• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /* @(#)fdlibm.h 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /* REDHAT LOCAL: Include files.  */
15 #include <math.h>
16 #include <sys/types.h>
17 #include <machine/ieeefp.h>
18 
19 /* REDHAT LOCAL: Default to XOPEN_MODE.  */
20 #define _XOPEN_MODE
21 
22 /* Most routines need to check whether a float is finite, infinite, or not a
23    number, and many need to know whether the result of an operation will
24    overflow.  These conditions depend on whether the largest exponent is
25    used for NaNs & infinities, or whether it's used for finite numbers.  The
26    macros below wrap up that kind of information:
27 
28    FLT_UWORD_IS_FINITE(X)
29 	True if a positive float with bitmask X is finite.
30 
31    FLT_UWORD_IS_NAN(X)
32 	True if a positive float with bitmask X is not a number.
33 
34    FLT_UWORD_IS_INFINITE(X)
35 	True if a positive float with bitmask X is +infinity.
36 
37    FLT_UWORD_MAX
38 	The bitmask of FLT_MAX.
39 
40    FLT_UWORD_HALF_MAX
41 	The bitmask of FLT_MAX/2.
42 
43    FLT_UWORD_EXP_MAX
44 	The bitmask of the largest finite exponent (129 if the largest
45 	exponent is used for finite numbers, 128 otherwise).
46 
47    FLT_UWORD_LOG_MAX
48 	The bitmask of log(FLT_MAX), rounded down.  This value is the largest
49 	input that can be passed to exp() without producing overflow.
50 
51    FLT_UWORD_LOG_2MAX
52 	The bitmask of log(2*FLT_MAX), rounded down.  This value is the
53 	largest input than can be passed to cosh() without producing
54 	overflow.
55 
56    FLT_LARGEST_EXP
57 	The largest biased exponent that can be used for finite numbers
58 	(255 if the largest exponent is used for finite numbers, 254
59 	otherwise) */
60 
61 #ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL
62 #define FLT_UWORD_IS_FINITE(x) 1
63 #define FLT_UWORD_IS_NAN(x) 0
64 #define FLT_UWORD_IS_INFINITE(x) 0
65 #define FLT_UWORD_MAX 0x7fffffff
66 #define FLT_UWORD_EXP_MAX 0x43010000
67 #define FLT_UWORD_LOG_MAX 0x42b2d4fc
68 #define FLT_UWORD_LOG_2MAX 0x42b437e0
69 #define HUGE ((float)0X1.FFFFFEP128)
70 #else
71 #define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L)
72 #define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L)
73 #define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L)
74 #define FLT_UWORD_MAX 0x7f7fffffL
75 #define FLT_UWORD_EXP_MAX 0x43000000
76 #define FLT_UWORD_LOG_MAX 0x42b17217
77 #define FLT_UWORD_LOG_2MAX 0x42b2d4fc
78 #define HUGE ((float)3.40282346638528860e+38)
79 #endif
80 #define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1L<<23))
81 #define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23)
82 
83 /* Many routines check for zero and subnormal numbers.  Such things depend
84    on whether the target supports denormals or not:
85 
86    FLT_UWORD_IS_ZERO(X)
87 	True if a positive float with bitmask X is +0.	Without denormals,
88 	any float with a zero exponent is a +0 representation.	With
89 	denormals, the only +0 representation is a 0 bitmask.
90 
91    FLT_UWORD_IS_SUBNORMAL(X)
92 	True if a non-zero positive float with bitmask X is subnormal.
93 	(Routines should check for zeros first.)
94 
95    FLT_UWORD_MIN
96 	The bitmask of the smallest float above +0.  Call this number
97 	REAL_FLT_MIN...
98 
99    FLT_UWORD_EXP_MIN
100 	The bitmask of the float representation of REAL_FLT_MIN's exponent.
101 
102    FLT_UWORD_LOG_MIN
103 	The bitmask of |log(REAL_FLT_MIN)|, rounding down.
104 
105    FLT_SMALLEST_EXP
106 	REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported,
107 	-22 if they are).
108 */
109 
110 #ifdef _FLT_NO_DENORMALS
111 #define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L)
112 #define FLT_UWORD_IS_SUBNORMAL(x) 0
113 #define FLT_UWORD_MIN 0x00800000
114 #define FLT_UWORD_EXP_MIN 0x42fc0000
115 #define FLT_UWORD_LOG_MIN 0x42aeac50
116 #define FLT_SMALLEST_EXP 1
117 #else
118 #define FLT_UWORD_IS_ZERO(x) ((x)==0)
119 #define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L)
120 #define FLT_UWORD_MIN 0x00000001
121 #define FLT_UWORD_EXP_MIN 0x43160000
122 #define FLT_UWORD_LOG_MIN 0x42cff1b5
123 #define FLT_SMALLEST_EXP -22
124 #endif
125 
126 #ifdef __STDC__
127 #undef __P
128 #define	__P(p)	p
129 #else
130 #define	__P(p)	()
131 #endif
132 
133 /*
134  * set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
135  * (one may replace the following line by "#include <values.h>")
136  */
137 
138 #define X_TLOSS		1.41484755040568800000e+16
139 
140 /* Functions that are not documented, and are not in <math.h>.  */
141 
142 #ifdef _SCALB_INT
143 extern double scalb __P((double, int));
144 #else
145 extern double scalb __P((double, double));
146 #endif
147 extern double significand __P((double));
148 
149 /* ieee style elementary functions */
150 extern double __ieee754_sqrt __P((double));
151 extern double __ieee754_acos __P((double));
152 extern double __ieee754_acosh __P((double));
153 extern double __ieee754_log __P((double));
154 extern double __ieee754_atanh __P((double));
155 extern double __ieee754_asin __P((double));
156 extern double __ieee754_atan2 __P((double,double));
157 extern double __ieee754_exp __P((double));
158 extern double __ieee754_cosh __P((double));
159 extern double __ieee754_fmod __P((double,double));
160 extern double __ieee754_pow __P((double,double));
161 extern double __ieee754_lgamma_r __P((double,int *));
162 extern double __ieee754_gamma_r __P((double,int *));
163 extern double __ieee754_log10 __P((double));
164 extern double __ieee754_sinh __P((double));
165 extern double __ieee754_hypot __P((double,double));
166 extern double __ieee754_j0 __P((double));
167 extern double __ieee754_j1 __P((double));
168 extern double __ieee754_y0 __P((double));
169 extern double __ieee754_y1 __P((double));
170 extern double __ieee754_jn __P((int,double));
171 extern double __ieee754_yn __P((int,double));
172 extern double __ieee754_remainder __P((double,double));
173 extern __int32_t __ieee754_rem_pio2 __P((double,double*));
174 #ifdef _SCALB_INT
175 extern double __ieee754_scalb __P((double,int));
176 #else
177 extern double __ieee754_scalb __P((double,double));
178 #endif
179 
180 /* fdlibm kernel function */
181 extern double __kernel_standard __P((double,double,int));
182 extern double __kernel_sin __P((double,double,int));
183 extern double __kernel_cos __P((double,double));
184 extern double __kernel_tan __P((double,double,int));
185 extern int    __kernel_rem_pio2 __P((double*,double*,int,int,int,const __int32_t*));
186 
187 /* Undocumented float functions.  */
188 #ifdef _SCALB_INT
189 extern float scalbf __P((float, int));
190 #else
191 extern float scalbf __P((float, float));
192 #endif
193 extern float significandf __P((float));
194 
195 /* ieee style elementary float functions */
196 extern float __ieee754_sqrtf __P((float));
197 extern float __ieee754_acosf __P((float));
198 extern float __ieee754_acoshf __P((float));
199 extern float __ieee754_logf __P((float));
200 extern float __ieee754_atanhf __P((float));
201 extern float __ieee754_asinf __P((float));
202 extern float __ieee754_atan2f __P((float,float));
203 extern float __ieee754_expf __P((float));
204 extern float __ieee754_coshf __P((float));
205 extern float __ieee754_fmodf __P((float,float));
206 extern float __ieee754_powf __P((float,float));
207 extern float __ieee754_lgammaf_r __P((float,int *));
208 extern float __ieee754_gammaf_r __P((float,int *));
209 extern float __ieee754_log10f __P((float));
210 extern float __ieee754_sinhf __P((float));
211 extern float __ieee754_hypotf __P((float,float));
212 extern float __ieee754_j0f __P((float));
213 extern float __ieee754_j1f __P((float));
214 extern float __ieee754_y0f __P((float));
215 extern float __ieee754_y1f __P((float));
216 extern float __ieee754_jnf __P((int,float));
217 extern float __ieee754_ynf __P((int,float));
218 extern float __ieee754_remainderf __P((float,float));
219 extern __int32_t __ieee754_rem_pio2f __P((float,float*));
220 #ifdef _SCALB_INT
221 extern float __ieee754_scalbf __P((float,int));
222 #else
223 extern float __ieee754_scalbf __P((float,float));
224 #endif
225 
226 /* float versions of fdlibm kernel functions */
227 extern float __kernel_sinf __P((float,float,int));
228 extern float __kernel_cosf __P((float,float));
229 extern float __kernel_tanf __P((float,float,int));
230 extern int   __kernel_rem_pio2f __P((float*,float*,int,int,int,const __int32_t*));
231 
232 /* The original code used statements like
233 	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
234 	ix0 = *(n0+(int*)&x);			* high word of x *
235 	ix1 = *((1-n0)+(int*)&x);		* low word of x *
236    to dig two 32 bit words out of the 64 bit IEEE floating point
237    value.  That is non-ANSI, and, moreover, the gcc instruction
238    scheduler gets it wrong.  We instead use the following macros.
239    Unlike the original code, we determine the endianness at compile
240    time, not at run time; I don't see much benefit to selecting
241    endianness at run time.  */
242 
243 #ifndef __IEEE_BIG_ENDIAN
244 #ifndef __IEEE_LITTLE_ENDIAN
245  #error Must define endianness
246 #endif
247 #endif
248 
249 /* A union which permits us to convert between a double and two 32 bit
250    ints.  */
251 
252 #ifdef __IEEE_BIG_ENDIAN
253 
254 typedef union
255 {
256   double value;
257   struct
258   {
259     __uint32_t msw;
260     __uint32_t lsw;
261   } parts;
262 } ieee_double_shape_type;
263 
264 #endif
265 
266 #ifdef __IEEE_LITTLE_ENDIAN
267 
268 typedef union
269 {
270   double value;
271   struct
272   {
273     __uint32_t lsw;
274     __uint32_t msw;
275   } parts;
276 } ieee_double_shape_type;
277 
278 #endif
279 
280 /* Get two 32 bit ints from a double.  */
281 
282 #define EXTRACT_WORDS(ix0,ix1,d)				\
283 do {								\
284   ieee_double_shape_type ew_u;					\
285   ew_u.value = (d);						\
286   (ix0) = ew_u.parts.msw;					\
287   (ix1) = ew_u.parts.lsw;					\
288 } while (0)
289 
290 /* Get the more significant 32 bit int from a double.  */
291 
292 #define GET_HIGH_WORD(i,d)					\
293 do {								\
294   ieee_double_shape_type gh_u;					\
295   gh_u.value = (d);						\
296   (i) = gh_u.parts.msw;						\
297 } while (0)
298 
299 /* Get the less significant 32 bit int from a double.  */
300 
301 #define GET_LOW_WORD(i,d)					\
302 do {								\
303   ieee_double_shape_type gl_u;					\
304   gl_u.value = (d);						\
305   (i) = gl_u.parts.lsw;						\
306 } while (0)
307 
308 /* Set a double from two 32 bit ints.  */
309 
310 #define INSERT_WORDS(d,ix0,ix1)					\
311 do {								\
312   ieee_double_shape_type iw_u;					\
313   iw_u.parts.msw = (ix0);					\
314   iw_u.parts.lsw = (ix1);					\
315   (d) = iw_u.value;						\
316 } while (0)
317 
318 /* Set the more significant 32 bits of a double from an int.  */
319 
320 #define SET_HIGH_WORD(d,v)					\
321 do {								\
322   ieee_double_shape_type sh_u;					\
323   sh_u.value = (d);						\
324   sh_u.parts.msw = (v);						\
325   (d) = sh_u.value;						\
326 } while (0)
327 
328 /* Set the less significant 32 bits of a double from an int.  */
329 
330 #define SET_LOW_WORD(d,v)					\
331 do {								\
332   ieee_double_shape_type sl_u;					\
333   sl_u.value = (d);						\
334   sl_u.parts.lsw = (v);						\
335   (d) = sl_u.value;						\
336 } while (0)
337 
338 /* A union which permits us to convert between a float and a 32 bit
339    int.  */
340 
341 typedef union
342 {
343   float value;
344   __uint32_t word;
345 } ieee_float_shape_type;
346 
347 /* Get a 32 bit int from a float.  */
348 
349 #define GET_FLOAT_WORD(i,d)					\
350 do {								\
351   ieee_float_shape_type gf_u;					\
352   gf_u.value = (d);						\
353   (i) = gf_u.word;						\
354 } while (0)
355 
356 /* Set a float from a 32 bit int.  */
357 
358 #define SET_FLOAT_WORD(d,i)					\
359 do {								\
360   ieee_float_shape_type sf_u;					\
361   sf_u.word = (i);						\
362   (d) = sf_u.value;						\
363 } while (0)
364 
365 /* Macros to avoid undefined behaviour that can arise if the amount
366    of a shift is exactly equal to the size of the shifted operand.  */
367 
368 #define SAFE_LEFT_SHIFT(op,amt)					\
369   (((amt) < 8 * sizeof(op)) ? ((op) << (amt)) : 0)
370 
371 #define SAFE_RIGHT_SHIFT(op,amt)				\
372   (((amt) < 8 * sizeof(op)) ? ((op) >> (amt)) : 0)
373 
374 #ifdef  _COMPLEX_H
375 
376 /*
377  * Quoting from ISO/IEC 9899:TC2:
378  *
379  * 6.2.5.13 Types
380  * Each complex type has the same representation and alignment requirements as
381  * an array type containing exactly two elements of the corresponding real type;
382  * the first element is equal to the real part, and the second element to the
383  * imaginary part, of the complex number.
384  */
385 typedef union {
386         float complex z;
387         float parts[2];
388 } float_complex;
389 
390 typedef union {
391         double complex z;
392         double parts[2];
393 } double_complex;
394 
395 typedef union {
396         long double complex z;
397         long double parts[2];
398 } long_double_complex;
399 
400 #define REAL_PART(z)    ((z).parts[0])
401 #define IMAG_PART(z)    ((z).parts[1])
402 
403 #endif  /* _COMPLEX_H */
404 
405