• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // clang-format off
2 // Generated file (from: depthwise_conv2d_float_weights_as_inputs.mod.py). Do not edit
CreateModel(Model * model)3 void CreateModel(Model *model) {
4   OperandType type0(Type::TENSOR_FLOAT32, {1, 3, 3, 2});
5   OperandType type1(Type::TENSOR_FLOAT32, {1, 2, 2, 4});
6   OperandType type2(Type::TENSOR_FLOAT32, {4});
7   OperandType type3(Type::INT32, {});
8   // Phase 1, operands
9   auto op1 = model->addOperand(&type0);
10   auto op2 = model->addOperand(&type1);
11   auto op3 = model->addOperand(&type2);
12   auto pad0 = model->addOperand(&type3);
13   auto stride = model->addOperand(&type3);
14   auto channelMultiplier = model->addOperand(&type3);
15   auto act = model->addOperand(&type3);
16   auto op4 = model->addOperand(&type1);
17   // Phase 2, operations
18   static int32_t pad0_init[] = {0};
19   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
20   static int32_t stride_init[] = {1};
21   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
22   static int32_t channelMultiplier_init[] = {2};
23   model->setOperandValue(channelMultiplier, channelMultiplier_init, sizeof(int32_t) * 1);
24   static int32_t act_init[] = {0};
25   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
26   model->addOperation(ANEURALNETWORKS_DEPTHWISE_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, channelMultiplier, act}, {op4});
27   // Phase 3, inputs and outputs
28   model->identifyInputsAndOutputs(
29     {op1, op2, op3},
30     {op4});
31   assert(model->isValid());
32 }
33 
is_ignored(int i)34 inline bool is_ignored(int i) {
35   static std::set<int> ignore = {};
36   return ignore.find(i) != ignore.end();
37 }
38 
CreateModel_dynamic_output_shape(Model * model)39 void CreateModel_dynamic_output_shape(Model *model) {
40   OperandType type0(Type::TENSOR_FLOAT32, {1, 3, 3, 2});
41   OperandType type1(Type::TENSOR_FLOAT32, {1, 2, 2, 4});
42   OperandType type2(Type::TENSOR_FLOAT32, {4});
43   OperandType type3(Type::INT32, {});
44   OperandType type4(Type::TENSOR_FLOAT32, {0, 0, 0, 0});
45   // Phase 1, operands
46   auto op1 = model->addOperand(&type0);
47   auto op2 = model->addOperand(&type1);
48   auto op3 = model->addOperand(&type2);
49   auto pad0 = model->addOperand(&type3);
50   auto stride = model->addOperand(&type3);
51   auto channelMultiplier = model->addOperand(&type3);
52   auto act = model->addOperand(&type3);
53   auto op4 = model->addOperand(&type4);
54   // Phase 2, operations
55   static int32_t pad0_init[] = {0};
56   model->setOperandValue(pad0, pad0_init, sizeof(int32_t) * 1);
57   static int32_t stride_init[] = {1};
58   model->setOperandValue(stride, stride_init, sizeof(int32_t) * 1);
59   static int32_t channelMultiplier_init[] = {2};
60   model->setOperandValue(channelMultiplier, channelMultiplier_init, sizeof(int32_t) * 1);
61   static int32_t act_init[] = {0};
62   model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
63   model->addOperation(ANEURALNETWORKS_DEPTHWISE_CONV_2D, {op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, channelMultiplier, act}, {op4});
64   // Phase 3, inputs and outputs
65   model->identifyInputsAndOutputs(
66     {op1, op2, op3},
67     {op4});
68   assert(model->isValid());
69 }
70 
is_ignored_dynamic_output_shape(int i)71 inline bool is_ignored_dynamic_output_shape(int i) {
72   static std::set<int> ignore = {};
73   return ignore.find(i) != ignore.end();
74 }
75 
76