1 /**************************************************************** 2 3 The author of this software is David M. Gay. 4 5 Copyright (C) 1998-2000 by Lucent Technologies 6 All Rights Reserved 7 8 Permission to use, copy, modify, and distribute this software and 9 its documentation for any purpose and without fee is hereby 10 granted, provided that the above copyright notice appear in all 11 copies and that both that the copyright notice and this 12 permission notice and warranty disclaimer appear in supporting 13 documentation, and that the name of Lucent or any of its entities 14 not be used in advertising or publicity pertaining to 15 distribution of the software without specific, written prior 16 permission. 17 18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. 20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY 21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, 24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF 25 THIS SOFTWARE. 26 27 ****************************************************************/ 28 29 /* This is a variation on dtoa.c that converts arbitary binary 30 floating-point formats to and from decimal notation. It uses 31 double-precision arithmetic internally, so there are still 32 various #ifdefs that adapt the calculations to the native 33 double-precision arithmetic (any of IEEE, VAX D_floating, 34 or IBM mainframe arithmetic). 35 36 Please send bug reports to David M. Gay (dmg at acm dot org, 37 with " at " changed at "@" and " dot " changed to "."). 38 */ 39 40 /* On a machine with IEEE extended-precision registers, it is 41 * necessary to specify double-precision (53-bit) rounding precision 42 * before invoking strtod or dtoa. If the machine uses (the equivalent 43 * of) Intel 80x87 arithmetic, the call 44 * _control87(PC_53, MCW_PC); 45 * does this with many compilers. Whether this or another call is 46 * appropriate depends on the compiler; for this to work, it may be 47 * necessary to #include "float.h" or another system-dependent header 48 * file. 49 */ 50 51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 52 * 53 * This strtod returns a nearest machine number to the input decimal 54 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are 55 * broken by the IEEE round-even rule. Otherwise ties are broken by 56 * biased rounding (add half and chop). 57 * 58 * Inspired loosely by William D. Clinger's paper "How to Read Floating 59 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. 60 * 61 * Modifications: 62 * 63 * 1. We only require IEEE, IBM, or VAX double-precision 64 * arithmetic (not IEEE double-extended). 65 * 2. We get by with floating-point arithmetic in a case that 66 * Clinger missed -- when we're computing d * 10^n 67 * for a small integer d and the integer n is not too 68 * much larger than 22 (the maximum integer k for which 69 * we can represent 10^k exactly), we may be able to 70 * compute (d*10^k) * 10^(e-k) with just one roundoff. 71 * 3. Rather than a bit-at-a-time adjustment of the binary 72 * result in the hard case, we use floating-point 73 * arithmetic to determine the adjustment to within 74 * one bit; only in really hard cases do we need to 75 * compute a second residual. 76 * 4. Because of 3., we don't need a large table of powers of 10 77 * for ten-to-e (just some small tables, e.g. of 10^k 78 * for 0 <= k <= 22). 79 */ 80 81 /* 82 * #define IEEE_8087 for IEEE-arithmetic machines where the least 83 * significant byte has the lowest address. 84 * #define IEEE_MC68k for IEEE-arithmetic machines where the most 85 * significant byte has the lowest address. 86 * #define Long int on machines with 32-bit ints and 64-bit longs. 87 * #define Sudden_Underflow for IEEE-format machines without gradual 88 * underflow (i.e., that flush to zero on underflow). 89 * #define IBM for IBM mainframe-style floating-point arithmetic. 90 * #define VAX for VAX-style floating-point arithmetic (D_floating). 91 * #define No_leftright to omit left-right logic in fast floating-point 92 * computation of dtoa and gdtoa. This will cause modes 4 and 5 to be 93 * treated the same as modes 2 and 3 for some inputs. 94 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. 95 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines 96 * that use extended-precision instructions to compute rounded 97 * products and quotients) with IBM. 98 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic 99 * that rounds toward +Infinity. 100 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased 101 * rounding when the underlying floating-point arithmetic uses 102 * unbiased rounding. This prevent using ordinary floating-point 103 * arithmetic when the result could be computed with one rounding error. 104 * #define Inaccurate_Divide for IEEE-format with correctly rounded 105 * products but inaccurate quotients, e.g., for Intel i860. 106 * #define NO_LONG_LONG on machines that do not have a "long long" 107 * integer type (of >= 64 bits). On such machines, you can 108 * #define Just_16 to store 16 bits per 32-bit Long when doing 109 * high-precision integer arithmetic. Whether this speeds things 110 * up or slows things down depends on the machine and the number 111 * being converted. If long long is available and the name is 112 * something other than "long long", #define Llong to be the name, 113 * and if "unsigned Llong" does not work as an unsigned version of 114 * Llong, #define #ULLong to be the corresponding unsigned type. 115 * #define KR_headers for old-style C function headers. 116 * #define Bad_float_h if your system lacks a float.h or if it does not 117 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, 118 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. 119 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) 120 * if memory is available and otherwise does something you deem 121 * appropriate. If MALLOC is undefined, malloc will be invoked 122 * directly -- and assumed always to succeed. Similarly, if you 123 * want something other than the system's free() to be called to 124 * recycle memory acquired from MALLOC, #define FREE to be the 125 * name of the alternate routine. (FREE or free is only called in 126 * pathological cases, e.g., in a gdtoa call after a gdtoa return in 127 * mode 3 with thousands of digits requested.) 128 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making 129 * memory allocations from a private pool of memory when possible. 130 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, 131 * unless #defined to be a different length. This default length 132 * suffices to get rid of MALLOC calls except for unusual cases, 133 * such as decimal-to-binary conversion of a very long string of 134 * digits. When converting IEEE double precision values, the 135 * longest string gdtoa can return is about 751 bytes long. For 136 * conversions by strtod of strings of 800 digits and all gdtoa 137 * conversions of IEEE doubles in single-threaded executions with 138 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with 139 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. 140 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK 141 * #defined automatically on IEEE systems. On such systems, 142 * when INFNAN_CHECK is #defined, strtod checks 143 * for Infinity and NaN (case insensitively). 144 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, 145 * strtodg also accepts (case insensitively) strings of the form 146 * NaN(x), where x is a string of hexadecimal digits (optionally 147 * preceded by 0x or 0X) and spaces; if there is only one string 148 * of hexadecimal digits, it is taken for the fraction bits of the 149 * resulting NaN; if there are two or more strings of hexadecimal 150 * digits, each string is assigned to the next available sequence 151 * of 32-bit words of fractions bits (starting with the most 152 * significant), right-aligned in each sequence. 153 * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)" 154 * is consumed even when ... has the wrong form (in which case the 155 * "(...)" is consumed but ignored). 156 * #define MULTIPLE_THREADS if the system offers preemptively scheduled 157 * multiple threads. In this case, you must provide (or suitably 158 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed 159 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed 160 * in pow5mult, ensures lazy evaluation of only one copy of high 161 * powers of 5; omitting this lock would introduce a small 162 * probability of wasting memory, but would otherwise be harmless.) 163 * You must also invoke freedtoa(s) to free the value s returned by 164 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. 165 * #define IMPRECISE_INEXACT if you do not care about the setting of 166 * the STRTOG_Inexact bits in the special case of doing IEEE double 167 * precision conversions (which could also be done by the strtod in 168 * dtoa.c). 169 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal 170 * floating-point constants. 171 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and 172 * strtodg.c). 173 * #define NO_STRING_H to use private versions of memcpy. 174 * On some K&R systems, it may also be necessary to 175 * #define DECLARE_SIZE_T in this case. 176 * #define USE_LOCALE to use the current locale's decimal_point value. 177 */ 178 179 #ifndef GDTOAIMP_H_INCLUDED 180 #define GDTOAIMP_H_INCLUDED 181 #include "gdtoa.h" 182 #include "gd_qnan.h" 183 #ifdef Honor_FLT_ROUNDS 184 #include <fenv.h> 185 #endif 186 187 #ifdef DEBUG 188 #include "stdio.h" 189 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 190 #endif 191 192 #include "stdlib.h" 193 #include "string.h" 194 195 #ifdef KR_headers 196 #define Char char 197 #else 198 #define Char void 199 #endif 200 201 #ifdef MALLOC 202 extern Char *MALLOC ANSI((size_t)); 203 #else 204 #define MALLOC malloc 205 #endif 206 207 #undef IEEE_Arith 208 #undef Avoid_Underflow 209 #ifdef IEEE_MC68k 210 #define IEEE_Arith 211 #endif 212 #ifdef IEEE_8087 213 #define IEEE_Arith 214 #endif 215 216 #include "errno.h" 217 #ifdef Bad_float_h 218 219 #ifdef IEEE_Arith 220 #define DBL_DIG 15 221 #define DBL_MAX_10_EXP 308 222 #define DBL_MAX_EXP 1024 223 #define FLT_RADIX 2 224 #define DBL_MAX 1.7976931348623157e+308 225 #endif 226 227 #ifdef IBM 228 #define DBL_DIG 16 229 #define DBL_MAX_10_EXP 75 230 #define DBL_MAX_EXP 63 231 #define FLT_RADIX 16 232 #define DBL_MAX 7.2370055773322621e+75 233 #endif 234 235 #ifdef VAX 236 #define DBL_DIG 16 237 #define DBL_MAX_10_EXP 38 238 #define DBL_MAX_EXP 127 239 #define FLT_RADIX 2 240 #define DBL_MAX 1.7014118346046923e+38 241 #define n_bigtens 2 242 #endif 243 244 #ifndef LONG_MAX 245 #define LONG_MAX 2147483647 246 #endif 247 248 #else /* ifndef Bad_float_h */ 249 #include "float.h" 250 #endif /* Bad_float_h */ 251 252 #ifdef IEEE_Arith 253 #define Scale_Bit 0x10 254 #define n_bigtens 5 255 #endif 256 257 #ifdef IBM 258 #define n_bigtens 3 259 #endif 260 261 #ifdef VAX 262 #define n_bigtens 2 263 #endif 264 265 #ifndef __MATH_H__ 266 #include "math.h" 267 #endif 268 269 #ifdef __cplusplus 270 extern "C" { 271 #endif 272 273 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 274 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. 275 #endif 276 277 typedef union { double d; ULong L[2]; } U; 278 279 #ifdef IEEE_8087 280 #define word0(x) (x)->L[1] 281 #define word1(x) (x)->L[0] 282 #else 283 #define word0(x) (x)->L[0] 284 #define word1(x) (x)->L[1] 285 #endif 286 #define dval(x) (x)->d 287 288 /* The following definition of Storeinc is appropriate for MIPS processors. 289 * An alternative that might be better on some machines is 290 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 291 */ 292 #if defined(IEEE_8087) + defined(VAX) 293 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ 294 ((unsigned short *)a)[0] = (unsigned short)c, a++) 295 #else 296 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ 297 ((unsigned short *)a)[1] = (unsigned short)c, a++) 298 #endif 299 300 /* #define P DBL_MANT_DIG */ 301 /* Ten_pmax = floor(P*log(2)/log(5)) */ 302 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 303 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 304 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 305 306 #ifdef IEEE_Arith 307 #define Exp_shift 20 308 #define Exp_shift1 20 309 #define Exp_msk1 0x100000 310 #define Exp_msk11 0x100000 311 #define Exp_mask 0x7ff00000 312 #define P 53 313 #define Bias 1023 314 #define Emin (-1022) 315 #define Exp_1 0x3ff00000 316 #define Exp_11 0x3ff00000 317 #define Ebits 11 318 #define Frac_mask 0xfffff 319 #define Frac_mask1 0xfffff 320 #define Ten_pmax 22 321 #define Bletch 0x10 322 #define Bndry_mask 0xfffff 323 #define Bndry_mask1 0xfffff 324 #define LSB 1 325 #define Sign_bit 0x80000000 326 #define Log2P 1 327 #define Tiny0 0 328 #define Tiny1 1 329 #define Quick_max 14 330 #define Int_max 14 331 332 #ifndef Flt_Rounds 333 #ifdef FLT_ROUNDS 334 #define Flt_Rounds FLT_ROUNDS 335 #else 336 #define Flt_Rounds 1 337 #endif 338 #endif /*Flt_Rounds*/ 339 340 #else /* ifndef IEEE_Arith */ 341 #undef Sudden_Underflow 342 #define Sudden_Underflow 343 #ifdef IBM 344 #undef Flt_Rounds 345 #define Flt_Rounds 0 346 #define Exp_shift 24 347 #define Exp_shift1 24 348 #define Exp_msk1 0x1000000 349 #define Exp_msk11 0x1000000 350 #define Exp_mask 0x7f000000 351 #define P 14 352 #define Bias 65 353 #define Exp_1 0x41000000 354 #define Exp_11 0x41000000 355 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ 356 #define Frac_mask 0xffffff 357 #define Frac_mask1 0xffffff 358 #define Bletch 4 359 #define Ten_pmax 22 360 #define Bndry_mask 0xefffff 361 #define Bndry_mask1 0xffffff 362 #define LSB 1 363 #define Sign_bit 0x80000000 364 #define Log2P 4 365 #define Tiny0 0x100000 366 #define Tiny1 0 367 #define Quick_max 14 368 #define Int_max 15 369 #else /* VAX */ 370 #undef Flt_Rounds 371 #define Flt_Rounds 1 372 #define Exp_shift 23 373 #define Exp_shift1 7 374 #define Exp_msk1 0x80 375 #define Exp_msk11 0x800000 376 #define Exp_mask 0x7f80 377 #define P 56 378 #define Bias 129 379 #define Emin (-127) 380 #define Exp_1 0x40800000 381 #define Exp_11 0x4080 382 #define Ebits 8 383 #define Frac_mask 0x7fffff 384 #define Frac_mask1 0xffff007f 385 #define Ten_pmax 24 386 #define Bletch 2 387 #define Bndry_mask 0xffff007f 388 #define Bndry_mask1 0xffff007f 389 #define LSB 0x10000 390 #define Sign_bit 0x8000 391 #define Log2P 1 392 #define Tiny0 0x80 393 #define Tiny1 0 394 #define Quick_max 15 395 #define Int_max 15 396 #endif /* IBM, VAX */ 397 #endif /* IEEE_Arith */ 398 399 #ifndef IEEE_Arith 400 #define ROUND_BIASED 401 #else 402 #ifdef ROUND_BIASED_without_Round_Up 403 #undef ROUND_BIASED 404 #define ROUND_BIASED 405 #endif 406 #endif 407 408 #ifdef RND_PRODQUOT 409 #define rounded_product(a,b) a = rnd_prod(a, b) 410 #define rounded_quotient(a,b) a = rnd_quot(a, b) 411 #ifdef KR_headers 412 extern double rnd_prod(), rnd_quot(); 413 #else 414 extern double rnd_prod(double, double), rnd_quot(double, double); 415 #endif 416 #else 417 #define rounded_product(a,b) a *= b 418 #define rounded_quotient(a,b) a /= b 419 #endif 420 421 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 422 #define Big1 0xffffffff 423 424 #undef Pack_16 425 #ifndef Pack_32 426 #define Pack_32 427 #endif 428 429 #ifdef NO_LONG_LONG 430 #undef ULLong 431 #ifdef Just_16 432 #undef Pack_32 433 #define Pack_16 434 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. 435 * This makes some inner loops simpler and sometimes saves work 436 * during multiplications, but it often seems to make things slightly 437 * slower. Hence the default is now to store 32 bits per Long. 438 */ 439 #endif 440 #else /* long long available */ 441 #ifndef Llong 442 #define Llong long long 443 #endif 444 #ifndef ULLong 445 #define ULLong unsigned Llong 446 #endif 447 #endif /* NO_LONG_LONG */ 448 449 #ifdef Pack_32 450 #define ULbits 32 451 #define kshift 5 452 #define kmask 31 453 #define ALL_ON 0xffffffff 454 #else 455 #define ULbits 16 456 #define kshift 4 457 #define kmask 15 458 #define ALL_ON 0xffff 459 #endif 460 461 #ifndef MULTIPLE_THREADS 462 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/ 463 #define FREE_DTOA_LOCK(n) /*nothing*/ 464 #else 465 #include "thread_private.h" 466 extern void *__dtoa_locks[]; 467 #define ACQUIRE_DTOA_LOCK(n) _MUTEX_LOCK(&__dtoa_locks[n]) 468 #define FREE_DTOA_LOCK(n) _MUTEX_UNLOCK(&__dtoa_locks[n]) 469 #endif 470 471 #define Kmax 9 472 473 struct 474 Bigint { 475 struct Bigint *next; 476 int k, maxwds, sign, wds; 477 ULong x[1]; 478 }; 479 480 typedef struct Bigint Bigint; 481 482 #ifdef NO_STRING_H 483 #ifdef DECLARE_SIZE_T 484 typedef unsigned int size_t; 485 #endif 486 extern void memcpy_D2A ANSI((void*, const void*, size_t)); 487 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 488 #else /* !NO_STRING_H */ 489 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 490 #endif /* NO_STRING_H */ 491 492 #define dtoa __dtoa 493 #define gdtoa __gdtoa 494 #define freedtoa __freedtoa 495 #define strtodg __strtodg 496 #define g_ddfmt __g_ddfmt 497 #define g_dfmt __g_dfmt 498 #define g_ffmt __g_ffmt 499 #define g_Qfmt __g_Qfmt 500 #define g_xfmt __g_xfmt 501 #define g_xLfmt __g_xLfmt 502 #define strtoId __strtoId 503 #define strtoIdd __strtoIdd 504 #define strtoIf __strtoIf 505 #define strtoIQ __strtoIQ 506 #define strtoIx __strtoIx 507 #define strtoIxL __strtoIxL 508 #define strtord __strtord 509 #define strtordd __strtordd 510 #define strtorf __strtorf 511 #define strtorQ __strtorQ 512 #define strtorx __strtorx 513 #define strtorxL __strtorxL 514 #define strtodI __strtodI 515 #define strtopd __strtopd 516 #define strtopdd __strtopdd 517 #define strtopf __strtopf 518 #define strtopQ __strtopQ 519 #define strtopx __strtopx 520 #define strtopxL __strtopxL 521 522 #define Balloc __Balloc_D2A 523 #define Bfree __Bfree_D2A 524 #define ULtoQ __ULtoQ_D2A 525 #define ULtof __ULtof_D2A 526 #define ULtod __ULtod_D2A 527 #define ULtodd __ULtodd_D2A 528 #define ULtox __ULtox_D2A 529 #define ULtoxL __ULtoxL_D2A 530 #define any_on __any_on_D2A 531 #define b2d __b2d_D2A 532 #define bigtens __bigtens_D2A 533 #define cmp __cmp_D2A 534 #define copybits __copybits_D2A 535 #define d2b __d2b_D2A 536 #define decrement __decrement_D2A 537 #define diff __diff_D2A 538 #define dtoa_result __dtoa_result_D2A 539 #define g__fmt __g__fmt_D2A 540 #define gethex __gethex_D2A 541 #define hexdig __hexdig_D2A 542 #define hexnan __hexnan_D2A 543 #define hi0bits(x) __hi0bits_D2A((ULong)(x)) 544 #define hi0bits_D2A __hi0bits_D2A 545 #define i2b __i2b_D2A 546 #define increment __increment_D2A 547 #define lo0bits __lo0bits_D2A 548 #define lshift __lshift_D2A 549 #define match __match_D2A 550 #define mult __mult_D2A 551 #define multadd __multadd_D2A 552 #define nrv_alloc __nrv_alloc_D2A 553 #define pow5mult __pow5mult_D2A 554 #define quorem __quorem_D2A 555 #define ratio __ratio_D2A 556 #define rshift __rshift_D2A 557 #define rv_alloc __rv_alloc_D2A 558 #define s2b __s2b_D2A 559 #define set_ones __set_ones_D2A 560 #define strcp __strcp_D2A 561 #define strtoIg __strtoIg_D2A 562 #define sulp __sulp_D2A 563 #define sum __sum_D2A 564 #define tens __tens_D2A 565 #define tinytens __tinytens_D2A 566 #define tinytens __tinytens_D2A 567 #define trailz __trailz_D2A 568 #define ulp __ulp_D2A 569 570 extern char *dtoa_result; 571 extern CONST double bigtens[], tens[], tinytens[]; 572 extern unsigned char hexdig[]; 573 574 extern Bigint *Balloc ANSI((int)); 575 extern void Bfree ANSI((Bigint*)); 576 extern void ULtof ANSI((ULong*, ULong*, Long, int)); 577 extern void ULtod ANSI((ULong*, ULong*, Long, int)); 578 extern void ULtodd ANSI((ULong*, ULong*, Long, int)); 579 extern void ULtoQ ANSI((ULong*, ULong*, Long, int)); 580 extern void ULtox ANSI((UShort*, ULong*, Long, int)); 581 extern void ULtoxL ANSI((ULong*, ULong*, Long, int)); 582 extern ULong any_on ANSI((Bigint*, int)); 583 extern double b2d ANSI((Bigint*, int*)); 584 extern int cmp ANSI((Bigint*, Bigint*)); 585 extern void copybits ANSI((ULong*, int, Bigint*)); 586 extern Bigint *d2b ANSI((double, int*, int*)); 587 extern void decrement ANSI((Bigint*)); 588 extern Bigint *diff ANSI((Bigint*, Bigint*)); 589 extern char *dtoa ANSI((double d, int mode, int ndigits, 590 int *decpt, int *sign, char **rve)); 591 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t)); 592 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int)); 593 extern void __hexdig_init_D2A(Void); 594 extern int hexnan ANSI((CONST char**, FPI*, ULong*)); 595 extern int hi0bits_D2A ANSI((ULong)); 596 extern Bigint *i2b ANSI((int)); 597 extern Bigint *increment ANSI((Bigint*)); 598 extern int lo0bits ANSI((ULong*)); 599 extern Bigint *lshift ANSI((Bigint*, int)); 600 extern int match ANSI((CONST char**, char*)); 601 extern Bigint *mult ANSI((Bigint*, Bigint*)); 602 extern Bigint *multadd ANSI((Bigint*, int, int)); 603 extern char *nrv_alloc ANSI((char*, char **, int)); 604 extern Bigint *pow5mult ANSI((Bigint*, int)); 605 extern int quorem ANSI((Bigint*, Bigint*)); 606 extern double ratio ANSI((Bigint*, Bigint*)); 607 extern void rshift ANSI((Bigint*, int)); 608 extern char *rv_alloc ANSI((int)); 609 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int)); 610 extern Bigint *set_ones ANSI((Bigint*, int)); 611 extern char *strcp ANSI((char*, const char*)); 612 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*)); 613 extern double strtod ANSI((const char *s00, char **se)); 614 extern Bigint *sum ANSI((Bigint*, Bigint*)); 615 extern int trailz ANSI((Bigint*)); 616 extern double ulp ANSI((U*)); 617 618 #ifdef __cplusplus 619 } 620 #endif 621 /* 622 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to 623 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, 624 * respectively), but now are determined by compiling and running 625 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. 626 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... 627 * and -DNAN_WORD1=... values if necessary. This should still work. 628 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) 629 */ 630 #ifdef IEEE_Arith 631 #ifndef NO_INFNAN_CHECK 632 #undef INFNAN_CHECK 633 #define INFNAN_CHECK 634 #endif 635 #ifdef IEEE_MC68k 636 #define _0 0 637 #define _1 1 638 #ifndef NAN_WORD0 639 #define NAN_WORD0 d_QNAN0 640 #endif 641 #ifndef NAN_WORD1 642 #define NAN_WORD1 d_QNAN1 643 #endif 644 #else 645 #define _0 1 646 #define _1 0 647 #ifndef NAN_WORD0 648 #define NAN_WORD0 d_QNAN1 649 #endif 650 #ifndef NAN_WORD1 651 #define NAN_WORD1 d_QNAN0 652 #endif 653 #endif 654 #else 655 #undef INFNAN_CHECK 656 #endif 657 658 #undef SI 659 #ifdef Sudden_Underflow 660 #define SI 1 661 #else 662 #define SI 0 663 #endif 664 665 #endif /* GDTOAIMP_H_INCLUDED */ 666