::Vec4 p00; //!< Bottom left.
229 tcu::Vec4 p01; //!< Bottom right.
230 tcu::Vec4 p10; //!< Top left.
231 tcu::Vec4 p11; //!< Top right.
232 };
233
234 protected:
235 struct ProgramContext
236 {
237 string vertShaderSource;
238 string fragShaderSource;
239 vector<AttribSpec> attributes;
240
241 string description;
242
ProgramContextdeqp::gles2::Performance::__anona8c3c8290111::OperatorPerformanceCase::ProgramContext243 ProgramContext (void) {}
ProgramContextdeqp::gles2::Performance::__anona8c3c8290111::OperatorPerformanceCase::ProgramContext244 ProgramContext (const string& vs, const string& fs, const vector<AttribSpec>& attrs, const string& desc)
245 : vertShaderSource(vs), fragShaderSource(fs), attributes(attrs), description(desc) {}
246 };
247
248 virtual vector<ProgramContext> generateProgramData (void) const = 0;
249 //! Sets program-specific uniforms that don't depend on the workload size.
250 virtual void setGeneralUniforms (deUint32 program) const = 0;
251 //! Sets the uniform(s) that specifies the workload size in the shader.
252 virtual void setWorkloadSizeUniform (deUint32 program, int workload) const = 0;
253 //! Computes the cost of a single operation, given the workload costs per program.
254 virtual float computeSingleOperationTime (const vector<float>& perProgramWorkloadCosts) const = 0;
255 //! Logs a human-readable description of what computeSingleOperationTime does.
256 virtual void logSingleOperationCalculationInfo (void) const = 0;
257
258 glu::RenderContext& m_renderCtx;
259
260 CaseType m_caseType;
261
262 private:
263 enum State
264 {
265 STATE_CALIBRATING = 0, //!< Calibrate draw call count, using first program in m_programs, with workload size 1.
266 STATE_FIND_HIGH_WORKLOAD, //!< Find an appropriate lower bound for the highest workload size we intend to use (one with high-enough frame time compared to workload size 1) for each program.
267 STATE_MEASURING, //!< Do actual measurements, for each program in m_programs.
268 STATE_REPORTING, //!< Measurements are done; calculate results and log.
269 STATE_FINISHED, //!< All done.
270
271 STATE_LAST
272 };
273
274 struct WorkloadRecord
275 {
276 int workloadSize;
277 vector<float> frameTimes; //!< In microseconds.
278
WorkloadRecorddeqp::gles2::Performance::__anona8c3c8290111::OperatorPerformanceCase::WorkloadRecord279 WorkloadRecord (int workloadSize_) : workloadSize(workloadSize_) {}
operator <deqp::gles2::Performance::__anona8c3c8290111::OperatorPerformanceCase::WorkloadRecord280 bool operator< (const WorkloadRecord& other) const { return this->workloadSize < other.workloadSize; }
addFrameTimedeqp::gles2::Performance::__anona8c3c8290111::OperatorPerformanceCase::WorkloadRecord281 void addFrameTime (float time) { frameTimes.push_back(time); }
getMedianTimedeqp::gles2::Performance::__anona8c3c8290111::OperatorPerformanceCase::WorkloadRecord282 float getMedianTime (void) const
283 {
284 vector<float> times = frameTimes;
285 std::sort(times.begin(), times.end());
286 return times.size() % 2 == 0 ?
287 (times[times.size()/2-1] + times[times.size()/2])*0.5f :
288 times[times.size()/2];
289 }
290 };
291
292 void prepareProgram (int progNdx); //!< Sets attributes and uniforms for m_programs[progNdx].
293 void prepareWorkload (int progNdx, int workload); //!< Calls setWorkloadSizeUniform and draws, in case the implementation does some draw-time compilation.
294 void prepareNextRound (void); //!< Increases workload and/or updates m_state.
295 void render (int numDrawCalls);
296 deUint64 renderAndMeasure (int numDrawCalls);
297 void adjustAndLogGridAndViewport (void); //!< Log grid and viewport sizes, after possibly reducing them to reduce draw time.
298
299 vector<Vec2> getWorkloadMedianDataPoints (int progNdx) const; //!< [ Vec2(r.workloadSize, r.getMedianTime()) for r in m_workloadRecords[progNdx] ]
300
301 const int m_numMeasurementsPerWorkload;
302 const int m_numWorkloads; //!< How many different workload sizes are used for measurement for each program.
303
304 int m_workloadNdx; //!< Runs from 0 to m_numWorkloads-1.
305
306 int m_workloadMeasurementNdx;
307 vector<vector<WorkloadRecord> > m_workloadRecordsFindHigh; //!< The measurements done during STATE_FIND_HIGH_WORKLOAD.
308 vector<vector<WorkloadRecord> > m_workloadRecords; //!< The measurements of each program in m_programs. Generated during STATE_MEASURING, into index specified by m_measureProgramNdx.
309
310 State m_state;
311 int m_measureProgramNdx; //!< When m_state is STATE_FIND_HIGH_WORKLOAD or STATE_MEASURING, this tells which program in m_programs is being measured.
312
313 vector<int> m_highWorkloadSizes; //!< The first workload size encountered during STATE_FIND_HIGH_WORKLOAD that was determined suitable, for each program.
314
315 TheilSenCalibrator m_calibrator;
316 InitialCalibrationStorage m_initialCalibrationStorage;
317
318 int m_viewportWidth;
319 int m_viewportHeight;
320 int m_gridSizeX;
321 int m_gridSizeY;
322
323 vector<ProgramContext> m_programData;
324 vector<SharedPtr<ShaderProgram> > m_programs;
325
326 std::vector<deUint32> m_attribBuffers;
327 };
328
triangleInterpolate(float v0,float v1,float v2,float x,float y)329 static inline float triangleInterpolate (float v0, float v1, float v2, float x, float y)
330 {
331 return v0 + (v2-v0)*x + (v1-v0)*y;
332 }
333
triQuadInterpolate(float x,float y,const tcu::Vec4 & quad)334 static inline float triQuadInterpolate (float x, float y, const tcu::Vec4& quad)
335 {
336 // \note Top left fill rule.
337 if (x + y < 1.0f)
338 return triangleInterpolate(quad.x(), quad.y(), quad.z(), x, y);
339 else
340 return triangleInterpolate(quad.w(), quad.z(), quad.y(), 1.0f-x, 1.0f-y);
341 }
342
getNumVertices(int gridSizeX,int gridSizeY)343 static inline int getNumVertices (int gridSizeX, int gridSizeY)
344 {
345 return gridSizeX * gridSizeY * 2 * 3;
346 }
347
generateVertices(std::vector<float> & dst,int gridSizeX,int gridSizeY,const OperatorPerformanceCase::AttribSpec & spec)348 static void generateVertices (std::vector<float>& dst, int gridSizeX, int gridSizeY, const OperatorPerformanceCase::AttribSpec& spec)
349 {
350 const int numComponents = 4;
351
352 DE_ASSERT(gridSizeX >= 1 && gridSizeY >= 1);
353 dst.resize(getNumVertices(gridSizeX, gridSizeY) * numComponents);
354
355 {
356 int dstNdx = 0;
357
358 for (int baseY = 0; baseY < gridSizeY; baseY++)
359 for (int baseX = 0; baseX < gridSizeX; baseX++)
360 {
361 const float xf0 = (float)(baseX + 0) / (float)gridSizeX;
362 const float yf0 = (float)(baseY + 0) / (float)gridSizeY;
363 const float xf1 = (float)(baseX + 1) / (float)gridSizeX;
364 const float yf1 = (float)(baseY + 1) / (float)gridSizeY;
365
366 #define ADD_VERTEX(XF, YF) \
367 for (int compNdx = 0; compNdx < numComponents; compNdx++) \
368 dst[dstNdx++] = triQuadInterpolate((XF), (YF), tcu::Vec4(spec.p00[compNdx], spec.p01[compNdx], spec.p10[compNdx], spec.p11[compNdx]))
369
370 ADD_VERTEX(xf0, yf0);
371 ADD_VERTEX(xf1, yf0);
372 ADD_VERTEX(xf0, yf1);
373
374 ADD_VERTEX(xf1, yf0);
375 ADD_VERTEX(xf1, yf1);
376 ADD_VERTEX(xf0, yf1);
377
378 #undef ADD_VERTEX
379 }
380 }
381 }
382
intersectionX(const gls::LineParameters & a,const gls::LineParameters & b)383 static float intersectionX (const gls::LineParameters& a, const gls::LineParameters& b)
384 {
385 return (a.offset - b.offset) / (b.coefficient - a.coefficient);
386 }
387
numDistinctX(const vector<Vec2> & data)388 static int numDistinctX (const vector<Vec2>& data)
389 {
390 std::set<float> xs;
391 for (int i = 0; i < (int)data.size(); i++)
392 xs.insert(data[i].x());
393 return (int)xs.size();
394 }
395
simpleLinearRegression(const vector<Vec2> & data)396 static gls::LineParameters simpleLinearRegression (const vector<Vec2>& data)
397 {
398 const Vec2 mid = mean(data);
399
400 float slopeNumerator = 0.0f;
401 float slopeDenominator = 0.0f;
402
403 for (int i = 0; i < (int)data.size(); i++)
404 {
405 const Vec2 diff = data[i] - mid;
406
407 slopeNumerator += diff.x()*diff.y();
408 slopeDenominator += diff.x()*diff.x();
409 }
410
411 const float slope = slopeNumerator / slopeDenominator;
412 const float offset = mid.y() - slope*mid.x();
413
414 return gls::LineParameters(offset, slope);
415 }
416
simpleLinearRegressionError(const vector<Vec2> & data)417 static float simpleLinearRegressionError (const vector<Vec2>& data)
418 {
419 if (numDistinctX(data) <= 2)
420 return 0.0f;
421 else
422 {
423 const gls::LineParameters estimator = simpleLinearRegression(data);
424 float error = 0.0f;
425
426 for (int i = 0; i < (int)data.size(); i++)
427 {
428 const float estY = estimator.offset + estimator.coefficient*data[i].x();
429 const float diff = estY - data[i].y();
430 error += diff*diff;
431 }
432
433 return error / (float)data.size();
434 }
435 }
436
verticalVariance(const vector<Vec2> & data)437 static float verticalVariance (const vector<Vec2>& data)
438 {
439 if (numDistinctX(data) <= 2)
440 return 0.0f;
441 else
442 {
443 const float meanY = mean(data).y();
444 float error = 0.0f;
445
446 for (int i = 0; i < (int)data.size(); i++)
447 {
448 const float diff = meanY - data[i].y();
449 error += diff*diff;
450 }
451
452 return error / (float)data.size();
453 }
454 }
455
456 /*--------------------------------------------------------------------*//*!
457 * \brief Find the x coord that divides the input data into two slopes.
458 *
459 * The operator performance measurements tend to produce results where
460 * we get small operation counts "for free" (e.g. because the operations
461 * are performed during some memory transfer overhead or something),
462 * resulting in a curve with two parts: an initial horizontal line segment,
463 * and a rising line.
464 *
465 * This function finds the x coordinate that divides the input data into
466 * two parts such that the sum of the mean square errors for the
467 * least-squares estimated lines for the two parts is minimized, under the
468 * additional condition that the left line is horizontal.
469 *
470 * This function returns a number X s.t. { pt | pt is in data, pt.x >= X }
471 * is the right line, and the rest of data is the left line.
472 *//*--------------------------------------------------------------------*/
findSlopePivotX(const vector<Vec2> & data)473 static float findSlopePivotX (const vector<Vec2>& data)
474 {
475 std::set<float> xCoords;
476 for (int i = 0; i < (int)data.size(); i++)
477 xCoords.insert(data[i].x());
478
479 float lowestError = std::numeric_limits<float>::infinity();
480 float bestPivotX = -std::numeric_limits<float>::infinity();
481
482 for (std::set<float>::const_iterator pivotX = xCoords.begin(); pivotX != xCoords.end(); ++pivotX)
483 {
484 vector<Vec2> leftData;
485 vector<Vec2> rightData;
486 for (int i = 0; i < (int)data.size(); i++)
487 {
488 if (data[i].x() < *pivotX)
489 leftData.push_back(data[i]);
490 else
491 rightData.push_back(data[i]);
492 }
493
494 if (numDistinctX(rightData) < 3) // We don't trust the right data if there's too little of it.
495 break;
496
497 {
498 const float totalError = verticalVariance(leftData) + simpleLinearRegressionError(rightData);
499
500 if (totalError < lowestError)
501 {
502 lowestError = totalError;
503 bestPivotX = *pivotX;
504 }
505 }
506 }
507
508 DE_ASSERT(lowestError < std::numeric_limits<float>::infinity());
509
510 return bestPivotX;
511 }
512
513 struct SegmentedEstimator
514 {
515 float pivotX; //!< Value returned by findSlopePivotX, or -infinity if only single line.
516 gls::LineParameters left;
517 gls::LineParameters right;
SegmentedEstimatordeqp::gles2::Performance::__anona8c3c8290111::SegmentedEstimator518 SegmentedEstimator (const gls::LineParameters& l, const gls::LineParameters& r, float pivotX_) : pivotX(pivotX_), left(l), right(r) {}
519 };
520
521 /*--------------------------------------------------------------------*//*!
522 * \brief Compute line estimators for (potentially) two-segment data.
523 *
524 * Splits the given data into left and right parts (using findSlopePivotX)
525 * and returns the line estimates for them.
526 *
527 * Sometimes, however (especially in fragment shader cases) the data is
528 * in fact not segmented, but a straight line. This function attempts to
529 * detect if this the case, and if so, sets left.offset = right.offset and
530 * left.slope = 0, meaning essentially that the initial "flat" part of the
531 * data has zero width.
532 *//*--------------------------------------------------------------------*/
computeSegmentedEstimator(const vector<Vec2> & data)533 static SegmentedEstimator computeSegmentedEstimator (const vector<Vec2>& data)
534 {
535 const float pivotX = findSlopePivotX(data);
536 vector<Vec2> leftData;
537 vector<Vec2> rightData;
538
539 for (int i = 0; i < (int)data.size(); i++)
540 {
541 if (data[i].x() < pivotX)
542 leftData.push_back(data[i]);
543 else
544 rightData.push_back(data[i]);
545 }
546
547 {
548 const gls::LineParameters leftLine = gls::theilSenLinearRegression(leftData);
549 const gls::LineParameters rightLine = gls::theilSenLinearRegression(rightData);
550
551 if (numDistinctX(leftData) < 2 || leftLine.coefficient > rightLine.coefficient*0.5f)
552 {
553 // Left data doesn't seem credible; assume the data is just a single line.
554 const gls::LineParameters entireLine = gls::theilSenLinearRegression(data);
555 return SegmentedEstimator(gls::LineParameters(entireLine.offset, 0.0f), entireLine, -std::numeric_limits<float>::infinity());
556 }
557 else
558 return SegmentedEstimator(leftLine, rightLine, pivotX);
559 }
560 }
561
OperatorPerformanceCase(tcu::TestContext & testCtx,glu::RenderContext & renderCtx,const char * name,const char * description,CaseType caseType,int numWorkloads,const InitialCalibrationStorage & initialCalibrationStorage)562 OperatorPerformanceCase::OperatorPerformanceCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const char* name, const char* description,
563 CaseType caseType, int numWorkloads, const InitialCalibrationStorage& initialCalibrationStorage)
564 : tcu::TestCase (testCtx, tcu::NODETYPE_PERFORMANCE, name, description)
565 , m_renderCtx (renderCtx)
566 , m_caseType (caseType)
567 , m_numMeasurementsPerWorkload (getIterationCountOrDefault(m_testCtx.getCommandLine(), DEFAULT_NUM_MEASUREMENTS_PER_WORKLOAD))
568 , m_numWorkloads (numWorkloads)
569 , m_workloadNdx (-1)
570 , m_workloadMeasurementNdx (-1)
571 , m_state (STATE_LAST)
572 , m_measureProgramNdx (-1)
573 , m_initialCalibrationStorage (initialCalibrationStorage)
574 , m_viewportWidth (caseType == CASETYPE_VERTEX ? 32 : renderCtx.getRenderTarget().getWidth())
575 , m_viewportHeight (caseType == CASETYPE_VERTEX ? 32 : renderCtx.getRenderTarget().getHeight())
576 , m_gridSizeX (caseType == CASETYPE_FRAGMENT ? 1 : 100)
577 , m_gridSizeY (caseType == CASETYPE_FRAGMENT ? 1 : 100)
578 {
579 DE_ASSERT(m_numWorkloads > 0);
580 }
581
~OperatorPerformanceCase(void)582 OperatorPerformanceCase::~OperatorPerformanceCase (void)
583 {
584 if (!m_attribBuffers.empty())
585 {
586 m_renderCtx.getFunctions().deleteBuffers((glw::GLsizei)m_attribBuffers.size(), &m_attribBuffers[0]);
587 m_attribBuffers.clear();
588 }
589 }
590
logRenderTargetInfo(TestLog & log,const tcu::RenderTarget & renderTarget)591 static void logRenderTargetInfo (TestLog& log, const tcu::RenderTarget& renderTarget)
592 {
593 log << TestLog::Section("RenderTarget", "Render target")
594 << TestLog::Message << "size: " << renderTarget.getWidth() << "x" << renderTarget.getHeight() << TestLog::EndMessage
595 << TestLog::Message << "bits:"
596 << " R" << renderTarget.getPixelFormat().redBits
597 << " G" << renderTarget.getPixelFormat().greenBits
598 << " B" << renderTarget.getPixelFormat().blueBits
599 << " A" << renderTarget.getPixelFormat().alphaBits
600 << " D" << renderTarget.getDepthBits()
601 << " S" << renderTarget.getStencilBits()
602 << TestLog::EndMessage;
603
604 if (renderTarget.getNumSamples() != 0)
605 log << TestLog::Message << renderTarget.getNumSamples() << "x MSAA" << TestLog::EndMessage;
606 else
607 log << TestLog::Message << "No MSAA" << TestLog::EndMessage;
608
609 log << TestLog::EndSection;
610 }
611
getWorkloadMedianDataPoints(int progNdx) const612 vector<Vec2> OperatorPerformanceCase::getWorkloadMedianDataPoints (int progNdx) const
613 {
614 const vector<WorkloadRecord>& records = m_workloadRecords[progNdx];
615 vector<Vec2> result;
616
617 for (int i = 0; i < (int)records.size(); i++)
618 result.push_back(Vec2((float)records[i].workloadSize, records[i].getMedianTime()));
619
620 return result;
621 }
622
prepareProgram(int progNdx)623 void OperatorPerformanceCase::prepareProgram (int progNdx)
624 {
625 DE_ASSERT(progNdx < (int)m_programs.size());
626 DE_ASSERT(m_programData.size() == m_programs.size());
627
628 const glw::Functions& gl = m_renderCtx.getFunctions();
629 const ShaderProgram& program = *m_programs[progNdx];
630
631 vector<AttribSpec> attributes = m_programData[progNdx].attributes;
632
633 attributes.push_back(AttribSpec("a_position",
634 Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
635 Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
636 Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
637 Vec4( 1.0f, 1.0f, 0.0f, 1.0f)));
638
639 DE_ASSERT(program.isOk());
640
641 // Generate vertices.
642 if (!m_attribBuffers.empty())
643 gl.deleteBuffers((glw::GLsizei)m_attribBuffers.size(), &m_attribBuffers[0]);
644 m_attribBuffers.resize(attributes.size(), 0);
645 gl.genBuffers((glw::GLsizei)m_attribBuffers.size(), &m_attribBuffers[0]);
646 GLU_EXPECT_NO_ERROR(gl.getError(), "glGenBuffers()");
647
648 for (int attribNdx = 0; attribNdx < (int)attributes.size(); attribNdx++)
649 {
650 std::vector<float> vertices;
651 generateVertices(vertices, m_gridSizeX, m_gridSizeY, attributes[attribNdx]);
652
653 gl.bindBuffer(GL_ARRAY_BUFFER, m_attribBuffers[attribNdx]);
654 gl.bufferData(GL_ARRAY_BUFFER, (glw::GLsizeiptr)(vertices.size()*sizeof(float)), &vertices[0], GL_STATIC_DRAW);
655 GLU_EXPECT_NO_ERROR(gl.getError(), "Upload buffer data");
656 }
657
658 // Setup attribute bindings.
659 for (int attribNdx = 0; attribNdx < (int)attributes.size(); attribNdx++)
660 {
661 int location = gl.getAttribLocation(program.getProgram(), attributes[attribNdx].name.c_str());
662
663 if (location >= 0)
664 {
665 gl.enableVertexAttribArray(location);
666 gl.bindBuffer(GL_ARRAY_BUFFER, m_attribBuffers[attribNdx]);
667 gl.vertexAttribPointer(location, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL);
668 }
669 }
670 GLU_EXPECT_NO_ERROR(gl.getError(), "Setup vertex input state");
671
672 gl.useProgram(program.getProgram());
673 setGeneralUniforms(program.getProgram());
674 gl.viewport(0, 0, m_viewportWidth, m_viewportHeight);
675 }
676
prepareWorkload(int progNdx,int workload)677 void OperatorPerformanceCase::prepareWorkload (int progNdx, int workload)
678 {
679 setWorkloadSizeUniform(m_programs[progNdx]->getProgram(), workload);
680 render(m_calibrator.getCallCount());
681 }
682
prepareNextRound(void)683 void OperatorPerformanceCase::prepareNextRound (void)
684 {
685 DE_ASSERT(m_state == STATE_CALIBRATING ||
686 m_state == STATE_FIND_HIGH_WORKLOAD ||
687 m_state == STATE_MEASURING);
688
689 TestLog& log = m_testCtx.getLog();
690
691 if (m_state == STATE_CALIBRATING && m_calibrator.getState() == TheilSenCalibrator::STATE_FINISHED)
692 {
693 m_measureProgramNdx = 0;
694 m_state = STATE_FIND_HIGH_WORKLOAD;
695 }
696
697 if (m_state == STATE_CALIBRATING)
698 prepareWorkload(0, 1);
699 else if (m_state == STATE_FIND_HIGH_WORKLOAD)
700 {
701 vector<WorkloadRecord>& records = m_workloadRecordsFindHigh[m_measureProgramNdx];
702
703 if (records.empty() || records.back().getMedianTime() < 2.0f*records[0].getMedianTime())
704 {
705 int workloadSize;
706
707 if (records.empty())
708 workloadSize = 1;
709 else
710 {
711 workloadSize = records.back().workloadSize*2;
712
713 if (workloadSize > MAX_WORKLOAD_SIZE)
714 {
715 log << TestLog::Message << "Even workload size " << records.back().workloadSize
716 << " doesn't give high enough frame time for program " << m_measureProgramNdx
717 << ". Can't get sensible result." << TestLog::EndMessage;
718 MEASUREMENT_FAIL();
719 }
720 }
721
722 records.push_back(WorkloadRecord(workloadSize));
723 prepareWorkload(0, workloadSize);
724 m_workloadMeasurementNdx = 0;
725 }
726 else
727 {
728 m_highWorkloadSizes[m_measureProgramNdx] = records.back().workloadSize;
729 m_measureProgramNdx++;
730
731 if (m_measureProgramNdx >= (int)m_programs.size())
732 {
733 m_state = STATE_MEASURING;
734 m_workloadNdx = -1;
735 m_measureProgramNdx = 0;
736 }
737
738 prepareProgram(m_measureProgramNdx);
739 prepareNextRound();
740 }
741 }
742 else
743 {
744 m_workloadNdx++;
745
746 if (m_workloadNdx < m_numWorkloads)
747 {
748 DE_ASSERT(m_numWorkloads > 1);
749 const int highWorkload = m_highWorkloadSizes[m_measureProgramNdx];
750 const int workload = highWorkload > m_numWorkloads ?
751 1 + m_workloadNdx*(highWorkload-1)/(m_numWorkloads-1) :
752 1 + m_workloadNdx;
753
754 prepareWorkload(m_measureProgramNdx, workload);
755
756 m_workloadMeasurementNdx = 0;
757
758 m_workloadRecords[m_measureProgramNdx].push_back(WorkloadRecord(workload));
759 }
760 else
761 {
762 m_measureProgramNdx++;
763
764 if (m_measureProgramNdx < (int)m_programs.size())
765 {
766 m_workloadNdx = -1;
767 m_workloadMeasurementNdx = 0;
768 prepareProgram(m_measureProgramNdx);
769 prepareNextRound();
770 }
771 else
772 m_state = STATE_REPORTING;
773 }
774 }
775 }
776
init(void)777 void OperatorPerformanceCase::init (void)
778 {
779 TestLog& log = m_testCtx.getLog();
780 const glw::Functions& gl = m_renderCtx.getFunctions();
781
782 // Validate that we have sane grid and viewport setup.
783 DE_ASSERT(de::inBounds(m_gridSizeX, 1, 256) && de::inBounds(m_gridSizeY, 1, 256));
784 TCU_CHECK(de::inRange(m_viewportWidth, 1, m_renderCtx.getRenderTarget().getWidth()) &&
785 de::inRange(m_viewportHeight, 1, m_renderCtx.getRenderTarget().getHeight()));
786
787 logRenderTargetInfo(log, m_renderCtx.getRenderTarget());
788
789 log << TestLog::Message << "Using additive blending." << TestLog::EndMessage;
790 gl.enable(GL_BLEND);
791 gl.blendEquation(GL_FUNC_ADD);
792 gl.blendFunc(GL_ONE, GL_ONE);
793
794 // Generate programs.
795 DE_ASSERT(m_programs.empty());
796 m_programData = generateProgramData();
797 DE_ASSERT(!m_programData.empty());
798
799 for (int progNdx = 0; progNdx < (int)m_programData.size(); progNdx++)
800 {
801 const string& vert = m_programData[progNdx].vertShaderSource;
802 const string& frag = m_programData[progNdx].fragShaderSource;
803
804 m_programs.push_back(SharedPtr<ShaderProgram>(new ShaderProgram(m_renderCtx, glu::makeVtxFragSources(vert, frag))));
805
806 if (!m_programs.back()->isOk())
807 {
808 log << *m_programs.back();
809 TCU_FAIL("Compile failed");
810 }
811 }
812
813 // Log all programs.
814 for (int progNdx = 0; progNdx < (int)m_programs.size(); progNdx++)
815 log << TestLog::Section("Program" + de::toString(progNdx), "Program " + de::toString(progNdx))
816 << TestLog::Message << m_programData[progNdx].description << TestLog::EndMessage
817 << *m_programs[progNdx]
818 << TestLog::EndSection;
819
820 m_highWorkloadSizes.resize(m_programData.size());
821 m_workloadRecordsFindHigh.resize(m_programData.size());
822 m_workloadRecords.resize(m_programData.size());
823
824 m_calibrator.clear(CalibratorParameters(m_initialCalibrationStorage->initialNumCalls, 10 /* calibrate iteration frames */, 2000.0f /* calibrate iteration shortcut threshold (ms) */, 16 /* max calibrate iterations */,
825 1000.0f/30.0f /* frame time (ms) */, 1000.0f/60.0f /* frame time cap (ms) */, 1000.0f /* target measure duration (ms) */));
826 m_state = STATE_CALIBRATING;
827
828 prepareProgram(0);
829 prepareNextRound();
830 }
831
deinit(void)832 void OperatorPerformanceCase::deinit (void)
833 {
834 if (!m_attribBuffers.empty())
835 {
836 m_renderCtx.getFunctions().deleteBuffers((glw::GLsizei)m_attribBuffers.size(), &m_attribBuffers[0]);
837 m_attribBuffers.clear();
838 }
839
840 m_programs.clear();
841 }
842
render(int numDrawCalls)843 void OperatorPerformanceCase::render (int numDrawCalls)
844 {
845 const glw::Functions& gl = m_renderCtx.getFunctions();
846 const int numVertices = getNumVertices(m_gridSizeX, m_gridSizeY);
847
848 for (int callNdx = 0; callNdx < numDrawCalls; callNdx++)
849 gl.drawArrays(GL_TRIANGLES, 0, numVertices);
850
851 glu::readPixels(m_renderCtx, 0, 0, tcu::Surface(1, 1).getAccess()); // \note Serves as a more reliable replacement for glFinish().
852 }
853
renderAndMeasure(int numDrawCalls)854 deUint64 OperatorPerformanceCase::renderAndMeasure (int numDrawCalls)
855 {
856 const deUint64 startTime = deGetMicroseconds();
857 render(numDrawCalls);
858 return deGetMicroseconds() - startTime;
859 }
860
adjustAndLogGridAndViewport(void)861 void OperatorPerformanceCase::adjustAndLogGridAndViewport (void)
862 {
863 TestLog& log = m_testCtx.getLog();
864
865 // If call count is just 1, and the target frame time still wasn't reached, reduce grid or viewport size.
866 if (m_calibrator.getCallCount() == 1)
867 {
868 const gls::MeasureState& calibratorMeasure = m_calibrator.getMeasureState();
869 const float drawCallTime = (float)calibratorMeasure.getTotalTime() / (float)calibratorMeasure.frameTimes.size();
870 const float targetDrawCallTime = m_calibrator.getParameters().targetFrameTimeUs;
871 const float targetRatio = targetDrawCallTime / drawCallTime;
872
873 if (targetRatio < 0.95f)
874 {
875 // Reduce grid or viewport size assuming draw call time scales proportionally.
876 if (m_caseType == CASETYPE_VERTEX)
877 {
878 const float targetRatioSqrt = deFloatSqrt(targetRatio);
879 m_gridSizeX = (int)(targetRatioSqrt * (float)m_gridSizeX);
880 m_gridSizeY = (int)(targetRatioSqrt * (float)m_gridSizeY);
881 TCU_CHECK_MSG(m_gridSizeX >= 1 && m_gridSizeY >= 1, "Can't decrease grid size enough to achieve low-enough draw times");
882 log << TestLog::Message << "Note: triangle grid size reduced from original; it's now smaller than during calibration." << TestLog::EndMessage;
883 }
884 else
885 {
886 const float targetRatioSqrt = deFloatSqrt(targetRatio);
887 m_viewportWidth = (int)(targetRatioSqrt * (float)m_viewportWidth);
888 m_viewportHeight = (int)(targetRatioSqrt * (float)m_viewportHeight);
889 TCU_CHECK_MSG(m_viewportWidth >= 1 && m_viewportHeight >= 1, "Can't decrease viewport size enough to achieve low-enough draw times");
890 log << TestLog::Message << "Note: viewport size reduced from original; it's now smaller than during calibration." << TestLog::EndMessage;
891 }
892 }
893 }
894
895 prepareProgram(0);
896
897 // Log grid and viewport sizes.
898 log << TestLog::Message << "Grid size: " << m_gridSizeX << "x" << m_gridSizeY << TestLog::EndMessage;
899 log << TestLog::Message << "Viewport: " << m_viewportWidth << "x" << m_viewportHeight << TestLog::EndMessage;
900 }
901
iterate(void)902 OperatorPerformanceCase::IterateResult OperatorPerformanceCase::iterate (void)
903 {
904 const TheilSenCalibrator::State calibratorState = m_calibrator.getState();
905
906 if (calibratorState != TheilSenCalibrator::STATE_FINISHED)
907 {
908 if (calibratorState == TheilSenCalibrator::STATE_RECOMPUTE_PARAMS)
909 m_calibrator.recomputeParameters();
910 else if (calibratorState == TheilSenCalibrator::STATE_MEASURE)
911 m_calibrator.recordIteration(renderAndMeasure(m_calibrator.getCallCount()));
912 else
913 DE_ASSERT(false);
914
915 if (m_calibrator.getState() == TheilSenCalibrator::STATE_FINISHED)
916 {
917 logCalibrationInfo(m_testCtx.getLog(), m_calibrator);
918 adjustAndLogGridAndViewport();
919 prepareNextRound();
920 m_initialCalibrationStorage->initialNumCalls = m_calibrator.getCallCount();
921 }
922 }
923 else if (m_state == STATE_FIND_HIGH_WORKLOAD || m_state == STATE_MEASURING)
924 {
925 if (m_workloadMeasurementNdx < m_numMeasurementsPerWorkload)
926 {
927 vector<WorkloadRecord>& records = m_state == STATE_FIND_HIGH_WORKLOAD ? m_workloadRecordsFindHigh[m_measureProgramNdx] : m_workloadRecords[m_measureProgramNdx];
928 records.back().addFrameTime((float)renderAndMeasure(m_calibrator.getCallCount()));
929 m_workloadMeasurementNdx++;
930 }
931 else
932 prepareNextRound();
933 }
934 else
935 {
936 DE_ASSERT(m_state == STATE_REPORTING);
937
938 TestLog& log = m_testCtx.getLog();
939 const int drawCallCount = m_calibrator.getCallCount();
940
941 {
942 // Compute per-program estimators for measurements.
943 vector<SegmentedEstimator> estimators;
944 for (int progNdx = 0; progNdx < (int)m_programs.size(); progNdx++)
945 estimators.push_back(computeSegmentedEstimator(getWorkloadMedianDataPoints(progNdx)));
946
947 // Log measurements and their estimators for all programs.
948 for (int progNdx = 0; progNdx < (int)m_programs.size(); progNdx++)
949 {
950 const SegmentedEstimator& estimator = estimators[progNdx];
951 const string progNdxStr = de::toString(progNdx);
952 vector<WorkloadRecord> records = m_workloadRecords[progNdx];
953 std::sort(records.begin(), records.end());
954
955 {
956 const tcu::ScopedLogSection section(log,
957 "Program" + progNdxStr + "Measurements",
958 "Measurements for program " + progNdxStr);
959
960 // Sample list of individual frame times.
961
962 log << TestLog::SampleList("Program" + progNdxStr + "IndividualFrameTimes", "Individual frame times")
963 << TestLog::SampleInfo << TestLog::ValueInfo("Workload", "Workload", "", QP_SAMPLE_VALUE_TAG_PREDICTOR)
964 << TestLog::ValueInfo("FrameTime", "Frame time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
965 << TestLog::EndSampleInfo;
966
967 for (int i = 0; i < (int)records.size(); i++)
968 for (int j = 0; j < (int)records[i].frameTimes.size(); j++)
969 log << TestLog::Sample << records[i].workloadSize << records[i].frameTimes[j] << TestLog::EndSample;
970
971 log << TestLog::EndSampleList;
972
973 // Sample list of median frame times.
974
975 log << TestLog::SampleList("Program" + progNdxStr + "MedianFrameTimes", "Median frame times")
976 << TestLog::SampleInfo << TestLog::ValueInfo("Workload", "Workload", "", QP_SAMPLE_VALUE_TAG_PREDICTOR)
977 << TestLog::ValueInfo("MedianFrameTime", "Median frame time", "us", QP_SAMPLE_VALUE_TAG_RESPONSE)
978 << TestLog::EndSampleInfo;
979
980 for (int i = 0; i < (int)records.size(); i++)
981 log << TestLog::Sample << records[i].workloadSize << records[i].getMedianTime() << TestLog::EndSample;
982
983 log << TestLog::EndSampleList;
984
985 log << TestLog::Float("Program" + progNdxStr + "WorkloadCostEstimate", "Workload cost estimate", "us / workload", QP_KEY_TAG_TIME, estimator.right.coefficient);
986
987 if (estimator.pivotX > -std::numeric_limits<float>::infinity())
988 log << TestLog::Message << "Note: the data points with x coordinate greater than or equal to " << estimator.pivotX
989 << " seem to form a rising line, and the rest of data points seem to form a near-horizontal line" << TestLog::EndMessage
990 << TestLog::Message << "Note: the left line is estimated to be " << lineParamsString(estimator.left)
991 << " and the right line " << lineParamsString(estimator.right) << TestLog::EndMessage;
992 else
993 log << TestLog::Message << "Note: the data seem to form a single line: " << lineParamsString(estimator.right) << TestLog::EndMessage;
994 }
995 }
996
997 for (int progNdx = 0; progNdx < (int)m_programs.size(); progNdx++)
998 {
999 if (estimators[progNdx].right.coefficient <= 0.0f)
1000 {
1001 log << TestLog::Message << "Slope of measurements for program " << progNdx << " isn't positive. Can't get sensible result." << TestLog::EndMessage;
1002 MEASUREMENT_FAIL();
1003 }
1004 }
1005
1006 // \note For each estimator, .right.coefficient is the increase in draw time (in microseconds) when
1007 // incrementing shader workload size by 1, when D draw calls are done, with a vertex/fragment count
1008 // of R.
1009 //
1010 // The measurements of any single program can't tell us the final result (time of single operation),
1011 // so we use computeSingleOperationTime to compute it from multiple programs' measurements in a
1012 // subclass-defined manner.
1013 //
1014 // After that, microseconds per operation can be calculated as singleOperationTime / (D * R).
1015
1016 {
1017 vector<float> perProgramSlopes;
1018 for (int i = 0; i < (int)m_programs.size(); i++)
1019 perProgramSlopes.push_back(estimators[i].right.coefficient);
1020
1021 logSingleOperationCalculationInfo();
1022
1023 const float maxSlope = *std::max_element(perProgramSlopes.begin(), perProgramSlopes.end());
1024 const float usecsPerFramePerOp = computeSingleOperationTime(perProgramSlopes);
1025 const int vertexOrFragmentCount = m_caseType == CASETYPE_VERTEX ?
1026 getNumVertices(m_gridSizeX, m_gridSizeY) :
1027 m_viewportWidth*m_viewportHeight;
1028 const double usecsPerDrawCallPerOp = usecsPerFramePerOp / (double)drawCallCount;
1029 const double usecsPerSingleOp = usecsPerDrawCallPerOp / (double)vertexOrFragmentCount;
1030 const double megaOpsPerSecond = (double)(drawCallCount*vertexOrFragmentCount) / usecsPerFramePerOp;
1031 const int numFreeOps = de::max(0, (int)deFloatFloor(intersectionX(estimators[0].left,
1032 LineParameters(estimators[0].right.offset,
1033 usecsPerFramePerOp))));
1034
1035 log << TestLog::Integer("VertexOrFragmentCount",
1036 "R = " + string(m_caseType == CASETYPE_VERTEX ? "Vertex" : "Fragment") + " count",
1037 "", QP_KEY_TAG_NONE, vertexOrFragmentCount)
1038
1039 << TestLog::Integer("DrawCallsPerFrame", "D = Draw calls per frame", "", QP_KEY_TAG_NONE, drawCallCount)
1040
1041 << TestLog::Integer("VerticesOrFragmentsPerFrame",
1042 "R*D = " + string(m_caseType == CASETYPE_VERTEX ? "Vertices" : "Fragments") + " per frame",
1043 "", QP_KEY_TAG_NONE, vertexOrFragmentCount*drawCallCount)
1044
1045 << TestLog::Float("TimePerFramePerOp",
1046 "Estimated cost of R*D " + string(m_caseType == CASETYPE_VERTEX ? "vertices" : "fragments")
1047 + " (i.e. one frame) with one shader operation",
1048 "us", QP_KEY_TAG_TIME, (float)usecsPerFramePerOp)
1049
1050 << TestLog::Float("TimePerDrawcallPerOp",
1051 "Estimated cost of one draw call with one shader operation",
1052 "us", QP_KEY_TAG_TIME, (float)usecsPerDrawCallPerOp)
1053
1054 << TestLog::Float("TimePerSingleOp",
1055 "Estimated cost of a single shader operation",
1056 "us", QP_KEY_TAG_TIME, (float)usecsPerSingleOp);
1057
1058 // \note Sometimes, when the operation is free or very cheap, it can happen that the shader with the operation runs,
1059 // for some reason, a bit faster than the shader without the operation, and thus we get a negative result. The
1060 // following threshold values for accepting a negative or almost-zero result are rather quick and dirty.
1061 if (usecsPerFramePerOp <= -0.1f*maxSlope)
1062 {
1063 log << TestLog::Message << "Got strongly negative result." << TestLog::EndMessage;
1064 MEASUREMENT_FAIL();
1065 }
1066 else if (usecsPerFramePerOp <= 0.001*maxSlope)
1067 {
1068 log << TestLog::Message << "Cost of operation seems to be approximately zero." << TestLog::EndMessage;
1069 m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
1070 }
1071 else
1072 {
1073 log << TestLog::Float("OpsPerSecond",
1074 "Operations per second",
1075 "Million/s", QP_KEY_TAG_PERFORMANCE, (float)megaOpsPerSecond)
1076
1077 << TestLog::Integer("NumFreeOps",
1078 "Estimated number of \"free\" operations",
1079 "", QP_KEY_TAG_PERFORMANCE, numFreeOps);
1080
1081 m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString((float)megaOpsPerSecond, 2).c_str());
1082 }
1083
1084 m_state = STATE_FINISHED;
1085 }
1086 }
1087
1088 return STOP;
1089 }
1090
1091 return CONTINUE;
1092 }
1093
1094 // Binary operator case.
1095 class BinaryOpCase : public OperatorPerformanceCase
1096 {
1097 public:
1098 BinaryOpCase (Context& context, const char* name, const char* description, const char* op,
1099 glu::DataType type, glu::Precision precision, bool useSwizzle, bool isVertex, const InitialCalibrationStorage& initialCalibration);
1100
1101 protected:
1102 vector<ProgramContext> generateProgramData (void) const;
1103 void setGeneralUniforms (deUint32 program) const;
1104 void setWorkloadSizeUniform (deUint32 program, int numOperations) const;
1105 float computeSingleOperationTime (const vector<float>& perProgramOperationCosts) const;
1106 void logSingleOperationCalculationInfo (void) const;
1107
1108 private:
1109 enum ProgramID
1110 {
1111 // \note 0-based sequential numbering is relevant, because these are also used as vector indices.
1112 // \note The first program should be the heaviest, because OperatorPerformanceCase uses it to reduce grid/viewport size when going too slow.
1113 PROGRAM_WITH_BIGGER_LOOP = 0,
1114 PROGRAM_WITH_SMALLER_LOOP,
1115
1116 PROGRAM_LAST
1117 };
1118
1119 ProgramContext generateSingleProgramData (ProgramID) const;
1120
1121 const string m_op;
1122 const glu::DataType m_type;
1123 const glu::Precision m_precision;
1124 const bool m_useSwizzle;
1125 };
1126
BinaryOpCase(Context & context,const char * name,const char * description,const char * op,glu::DataType type,glu::Precision precision,bool useSwizzle,bool isVertex,const InitialCalibrationStorage & initialCalibration)1127 BinaryOpCase::BinaryOpCase (Context& context, const char* name, const char* description, const char* op,
1128 glu::DataType type, glu::Precision precision, bool useSwizzle, bool isVertex, const InitialCalibrationStorage& initialCalibration)
1129 : OperatorPerformanceCase (context.getTestContext(), context.getRenderContext(), name, description,
1130 isVertex ? CASETYPE_VERTEX : CASETYPE_FRAGMENT, NUM_WORKLOADS, initialCalibration)
1131 , m_op (op)
1132 , m_type (type)
1133 , m_precision (precision)
1134 , m_useSwizzle (useSwizzle)
1135 {
1136 }
1137
generateSingleProgramData(ProgramID programID) const1138 BinaryOpCase::ProgramContext BinaryOpCase::generateSingleProgramData (ProgramID programID) const
1139 {
1140 DE_ASSERT(glu::isDataTypeFloatOrVec(m_type) || glu::isDataTypeIntOrIVec(m_type));
1141
1142 const bool isVertexCase = m_caseType == CASETYPE_VERTEX;
1143 const char* const precision = glu::getPrecisionName(m_precision);
1144 const char* const inputPrecision = glu::isDataTypeIntOrIVec(m_type) && m_precision == glu::PRECISION_LOWP ? "mediump" : precision;
1145 const char* const typeName = getDataTypeName(m_type);
1146
1147 std::ostringstream vtx;
1148 std::ostringstream frag;
1149 std::ostringstream& op = isVertexCase ? vtx : frag;
1150
1151 // Attributes.
1152 vtx << "attribute highp vec4 a_position;\n";
1153 for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS+1; i++)
1154 vtx << "attribute " << inputPrecision << " vec4 a_in" << i << ";\n";
1155
1156 if (isVertexCase)
1157 {
1158 vtx << "varying mediump vec4 v_color;\n";
1159 frag << "varying mediump vec4 v_color;\n";
1160 }
1161 else
1162 {
1163 for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS+1; i++)
1164 {
1165 vtx << "varying " << inputPrecision << " vec4 v_in" << i << ";\n";
1166 frag << "varying " << inputPrecision << " vec4 v_in" << i << ";\n";
1167 }
1168 }
1169
1170 op << "uniform mediump int u_numLoopIterations;\n";
1171 if (isVertexCase)
1172 op << "uniform mediump float u_zero;\n";
1173
1174 vtx << "\n";
1175 vtx << "void main()\n";
1176 vtx << "{\n";
1177
1178 if (!isVertexCase)
1179 vtx << "\tgl_Position = a_position;\n";
1180
1181 frag << "\n";
1182 frag << "void main()\n";
1183 frag << "{\n";
1184
1185 // Expression inputs.
1186 const char* const prefix = isVertexCase ? "a_" : "v_";
1187 for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS+1; i++)
1188 {
1189 const int inSize = getDataTypeScalarSize(m_type);
1190 const bool isInt = de::inRange<int>(m_type, TYPE_INT, TYPE_INT_VEC4);
1191 const bool cast = isInt || (!m_useSwizzle && m_type != TYPE_FLOAT_VEC4);
1192
1193 op << "\t" << precision << " " << typeName << " in" << i << " = ";
1194
1195 if (cast)
1196 op << typeName << "(";
1197
1198 op << prefix << "in" << i;
1199
1200 if (m_useSwizzle)
1201 op << "." << s_swizzles[i % DE_LENGTH_OF_ARRAY(s_swizzles)][inSize-1];
1202
1203 if (cast)
1204 op << ")";
1205
1206 op << ";\n";
1207 }
1208
1209 // Operation accumulation variables.
1210 for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS; i++)
1211 {
1212 op << "\t" << precision << " " << typeName << " acc" << i << "a" << " = in" << i+0 << ";\n";
1213 op << "\t" << precision << " " << typeName << " acc" << i << "b" << " = in" << i+1 << ";\n";
1214 }
1215
1216 // Loop, with expressions in it.
1217 op << "\tfor (int i = 0; i < u_numLoopIterations; i++)\n";
1218 op << "\t{\n";
1219 {
1220 const int unrollAmount = programID == PROGRAM_WITH_SMALLER_LOOP ? BINARY_OPERATOR_CASE_SMALL_PROGRAM_UNROLL_AMOUNT : BINARY_OPERATOR_CASE_BIG_PROGRAM_UNROLL_AMOUNT;
1221 for (int unrollNdx = 0; unrollNdx < unrollAmount; unrollNdx++)
1222 {
1223 for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS; i++)
1224 {
1225 if (i > 0 || unrollNdx > 0)
1226 op << "\n";
1227 op << "\t\tacc" << i << "a = acc" << i << "b " << m_op << " acc" << i << "a" << ";\n";
1228 op << "\t\tacc" << i << "b = acc" << i << "a " << m_op << " acc" << i << "b" << ";\n";
1229 }
1230 }
1231 }
1232 op << "\t}\n";
1233 op << "\n";
1234
1235 // Result variable (sum of accumulation variables).
1236 op << "\t" << precision << " " << typeName << " res =";
1237 for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS; i++)
1238 op << (i > 0 ? " "+m_op : "") << " acc" << i << "b";
1239 op << ";\n";
1240
1241 // Convert to color.
1242 op << "\tmediump vec4 color = ";
1243 if (m_type == TYPE_FLOAT_VEC4)
1244 op << "res";
1245 else
1246 {
1247 int size = getDataTypeScalarSize(m_type);
1248 op << "vec4(res";
1249
1250 for (int i = size; i < 4; i++)
1251 op << ", " << (i == 3 ? "1.0" : "0.0");
1252
1253 op << ")";
1254 }
1255 op << ";\n";
1256 op << "\t" << (isVertexCase ? "v_color" : "gl_FragColor") << " = color;\n";
1257
1258 if (isVertexCase)
1259 {
1260 vtx << " gl_Position = a_position + u_zero*color;\n";
1261 frag << " gl_FragColor = v_color;\n";
1262 }
1263 else
1264 {
1265 for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS+1; i++)
1266 vtx << " v_in" << i << " = a_in" << i << ";\n";
1267 }
1268
1269 vtx << "}\n";
1270 frag << "}\n";
1271
1272 {
1273 vector<AttribSpec> attributes;
1274 for (int i = 0; i < BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS+1; i++)
1275 attributes.push_back(AttribSpec(("a_in" + de::toString(i)).c_str(),
1276 Vec4(2.0f, 2.0f, 2.0f, 1.0f).swizzle((i+0)%4, (i+1)%4, (i+2)%4, (i+3)%4),
1277 Vec4(1.0f, 2.0f, 1.0f, 2.0f).swizzle((i+0)%4, (i+1)%4, (i+2)%4, (i+3)%4),
1278 Vec4(2.0f, 1.0f, 2.0f, 2.0f).swizzle((i+0)%4, (i+1)%4, (i+2)%4, (i+3)%4),
1279 Vec4(1.0f, 1.0f, 2.0f, 1.0f).swizzle((i+0)%4, (i+1)%4, (i+2)%4, (i+3)%4)));
1280
1281 {
1282 string description = "This is the program with the ";
1283
1284 description += programID == PROGRAM_WITH_SMALLER_LOOP ? "smaller"
1285 : programID == PROGRAM_WITH_BIGGER_LOOP ? "bigger"
1286 : DE_NULL;
1287
1288 description += " loop.\n"
1289 "Note: workload size for this program means the number of loop iterations.";
1290
1291 return ProgramContext(vtx.str(), frag.str(), attributes, description);
1292 }
1293 }
1294 }
1295
generateProgramData(void) const1296 vector<BinaryOpCase::ProgramContext> BinaryOpCase::generateProgramData (void) const
1297 {
1298 vector<ProgramContext> progData;
1299 for (int i = 0; i < PROGRAM_LAST; i++)
1300 progData.push_back(generateSingleProgramData((ProgramID)i));
1301 return progData;
1302 }
1303
setGeneralUniforms(deUint32 program) const1304 void BinaryOpCase::setGeneralUniforms (deUint32 program) const
1305 {
1306 const glw::Functions& gl = m_renderCtx.getFunctions();
1307 gl.uniform1f(gl.getUniformLocation(program, "u_zero"), 0.0f);
1308 }
1309
setWorkloadSizeUniform(deUint32 program,int numLoopIterations) const1310 void BinaryOpCase::setWorkloadSizeUniform (deUint32 program, int numLoopIterations) const
1311 {
1312 const glw::Functions& gl = m_renderCtx.getFunctions();
1313 gl.uniform1i(gl.getUniformLocation(program, "u_numLoopIterations"), numLoopIterations);
1314 }
1315
computeSingleOperationTime(const vector<float> & perProgramOperationCosts) const1316 float BinaryOpCase::computeSingleOperationTime (const vector<float>& perProgramOperationCosts) const
1317 {
1318 DE_ASSERT(perProgramOperationCosts.size() == PROGRAM_LAST);
1319
1320 const int baseNumOpsInsideLoop = 2 * BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS;
1321 const int numOpsInsideLoopInSmallProgram = baseNumOpsInsideLoop * BINARY_OPERATOR_CASE_SMALL_PROGRAM_UNROLL_AMOUNT;
1322 const int numOpsInsideLoopInBigProgram = baseNumOpsInsideLoop * BINARY_OPERATOR_CASE_BIG_PROGRAM_UNROLL_AMOUNT;
1323 DE_STATIC_ASSERT(numOpsInsideLoopInBigProgram > numOpsInsideLoopInSmallProgram);
1324 const int opDiff = numOpsInsideLoopInBigProgram - numOpsInsideLoopInSmallProgram;
1325 const float programOperationCostDiff = perProgramOperationCosts[PROGRAM_WITH_BIGGER_LOOP] - perProgramOperationCosts[PROGRAM_WITH_SMALLER_LOOP];
1326
1327 return programOperationCostDiff / (float)opDiff;
1328 }
1329
logSingleOperationCalculationInfo(void) const1330 void BinaryOpCase::logSingleOperationCalculationInfo (void) const
1331 {
1332 const int baseNumOpsInsideLoop = 2 * BINARY_OPERATOR_CASE_NUM_INDEPENDENT_CALCULATIONS;
1333 const int numOpsInsideLoopInSmallProgram = baseNumOpsInsideLoop * BINARY_OPERATOR_CASE_SMALL_PROGRAM_UNROLL_AMOUNT;
1334 const int numOpsInsideLoopInBigProgram = baseNumOpsInsideLoop * BINARY_OPERATOR_CASE_BIG_PROGRAM_UNROLL_AMOUNT;
1335 const int opDiff = numOpsInsideLoopInBigProgram - numOpsInsideLoopInSmallProgram;
1336 const char* const opName = m_op == "+" ? "addition"
1337 : m_op == "-" ? "subtraction"
1338 : m_op == "*" ? "multiplication"
1339 : m_op == "/" ? "division"
1340 : DE_NULL;
1341 DE_ASSERT(opName != DE_NULL);
1342
1343 m_testCtx.getLog() << TestLog::Message << "Note: the bigger program contains " << opDiff << " more "
1344 << opName << " operations in one loop iteration than the small program; "
1345 << "cost of one operation is calculated as (cost_of_bigger_workload - cost_of_smaller_workload) / " << opDiff
1346 << TestLog::EndMessage;
1347 }
1348
1349 // Built-in function case.
1350 class FunctionCase : public OperatorPerformanceCase
1351 {
1352 public:
1353 enum
1354 {
1355 MAX_PARAMS = 3
1356 };
1357
1358 FunctionCase (Context& context,
1359 const char* name,
1360 const char* description,
1361 const char* func,
1362 glu::DataType returnType,
1363 const glu::DataType paramTypes[MAX_PARAMS],
1364 const Vec4& attribute,
1365 int modifyParamNdx, //!< Add a compile-time constant (2.0) to the parameter at this index. This is ignored if negative.
1366 bool useNearlyConstantINputs, //!< Function inputs shouldn't be much bigger than 'attribute'.
1367 glu::Precision precision,
1368 bool isVertex,
1369 const InitialCalibrationStorage& initialCalibration);
1370
1371 protected:
1372 vector<ProgramContext> generateProgramData (void) const;
1373 void setGeneralUniforms (deUint32 program) const;
1374 void setWorkloadSizeUniform (deUint32 program, int numOperations) const;
1375 float computeSingleOperationTime (const vector<float>& perProgramOperationCosts) const;
1376 void logSingleOperationCalculationInfo (void) const;
1377
1378 private:
1379 enum ProgramID
1380 {
1381 // \note 0-based sequential numbering is relevant, because these are also used as vector indices.
1382 // \note The first program should be the heaviest, because OperatorPerformanceCase uses it to reduce grid/viewport size when going too slow.
1383 PROGRAM_WITH_FUNCTION_CALLS = 0,
1384 PROGRAM_WITHOUT_FUNCTION_CALLS,
1385
1386 PROGRAM_LAST
1387 };
1388
1389 //! Forms a "sum" expression from aExpr and bExpr; for booleans, this is "equal(a,b)", otherwise actual sum.
1390 static string sumExpr (const string& aExpr, const string& bExpr, glu::DataType type);
1391 //! Forms an expression used to increment an input value in the shader. If type is boolean, this is just
1392 //! baseExpr; otherwise, baseExpr is modified by multiplication or division by a loop index,
1393 //! to prevent simple compiler optimizations. See m_useNearlyConstantInputs for more explanation.
1394 static string incrementExpr (const string& baseExpr, glu::DataType type, bool divide);
1395
1396 ProgramContext generateSingleProgramData (ProgramID) const;
1397
1398 const string m_func;
1399 const glu::DataType m_returnType;
1400 glu::DataType m_paramTypes[MAX_PARAMS];
1401 // \note m_modifyParamNdx, if not negative, specifies the index of the parameter to which a
1402 // compile-time constant (2.0) is added. This is a quick and dirty way to deal with
1403 // functions like clamp or smoothstep that require that a certain parameter is
1404 // greater than a certain other parameter.
1405 const int m_modifyParamNdx;
1406 // \note m_useNearlyConstantInputs determines whether the inputs given to the function
1407 // should increase (w.r.t m_attribute) only by very small amounts. This is relevant
1408 // for functions like asin, which requires its inputs to be in a specific range.
1409 // In practice, this affects whether expressions used to increment the input
1410 // variables use division instead of multiplication; normally, multiplication is used,
1411 // but it's hard to keep the increments very small that way, and division shouldn't
1412 // be the default, since for many functions (probably not asin, luckily), division
1413 // is too heavy and dominates time-wise.
1414 const bool m_useNearlyConstantInputs;
1415 const Vec4 m_attribute;
1416 const glu::Precision m_precision;
1417 };
1418
FunctionCase(Context & context,const char * name,const char * description,const char * func,glu::DataType returnType,const glu::DataType paramTypes[MAX_PARAMS],const Vec4 & attribute,int modifyParamNdx,bool useNearlyConstantInputs,glu::Precision precision,bool isVertex,const InitialCalibrationStorage & initialCalibration)1419 FunctionCase::FunctionCase (Context& context,
1420 const char* name,
1421 const char* description,
1422 const char* func,
1423 glu::DataType returnType,
1424 const glu::DataType paramTypes[MAX_PARAMS],
1425 const Vec4& attribute,
1426 int modifyParamNdx,
1427 bool useNearlyConstantInputs,
1428 glu::Precision precision,
1429 bool isVertex,
1430 const InitialCalibrationStorage& initialCalibration)
1431 : OperatorPerformanceCase (context.getTestContext(), context.getRenderContext(), name, description,
1432 isVertex ? CASETYPE_VERTEX : CASETYPE_FRAGMENT, NUM_WORKLOADS, initialCalibration)
1433 , m_func (func)
1434 , m_returnType (returnType)
1435 , m_modifyParamNdx (modifyParamNdx)
1436 , m_useNearlyConstantInputs (useNearlyConstantInputs)
1437 , m_attribute (attribute)
1438 , m_precision (precision)
1439 {
1440 for (int i = 0; i < MAX_PARAMS; i++)
1441 m_paramTypes[i] = paramTypes[i];
1442 }
1443
sumExpr(const string & aExpr,const string & bExpr,glu::DataType type)1444 string FunctionCase::sumExpr (const string& aExpr, const string& bExpr, glu::DataType type)
1445 {
1446 if (glu::isDataTypeBoolOrBVec(type))
1447 {
1448 if (type == glu::TYPE_BOOL)
1449 return "(" + aExpr + " == " + bExpr + ")";
1450 else
1451 return "equal(" + aExpr + ", " + bExpr + ")";
1452 }
1453 else
1454 return "(" + aExpr + " + " + bExpr + ")";
1455 }
1456
incrementExpr(const string & baseExpr,glu::DataType type,bool divide)1457 string FunctionCase::incrementExpr (const string& baseExpr, glu::DataType type, bool divide)
1458 {
1459 const string mulOrDiv = divide ? "/" : "*";
1460
1461 return glu::isDataTypeBoolOrBVec(type) ? baseExpr
1462 : glu::isDataTypeIntOrIVec(type) ? "(" + baseExpr + mulOrDiv + "(i+1))"
1463 : "(" + baseExpr + mulOrDiv + "float(i+1))";
1464 }
1465
generateSingleProgramData(ProgramID programID) const1466 FunctionCase::ProgramContext FunctionCase::generateSingleProgramData (ProgramID programID) const
1467 {
1468 const bool isVertexCase = m_caseType == CASETYPE_VERTEX;
1469 const char* const precision = glu::getPrecisionName(m_precision);
1470 const char* const returnTypeName = getDataTypeName(m_returnType);
1471 const string returnPrecisionMaybe = glu::isDataTypeBoolOrBVec(m_returnType) ? "" : string() + precision + " ";
1472 const char* inputPrecision = DE_NULL;
1473 const bool isMatrixReturn = isDataTypeMatrix(m_returnType);
1474 int numParams = 0;
1475 const char* paramTypeNames[MAX_PARAMS];
1476 string paramPrecisionsMaybe[MAX_PARAMS];
1477
1478 for (int i = 0; i < MAX_PARAMS; i++)
1479 {
1480 paramTypeNames[i] = getDataTypeName(m_paramTypes[i]);
1481 paramPrecisionsMaybe[i] = glu::isDataTypeBoolOrBVec(m_paramTypes[i]) ? "" : string() + precision + " ";
1482
1483 if (inputPrecision == DE_NULL && isDataTypeIntOrIVec(m_paramTypes[i]) && m_precision == glu::PRECISION_LOWP)
1484 inputPrecision = "mediump";
1485
1486 if (m_paramTypes[i] != TYPE_INVALID)
1487 numParams = i+1;
1488 }
1489
1490 DE_ASSERT(numParams > 0);
1491
1492 if (inputPrecision == DE_NULL)
1493 inputPrecision = precision;
1494
1495 int numAttributes = FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS + numParams - 1;
1496 std::ostringstream vtx;
1497 std::ostringstream frag;
1498 std::ostringstream& op = isVertexCase ? vtx : frag;
1499
1500 // Attributes.
1501 vtx << "attribute highp vec4 a_position;\n";
1502 for (int i = 0; i < numAttributes; i++)
1503 vtx << "attribute " << inputPrecision << " vec4 a_in" << i << ";\n";
1504
1505 if (isVertexCase)
1506 {
1507 vtx << "varying mediump vec4 v_color;\n";
1508 frag << "varying mediump vec4 v_color;\n";
1509 }
1510 else
1511 {
1512 for (int i = 0; i < numAttributes; i++)
1513 {
1514 vtx << "varying " << inputPrecision << " vec4 v_in" << i << ";\n";
1515 frag << "varying " << inputPrecision << " vec4 v_in" << i << ";\n";
1516 }
1517 }
1518
1519 op << "uniform mediump int u_numLoopIterations;\n";
1520 if (isVertexCase)
1521 op << "uniform mediump float u_zero;\n";
1522
1523 for (int paramNdx = 0; paramNdx < numParams; paramNdx++)
1524 op << "uniform " << paramPrecisionsMaybe[paramNdx] << paramTypeNames[paramNdx] << " u_inc" << (char)('A'+paramNdx) << ";\n";
1525
1526 vtx << "\n";
1527 vtx << "void main()\n";
1528 vtx << "{\n";
1529
1530 if (!isVertexCase)
1531 vtx << "\tgl_Position = a_position;\n";
1532
1533 frag << "\n";
1534 frag << "void main()\n";
1535 frag << "{\n";
1536
1537 // Function call input and return value accumulation variables.
1538 {
1539 const char* const inPrefix = isVertexCase ? "a_" : "v_";
1540
1541 for (int calcNdx = 0; calcNdx < FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS; calcNdx++)
1542 {
1543 for (int paramNdx = 0; paramNdx < numParams; paramNdx++)
1544 {
1545 const glu::DataType paramType = m_paramTypes[paramNdx];
1546 const bool mustCast = paramType != glu::TYPE_FLOAT_VEC4;
1547
1548 op << "\t" << paramPrecisionsMaybe[paramNdx] << paramTypeNames[paramNdx] << " in" << calcNdx << (char)('a'+paramNdx) << " = ";
1549
1550 if (mustCast)
1551 op << paramTypeNames[paramNdx] << "(";
1552
1553 if (glu::isDataTypeMatrix(paramType))
1554 {
1555 static const char* const swizzles[3] = { "x", "xy", "xyz" };
1556 const int numRows = glu::getDataTypeMatrixNumRows(paramType);
1557 const int numCols = glu::getDataTypeMatrixNumColumns(paramType);
1558 const string swizzle = numRows < 4 ? string() + "." + swizzles[numRows-1] : "";
1559
1560 for (int i = 0; i < numCols; i++)
1561 op << (i > 0 ? ", " : "") << inPrefix << "in" << calcNdx+paramNdx << swizzle;
1562 }
1563 else
1564 {
1565 op << inPrefix << "in" << calcNdx+paramNdx;
1566
1567 if (paramNdx == m_modifyParamNdx)
1568 {
1569 DE_ASSERT(glu::isDataTypeFloatOrVec(paramType));
1570 op << " + 2.0";
1571 }
1572 }
1573
1574 if (mustCast)
1575 op << ")";
1576
1577 op << ";\n";
1578 }
1579
1580 op << "\t" << returnPrecisionMaybe << returnTypeName << " res" << calcNdx << " = " << returnTypeName << "(0);\n";
1581 }
1582 }
1583
1584 // Loop with expressions in it.
1585 op << "\tfor (int i = 0; i < u_numLoopIterations; i++)\n";
1586 op << "\t{\n";
1587 for (int calcNdx = 0; calcNdx < FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS; calcNdx++)
1588 {
1589 if (calcNdx > 0)
1590 op << "\n";
1591
1592 op << "\t\t{\n";
1593
1594 for (int inputNdx = 0; inputNdx < numParams; inputNdx++)
1595 {
1596 const string inputName = "in" + de::toString(calcNdx) + (char)('a'+inputNdx);
1597 const string incName = string() + "u_inc" + (char)('A'+inputNdx);
1598 const string incExpr = incrementExpr(incName, m_paramTypes[inputNdx], m_useNearlyConstantInputs);
1599
1600 op << "\t\t\t" << inputName << " = " << sumExpr(inputName, incExpr, m_paramTypes[inputNdx]) << ";\n";
1601 }
1602
1603 op << "\t\t\t" << returnPrecisionMaybe << returnTypeName << " eval" << calcNdx << " = ";
1604
1605 if (programID == PROGRAM_WITH_FUNCTION_CALLS)
1606 {
1607 op << m_func << "(";
1608
1609 for (int paramNdx = 0; paramNdx < numParams; paramNdx++)
1610 {
1611 if (paramNdx > 0)
1612 op << ", ";
1613
1614 op << "in" << calcNdx << (char)('a'+paramNdx);
1615 }
1616
1617 op << ")";
1618 }
1619 else
1620 {
1621 DE_ASSERT(programID == PROGRAM_WITHOUT_FUNCTION_CALLS);
1622 op << returnTypeName << "(1)";
1623 }
1624
1625 op << ";\n";
1626
1627 {
1628 const string resName = "res" + de::toString(calcNdx);
1629 const string evalName = "eval" + de::toString(calcNdx);
1630 const string incExpr = incrementExpr(evalName, m_returnType, m_useNearlyConstantInputs);
1631
1632 op << "\t\t\tres" << calcNdx << " = " << sumExpr(resName, incExpr, m_returnType) << ";\n";
1633 }
1634
1635 op << "\t\t}\n";
1636 }
1637 op << "\t}\n";
1638 op << "\n";
1639
1640 // Result variables.
1641 for (int inputNdx = 0; inputNdx < numParams; inputNdx++)
1642 {
1643 op << "\t" << paramPrecisionsMaybe[inputNdx] << paramTypeNames[inputNdx] << " sumIn" << (char)('A'+inputNdx) << " = ";
1644 {
1645 string expr = string() + "in0" + (char)('a'+inputNdx);
1646 for (int i = 1; i < FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS; i++)
1647 expr = sumExpr(expr, string() + "in" + de::toString(i) + (char)('a'+inputNdx), m_paramTypes[inputNdx]);
1648 op << expr;
1649 }
1650 op << ";\n";
1651 }
1652
1653 op << "\t" << returnPrecisionMaybe << returnTypeName << " sumRes = ";
1654 {
1655 string expr = "res0";
1656 for (int i = 1; i < FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS; i++)
1657 expr = sumExpr(expr, "res" + de::toString(i), m_returnType);
1658 op << expr;
1659 }
1660 op << ";\n";
1661
1662 {
1663 glu::DataType finalResultDataType = glu::TYPE_LAST;
1664
1665 if (glu::isDataTypeMatrix(m_returnType))
1666 {
1667 finalResultDataType = m_returnType;
1668
1669 op << "\t" << precision << " " << returnTypeName << " finalRes = ";
1670
1671 for (int inputNdx = 0; inputNdx < numParams; inputNdx++)
1672 {
1673 DE_ASSERT(m_paramTypes[inputNdx] == m_returnType);
1674 op << "sumIn" << (char)('A'+inputNdx) << " + ";
1675 }
1676 op << "sumRes;\n";
1677 }
1678 else
1679 {
1680 int numFinalResComponents = glu::getDataTypeScalarSize(m_returnType);
1681 for (int inputNdx = 0; inputNdx < numParams; inputNdx++)
1682 numFinalResComponents = de::max(numFinalResComponents, glu::getDataTypeScalarSize(m_paramTypes[inputNdx]));
1683
1684 finalResultDataType = getDataTypeFloatOrVec(numFinalResComponents);
1685
1686 {
1687 const string finalResType = glu::getDataTypeName(finalResultDataType);
1688 op << "\t" << precision << " " << finalResType << " finalRes = ";
1689 for (int inputNdx = 0; inputNdx < numParams; inputNdx++)
1690 op << finalResType << "(sumIn" << (char)('A'+inputNdx) << ") + ";
1691 op << finalResType << "(sumRes);\n";
1692 }
1693 }
1694
1695 // Convert to color.
1696 op << "\tmediump vec4 color = ";
1697 if (finalResultDataType == TYPE_FLOAT_VEC4)
1698 op << "finalRes";
1699 else
1700 {
1701 int size = isMatrixReturn ? getDataTypeMatrixNumRows(finalResultDataType) : getDataTypeScalarSize(finalResultDataType);
1702
1703 op << "vec4(";
1704
1705 if (isMatrixReturn)
1706 {
1707 for (int i = 0; i < getDataTypeMatrixNumColumns(finalResultDataType); i++)
1708 {
1709 if (i > 0)
1710 op << " + ";
1711 op << "finalRes[" << i << "]";
1712 }
1713 }
1714 else
1715 op << "finalRes";
1716
1717 for (int i = size; i < 4; i++)
1718 op << ", " << (i == 3 ? "1.0" : "0.0");
1719
1720 op << ")";
1721 }
1722 op << ";\n";
1723 op << "\t" << (isVertexCase ? "v_color" : "gl_FragColor") << " = color;\n";
1724
1725 if (isVertexCase)
1726 {
1727 vtx << " gl_Position = a_position + u_zero*color;\n";
1728 frag << " gl_FragColor = v_color;\n";
1729 }
1730 else
1731 {
1732 for (int i = 0; i < numAttributes; i++)
1733 vtx << " v_in" << i << " = a_in" << i << ";\n";
1734 }
1735
1736 vtx << "}\n";
1737 frag << "}\n";
1738 }
1739
1740 {
1741 vector<AttribSpec> attributes;
1742 for (int i = 0; i < numAttributes; i++)
1743 attributes.push_back(AttribSpec(("a_in" + de::toString(i)).c_str(),
1744 m_attribute.swizzle((i+0)%4, (i+1)%4, (i+2)%4, (i+3)%4),
1745 m_attribute.swizzle((i+1)%4, (i+2)%4, (i+3)%4, (i+0)%4),
1746 m_attribute.swizzle((i+2)%4, (i+3)%4, (i+0)%4, (i+1)%4),
1747 m_attribute.swizzle((i+3)%4, (i+0)%4, (i+1)%4, (i+2)%4)));
1748
1749 {
1750 string description = "This is the program ";
1751
1752 description += programID == PROGRAM_WITHOUT_FUNCTION_CALLS ? "without"
1753 : programID == PROGRAM_WITH_FUNCTION_CALLS ? "with"
1754 : DE_NULL;
1755
1756 description += " '" + m_func + "' function calls.\n"
1757 "Note: workload size for this program means the number of loop iterations.";
1758
1759 return ProgramContext(vtx.str(), frag.str(), attributes, description);
1760 }
1761 }
1762 }
1763
generateProgramData(void) const1764 vector<FunctionCase::ProgramContext> FunctionCase::generateProgramData (void) const
1765 {
1766 vector<ProgramContext> progData;
1767 for (int i = 0; i < PROGRAM_LAST; i++)
1768 progData.push_back(generateSingleProgramData((ProgramID)i));
1769 return progData;
1770 }
1771
setGeneralUniforms(deUint32 program) const1772 void FunctionCase::setGeneralUniforms (deUint32 program) const
1773 {
1774 const glw::Functions& gl = m_renderCtx.getFunctions();
1775
1776 gl.uniform1f(gl.getUniformLocation(program, "u_zero"), 0.0f);
1777
1778 for (int paramNdx = 0; paramNdx < MAX_PARAMS; paramNdx++)
1779 {
1780 if (m_paramTypes[paramNdx] != glu::TYPE_INVALID)
1781 {
1782 const glu::DataType paramType = m_paramTypes[paramNdx];
1783 const int scalarSize = glu::getDataTypeScalarSize(paramType);
1784 const int location = gl.getUniformLocation(program, (string() + "u_inc" + (char)('A'+paramNdx)).c_str());
1785
1786 if (glu::isDataTypeFloatOrVec(paramType))
1787 {
1788 float values[4];
1789 for (int i = 0; i < DE_LENGTH_OF_ARRAY(values); i++)
1790 values[i] = (float)paramNdx*0.01f + (float)i*0.001f; // Arbitrary small values.
1791 uniformNfv(gl, scalarSize, location, 1, &values[0]);
1792 }
1793 else if (glu::isDataTypeIntOrIVec(paramType))
1794 {
1795 int values[4];
1796 for (int i = 0; i < DE_LENGTH_OF_ARRAY(values); i++)
1797 values[i] = paramNdx*100 + i; // Arbitrary values.
1798 uniformNiv(gl, scalarSize, location, 1, &values[0]);
1799 }
1800 else if (glu::isDataTypeBoolOrBVec(paramType))
1801 {
1802 int values[4];
1803 for (int i = 0; i < DE_LENGTH_OF_ARRAY(values); i++)
1804 values[i] = (paramNdx >> i) & 1; // Arbitrary values.
1805 uniformNiv(gl, scalarSize, location, 1, &values[0]);
1806 }
1807 else if (glu::isDataTypeMatrix(paramType))
1808 {
1809 const int size = glu::getDataTypeMatrixNumRows(paramType);
1810 DE_ASSERT(size == glu::getDataTypeMatrixNumColumns(paramType));
1811 float values[4*4];
1812 for (int i = 0; i < DE_LENGTH_OF_ARRAY(values); i++)
1813 values[i] = (float)paramNdx*0.01f + (float)i*0.001f; // Arbitrary values.
1814 uniformMatrixNfv(gl, size, location, 1, &values[0]);
1815 }
1816 else
1817 DE_ASSERT(false);
1818 }
1819 }
1820 }
1821
setWorkloadSizeUniform(deUint32 program,int numLoopIterations) const1822 void FunctionCase::setWorkloadSizeUniform (deUint32 program, int numLoopIterations) const
1823 {
1824 const glw::Functions& gl = m_renderCtx.getFunctions();
1825 const int loc = gl.getUniformLocation(program, "u_numLoopIterations");
1826
1827 gl.uniform1i(loc, numLoopIterations);
1828 }
1829
computeSingleOperationTime(const vector<float> & perProgramOperationCosts) const1830 float FunctionCase::computeSingleOperationTime (const vector<float>& perProgramOperationCosts) const
1831 {
1832 DE_ASSERT(perProgramOperationCosts.size() == PROGRAM_LAST);
1833 const int numFunctionCalls = FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS;
1834 const float programOperationCostDiff = perProgramOperationCosts[PROGRAM_WITH_FUNCTION_CALLS] - perProgramOperationCosts[PROGRAM_WITHOUT_FUNCTION_CALLS];
1835
1836 return programOperationCostDiff / (float)numFunctionCalls;
1837 }
1838
logSingleOperationCalculationInfo(void) const1839 void FunctionCase::logSingleOperationCalculationInfo (void) const
1840 {
1841 const int numFunctionCalls = FUNCTION_CASE_NUM_INDEPENDENT_CALCULATIONS;
1842
1843 m_testCtx.getLog() << TestLog::Message << "Note: program " << (int)PROGRAM_WITH_FUNCTION_CALLS << " contains "
1844 << numFunctionCalls << " calls to '" << m_func << "' in one loop iteration; "
1845 << "cost of one operation is calculated as "
1846 << "(cost_of_workload_with_calls - cost_of_workload_without_calls) / " << numFunctionCalls << TestLog::EndMessage;
1847 }
1848
1849 } // anonymous
1850
ShaderOperatorTests(Context & context)1851 ShaderOperatorTests::ShaderOperatorTests (Context& context)
1852 : TestCaseGroup(context, "operator", "Operator Performance Tests")
1853 {
1854 }
1855
~ShaderOperatorTests(void)1856 ShaderOperatorTests::~ShaderOperatorTests (void)
1857 {
1858 }
1859
init(void)1860 void ShaderOperatorTests::init (void)
1861 {
1862 // Binary operator cases
1863
1864 static const DataType binaryOpTypes[] =
1865 {
1866 TYPE_FLOAT,
1867 TYPE_FLOAT_VEC2,
1868 TYPE_FLOAT_VEC3,
1869 TYPE_FLOAT_VEC4,
1870 TYPE_INT,
1871 TYPE_INT_VEC2,
1872 TYPE_INT_VEC3,
1873 TYPE_INT_VEC4,
1874 };
1875 static const Precision precisions[] =
1876 {
1877 PRECISION_LOWP,
1878 PRECISION_MEDIUMP,
1879 PRECISION_HIGHP
1880 };
1881 static const struct
1882 {
1883 const char* name;
1884 const char* op;
1885 bool swizzle;
1886 } binaryOps[] =
1887 {
1888 { "add", "+", false },
1889 { "sub", "-", true },
1890 { "mul", "*", false },
1891 { "div", "/", true }
1892 };
1893
1894 tcu::TestCaseGroup* const binaryOpsGroup = new tcu::TestCaseGroup(m_testCtx, "binary_operator", "Binary Operator Performance Tests");
1895 addChild(binaryOpsGroup);
1896
1897 for (int opNdx = 0; opNdx < DE_LENGTH_OF_ARRAY(binaryOps); opNdx++)
1898 {
1899 tcu::TestCaseGroup* const opGroup = new tcu::TestCaseGroup(m_testCtx, binaryOps[opNdx].name, "");
1900 binaryOpsGroup->addChild(opGroup);
1901
1902 for (int isFrag = 0; isFrag <= 1; isFrag++)
1903 {
1904 const BinaryOpCase::InitialCalibrationStorage shaderGroupCalibrationStorage (new BinaryOpCase::InitialCalibration);
1905 const bool isVertex = isFrag == 0;
1906 tcu::TestCaseGroup* const shaderGroup = new tcu::TestCaseGroup(m_testCtx, isVertex ? "vertex" : "fragment", "");
1907 opGroup->addChild(shaderGroup);
1908
1909 for (int typeNdx = 0; typeNdx < DE_LENGTH_OF_ARRAY(binaryOpTypes); typeNdx++)
1910 {
1911 for (int precNdx = 0; precNdx < DE_LENGTH_OF_ARRAY(precisions); precNdx++)
1912 {
1913 const DataType type = binaryOpTypes[typeNdx];
1914 const Precision precision = precisions[precNdx];
1915 const char* const op = binaryOps[opNdx].op;
1916 const bool useSwizzle = binaryOps[opNdx].swizzle;
1917 std::ostringstream name;
1918
1919 name << getPrecisionName(precision) << "_" << getDataTypeName(type);
1920
1921 shaderGroup->addChild(new BinaryOpCase(m_context, name.str().c_str(), "", op, type, precision, useSwizzle, isVertex, shaderGroupCalibrationStorage));
1922 }
1923 }
1924 }
1925 }
1926
1927 // Built-in function cases.
1928
1929 // Non-specific (i.e. includes gentypes) parameter types for the functions.
1930 enum ValueType
1931 {
1932 VALUE_NONE = 0,
1933 VALUE_FLOAT = (1<<0), // float scalar
1934 VALUE_FLOAT_VEC = (1<<1), // float vector
1935 VALUE_FLOAT_VEC34 = (1<<2), // float vector of size 3 or 4
1936 VALUE_FLOAT_GENTYPE = (1<<3), // float scalar/vector
1937 VALUE_VEC3 = (1<<4), // vec3 only
1938 VALUE_VEC4 = (1<<5), // vec4 only
1939 VALUE_MATRIX = (1<<6), // matrix
1940 VALUE_BOOL = (1<<7), // boolean scalar
1941 VALUE_BOOL_VEC = (1<<8), // boolean vector
1942 VALUE_BOOL_GENTYPE = (1<<9), // boolean scalar/vector
1943 VALUE_INT = (1<<10), // int scalar
1944 VALUE_INT_VEC = (1<<11), // int vector
1945 VALUE_INT_GENTYPE = (1<<12), // int scalar/vector
1946
1947 // Shorthands.
1948 N = VALUE_NONE,
1949 F = VALUE_FLOAT,
1950 FV = VALUE_FLOAT_VEC,
1951 VL = VALUE_FLOAT_VEC34, // L for "large"
1952 GT = VALUE_FLOAT_GENTYPE,
1953 V3 = VALUE_VEC3,
1954 V4 = VALUE_VEC4,
1955 M = VALUE_MATRIX,
1956 B = VALUE_BOOL,
1957 BV = VALUE_BOOL_VEC,
1958 BGT = VALUE_BOOL_GENTYPE,
1959 I = VALUE_INT,
1960 IV = VALUE_INT_VEC,
1961 IGT = VALUE_INT_GENTYPE,
1962
1963 VALUE_ANY_FLOAT = VALUE_FLOAT | VALUE_FLOAT_VEC | VALUE_FLOAT_GENTYPE | VALUE_VEC3 | VALUE_VEC4 | VALUE_FLOAT_VEC34,
1964 VALUE_ANY_INT = VALUE_INT | VALUE_INT_VEC | VALUE_INT_GENTYPE,
1965 VALUE_ANY_BOOL = VALUE_BOOL | VALUE_BOOL_VEC | VALUE_BOOL_GENTYPE,
1966
1967 VALUE_ANY_GENTYPE = VALUE_FLOAT_VEC | VALUE_FLOAT_GENTYPE | VALUE_FLOAT_VEC34 |
1968 VALUE_BOOL_VEC | VALUE_BOOL_GENTYPE |
1969 VALUE_INT_VEC | VALUE_INT_GENTYPE |
1970 VALUE_MATRIX
1971 };
1972 enum PrecisionMask
1973 {
1974 PRECMASK_NA = 0, //!< Precision not applicable (booleans)
1975 PRECMASK_LOWP = (1<<PRECISION_LOWP),
1976 PRECMASK_MEDIUMP = (1<<PRECISION_MEDIUMP),
1977 PRECMASK_HIGHP = (1<<PRECISION_HIGHP),
1978
1979 PRECMASK_MEDIUMP_HIGHP = (1<<PRECISION_MEDIUMP) | (1<<PRECISION_HIGHP),
1980 PRECMASK_ALL = (1<<PRECISION_LOWP) | (1<<PRECISION_MEDIUMP) | (1<<PRECISION_HIGHP)
1981 };
1982
1983 static const DataType floatTypes[] =
1984 {
1985 TYPE_FLOAT,
1986 TYPE_FLOAT_VEC2,
1987 TYPE_FLOAT_VEC3,
1988 TYPE_FLOAT_VEC4
1989 };
1990 static const DataType intTypes[] =
1991 {
1992 TYPE_INT,
1993 TYPE_INT_VEC2,
1994 TYPE_INT_VEC3,
1995 TYPE_INT_VEC4
1996 };
1997 static const DataType boolTypes[] =
1998 {
1999 TYPE_BOOL,
2000 TYPE_BOOL_VEC2,
2001 TYPE_BOOL_VEC3,
2002 TYPE_BOOL_VEC4
2003 };
2004 static const DataType matrixTypes[] =
2005 {
2006 TYPE_FLOAT_MAT2,
2007 TYPE_FLOAT_MAT3,
2008 TYPE_FLOAT_MAT4
2009 };
2010
2011 tcu::TestCaseGroup* const angleAndTrigonometryGroup = new tcu::TestCaseGroup(m_testCtx, "angle_and_trigonometry", "Built-In Angle and Trigonometry Function Performance Tests");
2012 tcu::TestCaseGroup* const exponentialGroup = new tcu::TestCaseGroup(m_testCtx, "exponential", "Built-In Exponential Function Performance Tests");
2013 tcu::TestCaseGroup* const commonFunctionsGroup = new tcu::TestCaseGroup(m_testCtx, "common_functions", "Built-In Common Function Performance Tests");
2014 tcu::TestCaseGroup* const geometricFunctionsGroup = new tcu::TestCaseGroup(m_testCtx, "geometric", "Built-In Geometric Function Performance Tests");
2015 tcu::TestCaseGroup* const matrixFunctionsGroup = new tcu::TestCaseGroup(m_testCtx, "matrix", "Built-In Matrix Function Performance Tests");
2016 tcu::TestCaseGroup* const floatCompareGroup = new tcu::TestCaseGroup(m_testCtx, "float_compare", "Built-In Floating Point Comparison Function Performance Tests");
2017 tcu::TestCaseGroup* const intCompareGroup = new tcu::TestCaseGroup(m_testCtx, "int_compare", "Built-In Integer Comparison Function Performance Tests");
2018 tcu::TestCaseGroup* const boolCompareGroup = new tcu::TestCaseGroup(m_testCtx, "bool_compare", "Built-In Boolean Comparison Function Performance Tests");
2019
2020 addChild(angleAndTrigonometryGroup);
2021 addChild(exponentialGroup);
2022 addChild(commonFunctionsGroup);
2023 addChild(geometricFunctionsGroup);
2024 addChild(matrixFunctionsGroup);
2025 addChild(floatCompareGroup);
2026 addChild(intCompareGroup);
2027 addChild(boolCompareGroup);
2028
2029 // Some attributes to be used as parameters for the functions.
2030 const Vec4 attrPos = Vec4( 2.3f, 1.9f, 0.8f, 0.7f);
2031 const Vec4 attrNegPos = Vec4(-1.3f, 2.5f, -3.5f, 4.3f);
2032 const Vec4 attrSmall = Vec4(-0.9f, 0.8f, -0.4f, 0.2f);
2033
2034 // Function name, return type and parameter type information; also, what attribute should be used in the test.
2035 // \note Different versions of the same function (i.e. with the same group name) can be defined by putting them successively in this array.
2036 // \note In order to reduce case count and thus total execution time, we don't test all input type combinations for every function.
2037 static const struct
2038 {
2039 tcu::TestCaseGroup* parentGroup;
2040 const char* groupName;
2041 const char* func;
2042 const ValueType types[FunctionCase::MAX_PARAMS + 1]; // Return type and parameter types, in that order.
2043 const Vec4& attribute;
2044 int modifyParamNdx;
2045 bool useNearlyConstantInputs;
2046 bool booleanCase;
2047 PrecisionMask precMask;
2048 } functionCaseGroups[] =
2049 {
2050 { angleAndTrigonometryGroup, "radians", "radians", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2051 { angleAndTrigonometryGroup, "degrees", "degrees", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2052 { angleAndTrigonometryGroup, "sin", "sin", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2053 { angleAndTrigonometryGroup, "cos", "cos", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2054 { angleAndTrigonometryGroup, "tan", "tan", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2055 { angleAndTrigonometryGroup, "asin", "asin", { F, F, N, N }, attrSmall, -1, true, false, PRECMASK_ALL },
2056 { angleAndTrigonometryGroup, "acos", "acos", { F, F, N, N }, attrSmall, -1, true, false, PRECMASK_ALL },
2057 { angleAndTrigonometryGroup, "atan2", "atan", { F, F, F, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2058 { angleAndTrigonometryGroup, "atan", "atan", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2059
2060 { exponentialGroup, "pow", "pow", { F, F, F, N }, attrPos, -1, false, false, PRECMASK_ALL },
2061 { exponentialGroup, "exp", "exp", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2062 { exponentialGroup, "log", "log", { F, F, N, N }, attrPos, -1, false, false, PRECMASK_ALL },
2063 { exponentialGroup, "exp2", "exp2", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2064 { exponentialGroup, "log2", "log2", { F, F, N, N }, attrPos, -1, false, false, PRECMASK_ALL },
2065 { exponentialGroup, "sqrt", "sqrt", { F, F, N, N }, attrPos, -1, false, false, PRECMASK_ALL },
2066 { exponentialGroup, "inversesqrt", "inversesqrt", { F, F, N, N }, attrPos, -1, false, false, PRECMASK_ALL },
2067
2068 { commonFunctionsGroup, "abs", "abs", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_MEDIUMP_HIGHP },
2069 { commonFunctionsGroup, "abs", "abs", { V4, V4, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2070 { commonFunctionsGroup, "sign", "sign", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_MEDIUMP_HIGHP },
2071 { commonFunctionsGroup, "sign", "sign", { V4, V4, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2072 { commonFunctionsGroup, "floor", "floor", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_MEDIUMP_HIGHP },
2073 { commonFunctionsGroup, "floor", "floor", { V4, V4, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2074 { commonFunctionsGroup, "ceil", "ceil", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_MEDIUMP_HIGHP },
2075 { commonFunctionsGroup, "ceil", "ceil", { V4, V4, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2076 { commonFunctionsGroup, "fract", "fract", { F, F, N, N }, attrNegPos, -1, false, false, PRECMASK_MEDIUMP_HIGHP },
2077 { commonFunctionsGroup, "fract", "fract", { V4, V4, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2078 { commonFunctionsGroup, "mod", "mod", { GT, GT, GT, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2079 { commonFunctionsGroup, "min", "min", { F, F, F, N }, attrNegPos, -1, false, false, PRECMASK_MEDIUMP_HIGHP },
2080 { commonFunctionsGroup, "min", "min", { V4, V4, V4, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2081 { commonFunctionsGroup, "max", "max", { F, F, F, N }, attrNegPos, -1, false, false, PRECMASK_MEDIUMP_HIGHP },
2082 { commonFunctionsGroup, "max", "max", { V4, V4, V4, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2083 { commonFunctionsGroup, "clamp", "clamp", { F, F, F, F }, attrSmall, 2, false, false, PRECMASK_MEDIUMP_HIGHP },
2084 { commonFunctionsGroup, "clamp", "clamp", { V4, V4, V4, V4 }, attrSmall, 2, false, false, PRECMASK_ALL },
2085 { commonFunctionsGroup, "mix", "mix", { F, F, F, F }, attrNegPos, -1, false, false, PRECMASK_MEDIUMP_HIGHP },
2086 { commonFunctionsGroup, "mix", "mix", { V4, V4, V4, V4 }, attrNegPos, -1, false, false, PRECMASK_ALL },
2087 { commonFunctionsGroup, "step", "step", { F, F, F, N }, attrNegPos, -1, false, false, PRECMASK_MEDIUMP_HIGHP },
2088 { commonFunctionsGroup, "step", "step", { V4, V4, V4, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2089 { commonFunctionsGroup, "smoothstep", "smoothstep", { F, F, F, F }, attrSmall, 1, false, false, PRECMASK_MEDIUMP_HIGHP },
2090 { commonFunctionsGroup, "smoothstep", "smoothstep", { V4, V4, V4, V4 }, attrSmall, 1, false, false, PRECMASK_ALL },
2091
2092 { geometricFunctionsGroup, "length", "length", { F, VL, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2093 { geometricFunctionsGroup, "distance", "distance", { F, VL, VL, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2094 { geometricFunctionsGroup, "dot", "dot", { F, VL, VL, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2095 { geometricFunctionsGroup, "cross", "cross", { V3, V3, V3, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2096 { geometricFunctionsGroup, "normalize", "normalize", { VL, VL, N, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2097 { geometricFunctionsGroup, "faceforward", "faceforward", { VL, VL, VL, VL }, attrNegPos, -1, false, false, PRECMASK_ALL },
2098 { geometricFunctionsGroup, "reflect", "reflect", { VL, VL, VL, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2099 { geometricFunctionsGroup, "refract", "refract", { VL, VL, VL, F }, attrNegPos, -1, false, false, PRECMASK_ALL },
2100
2101 { matrixFunctionsGroup, "matrixCompMult", "matrixCompMult", { M, M, M, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2102
2103 { floatCompareGroup, "lessThan", "lessThan", { BV, FV, FV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2104 { floatCompareGroup, "lessThanEqual", "lessThanEqual", { BV, FV, FV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2105 { floatCompareGroup, "greaterThan", "greaterThan", { BV, FV, FV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2106 { floatCompareGroup, "greaterThanEqual", "greaterThanEqual", { BV, FV, FV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2107 { floatCompareGroup, "equal", "equal", { BV, FV, FV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2108 { floatCompareGroup, "notEqual", "notEqual", { BV, FV, FV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2109
2110 { intCompareGroup, "lessThan", "lessThan", { BV, IV, IV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2111 { intCompareGroup, "lessThanEqual", "lessThanEqual", { BV, IV, IV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2112 { intCompareGroup, "greaterThan", "greaterThan", { BV, IV, IV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2113 { intCompareGroup, "greaterThanEqual", "greaterThanEqual", { BV, IV, IV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2114 { intCompareGroup, "equal", "equal", { BV, IV, IV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2115 { intCompareGroup, "notEqual", "notEqual", { BV, IV, IV, N }, attrNegPos, -1, false, false, PRECMASK_ALL },
2116
2117 { boolCompareGroup, "equal", "equal", { BV, BV, BV, N }, attrNegPos, -1, false, true, PRECMASK_MEDIUMP },
2118 { boolCompareGroup, "notEqual", "notEqual", { BV, BV, BV, N }, attrNegPos, -1, false, true, PRECMASK_MEDIUMP },
2119 { boolCompareGroup, "any", "any", { B, BV, N, N }, attrNegPos, -1, false, true, PRECMASK_MEDIUMP },
2120 { boolCompareGroup, "all", "all", { B, BV, N, N }, attrNegPos, -1, false, true, PRECMASK_MEDIUMP },
2121 { boolCompareGroup, "not", "not", { BV, BV, N, N }, attrNegPos, -1, false, true, PRECMASK_MEDIUMP }
2122 };
2123
2124 // vertexSubGroup and fragmentSubGroup are the groups where the various vertex/fragment cases of a single function are added.
2125 // \note These are defined here so that different versions (different entries in the functionCaseGroups array) of the same function can be put in the same group.
2126 tcu::TestCaseGroup* vertexSubGroup = DE_NULL;
2127 tcu::TestCaseGroup* fragmentSubGroup = DE_NULL;
2128 FunctionCase::InitialCalibrationStorage vertexSubGroupCalibrationStorage;
2129 FunctionCase::InitialCalibrationStorage fragmentSubGroupCalibrationStorage;
2130 for (int funcNdx = 0; funcNdx < DE_LENGTH_OF_ARRAY(functionCaseGroups); funcNdx++)
2131 {
2132 tcu::TestCaseGroup* const parentGroup = functionCaseGroups[funcNdx].parentGroup;
2133 const char* const groupName = functionCaseGroups[funcNdx].groupName;
2134 const char* const groupFunc = functionCaseGroups[funcNdx].func;
2135 const ValueType* const funcTypes = functionCaseGroups[funcNdx].types;
2136 const Vec4& groupAttribute = functionCaseGroups[funcNdx].attribute;
2137 const int modifyParamNdx = functionCaseGroups[funcNdx].modifyParamNdx;
2138 const bool useNearlyConstantInputs = functionCaseGroups[funcNdx].useNearlyConstantInputs;
2139 const bool booleanCase = functionCaseGroups[funcNdx].booleanCase;
2140 const PrecisionMask precMask = functionCaseGroups[funcNdx].precMask;
2141
2142 // If this is a new function and not just a different version of the previously defined function, create a new group.
2143 if (funcNdx == 0 || parentGroup != functionCaseGroups[funcNdx-1].parentGroup || string(groupName) != functionCaseGroups[funcNdx-1].groupName)
2144 {
2145 tcu::TestCaseGroup* const funcGroup = new tcu::TestCaseGroup(m_testCtx, groupName, "");
2146 functionCaseGroups[funcNdx].parentGroup->addChild(funcGroup);
2147
2148 vertexSubGroup = new tcu::TestCaseGroup(m_testCtx, "vertex", "");
2149 fragmentSubGroup = new tcu::TestCaseGroup(m_testCtx, "fragment", "");
2150
2151 funcGroup->addChild(vertexSubGroup);
2152 funcGroup->addChild(fragmentSubGroup);
2153
2154 vertexSubGroupCalibrationStorage = FunctionCase::InitialCalibrationStorage(new FunctionCase::InitialCalibration);
2155 fragmentSubGroupCalibrationStorage = FunctionCase::InitialCalibrationStorage(new FunctionCase::InitialCalibration);
2156 }
2157
2158 DE_ASSERT(vertexSubGroup != DE_NULL);
2159 DE_ASSERT(fragmentSubGroup != DE_NULL);
2160
2161 // Find the type size range of parameters (e.g. from 2 to 4 in case of vectors).
2162 int genTypeFirstSize = 1;
2163 int genTypeLastSize = 1;
2164
2165 // Find the first return value or parameter with a gentype (if any) and set sizes accordingly.
2166 // \note Assumes only matching sizes gentypes are to be found, e.g. no "genType func (vec param)"
2167 for (int i = 0; i < FunctionCase::MAX_PARAMS + 1 && genTypeLastSize == 1; i++)
2168 {
2169 switch (funcTypes[i])
2170 {
2171 case VALUE_FLOAT_VEC:
2172 case VALUE_BOOL_VEC:
2173 case VALUE_INT_VEC: // \note Fall-through.
2174 genTypeFirstSize = 2;
2175 genTypeLastSize = 4;
2176 break;
2177 case VALUE_FLOAT_VEC34:
2178 genTypeFirstSize = 3;
2179 genTypeLastSize = 4;
2180 break;
2181 case VALUE_FLOAT_GENTYPE:
2182 case VALUE_BOOL_GENTYPE:
2183 case VALUE_INT_GENTYPE: // \note Fall-through.
2184 genTypeFirstSize = 1;
2185 genTypeLastSize = 4;
2186 break;
2187 case VALUE_MATRIX:
2188 genTypeFirstSize = 2;
2189 genTypeLastSize = 4;
2190 break;
2191 // If none of the above, keep looping.
2192 default:
2193 break;
2194 }
2195 }
2196
2197 // Create a case for each possible size of the gentype.
2198 for (int curSize = genTypeFirstSize; curSize <= genTypeLastSize; curSize++)
2199 {
2200 // Determine specific types for return value and the parameters, according to curSize. Non-gentypes not affected by curSize.
2201 DataType types[FunctionCase::MAX_PARAMS + 1];
2202 for (int i = 0; i < FunctionCase::MAX_PARAMS + 1; i++)
2203 {
2204 if (funcTypes[i] == VALUE_NONE)
2205 types[i] = TYPE_INVALID;
2206 else
2207 {
2208 int isFloat = funcTypes[i] & VALUE_ANY_FLOAT;
2209 int isBool = funcTypes[i] & VALUE_ANY_BOOL;
2210 int isInt = funcTypes[i] & VALUE_ANY_INT;
2211 int isMat = funcTypes[i] == VALUE_MATRIX;
2212 int inSize = (funcTypes[i] & VALUE_ANY_GENTYPE) ? curSize
2213 : funcTypes[i] == VALUE_VEC3 ? 3
2214 : funcTypes[i] == VALUE_VEC4 ? 4
2215 : 1;
2216 int typeArrayNdx = isMat ? inSize - 2 : inSize - 1; // \note No matrices of size 1.
2217
2218 types[i] = isFloat ? floatTypes[typeArrayNdx]
2219 : isBool ? boolTypes[typeArrayNdx]
2220 : isInt ? intTypes[typeArrayNdx]
2221 : isMat ? matrixTypes[typeArrayNdx]
2222 : TYPE_LAST;
2223 }
2224
2225 DE_ASSERT(types[i] != TYPE_LAST);
2226 }
2227
2228 // Array for just the parameter types.
2229 DataType paramTypes[FunctionCase::MAX_PARAMS];
2230 for (int i = 0; i < FunctionCase::MAX_PARAMS; i++)
2231 paramTypes[i] = types[i+1];
2232
2233 for (int prec = (int)PRECISION_LOWP; prec < (int)PRECISION_LAST; prec++)
2234 {
2235 if ((precMask & (1 << prec)) == 0)
2236 continue;
2237
2238 const string precisionPrefix = booleanCase ? "" : (string(getPrecisionName((Precision)prec)) + "_");
2239 std::ostringstream caseName;
2240
2241 caseName << precisionPrefix;
2242
2243 // Write the name of each distinct parameter data type into the test case name.
2244 for (int i = 1; i < FunctionCase::MAX_PARAMS + 1 && types[i] != TYPE_INVALID; i++)
2245 {
2246 if (i == 1 || types[i] != types[i-1])
2247 {
2248 if (i > 1)
2249 caseName << "_";
2250
2251 caseName << getDataTypeName(types[i]);
2252 }
2253 }
2254
2255 for (int fragI = 0; fragI <= 1; fragI++)
2256 {
2257 const bool vert = fragI == 0;
2258 tcu::TestCaseGroup* const group = vert ? vertexSubGroup : fragmentSubGroup;
2259 group->addChild (new FunctionCase(m_context,
2260 caseName.str().c_str(), "",
2261 groupFunc,
2262 types[0], paramTypes,
2263 groupAttribute, modifyParamNdx, useNearlyConstantInputs,
2264 (Precision)prec, vert,
2265 vert ? vertexSubGroupCalibrationStorage : fragmentSubGroupCalibrationStorage));
2266 }
2267 }
2268 }
2269 }
2270 }
2271
2272 } // Performance
2273 } // gles2
2274 } // deqp
2275