1 /* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14 #ifndef _UAPI_LINUX_PERF_EVENT_H 15 #define _UAPI_LINUX_PERF_EVENT_H 16 17 #include <asm/byteorder.h> 18 #include <linux/ioctl.h> 19 #include <linux/types.h> 20 21 /* 22 * User-space ABI bits: 23 */ 24 25 /* 26 * attr.type 27 */ 28 enum perf_type_id { 29 PERF_TYPE_HARDWARE = 0, 30 PERF_TYPE_SOFTWARE = 1, 31 PERF_TYPE_TRACEPOINT = 2, 32 PERF_TYPE_HW_CACHE = 3, 33 PERF_TYPE_RAW = 4, 34 PERF_TYPE_BREAKPOINT = 5, 35 36 PERF_TYPE_MAX, /* non-ABI */ 37 }; 38 39 /* 40 * Generalized performance event event_id types, used by the 41 * attr.event_id parameter of the sys_perf_event_open() 42 * syscall: 43 */ 44 enum perf_hw_id { 45 /* 46 * Common hardware events, generalized by the kernel: 47 */ 48 PERF_COUNT_HW_CPU_CYCLES = 0, 49 PERF_COUNT_HW_INSTRUCTIONS = 1, 50 PERF_COUNT_HW_CACHE_REFERENCES = 2, 51 PERF_COUNT_HW_CACHE_MISSES = 3, 52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4, 53 PERF_COUNT_HW_BRANCH_MISSES = 5, 54 PERF_COUNT_HW_BUS_CYCLES = 6, 55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7, 56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8, 57 PERF_COUNT_HW_REF_CPU_CYCLES = 9, 58 59 PERF_COUNT_HW_MAX, /* non-ABI */ 60 }; 61 62 /* 63 * Generalized hardware cache events: 64 * 65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x 66 * { read, write, prefetch } x 67 * { accesses, misses } 68 */ 69 enum perf_hw_cache_id { 70 PERF_COUNT_HW_CACHE_L1D = 0, 71 PERF_COUNT_HW_CACHE_L1I = 1, 72 PERF_COUNT_HW_CACHE_LL = 2, 73 PERF_COUNT_HW_CACHE_DTLB = 3, 74 PERF_COUNT_HW_CACHE_ITLB = 4, 75 PERF_COUNT_HW_CACHE_BPU = 5, 76 PERF_COUNT_HW_CACHE_NODE = 6, 77 78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */ 79 }; 80 81 enum perf_hw_cache_op_id { 82 PERF_COUNT_HW_CACHE_OP_READ = 0, 83 PERF_COUNT_HW_CACHE_OP_WRITE = 1, 84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2, 85 86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */ 87 }; 88 89 enum perf_hw_cache_op_result_id { 90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0, 91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1, 92 93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */ 94 }; 95 96 /* 97 * Special "software" events provided by the kernel, even if the hardware 98 * does not support performance events. These events measure various 99 * physical and sw events of the kernel (and allow the profiling of them as 100 * well): 101 */ 102 enum perf_sw_ids { 103 PERF_COUNT_SW_CPU_CLOCK = 0, 104 PERF_COUNT_SW_TASK_CLOCK = 1, 105 PERF_COUNT_SW_PAGE_FAULTS = 2, 106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3, 107 PERF_COUNT_SW_CPU_MIGRATIONS = 4, 108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5, 109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6, 110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7, 111 PERF_COUNT_SW_EMULATION_FAULTS = 8, 112 PERF_COUNT_SW_DUMMY = 9, 113 114 PERF_COUNT_SW_MAX, /* non-ABI */ 115 }; 116 117 /* 118 * Bits that can be set in attr.sample_type to request information 119 * in the overflow packets. 120 */ 121 enum perf_event_sample_format { 122 PERF_SAMPLE_IP = 1U << 0, 123 PERF_SAMPLE_TID = 1U << 1, 124 PERF_SAMPLE_TIME = 1U << 2, 125 PERF_SAMPLE_ADDR = 1U << 3, 126 PERF_SAMPLE_READ = 1U << 4, 127 PERF_SAMPLE_CALLCHAIN = 1U << 5, 128 PERF_SAMPLE_ID = 1U << 6, 129 PERF_SAMPLE_CPU = 1U << 7, 130 PERF_SAMPLE_PERIOD = 1U << 8, 131 PERF_SAMPLE_STREAM_ID = 1U << 9, 132 PERF_SAMPLE_RAW = 1U << 10, 133 PERF_SAMPLE_BRANCH_STACK = 1U << 11, 134 PERF_SAMPLE_REGS_USER = 1U << 12, 135 PERF_SAMPLE_STACK_USER = 1U << 13, 136 PERF_SAMPLE_WEIGHT = 1U << 14, 137 PERF_SAMPLE_DATA_SRC = 1U << 15, 138 PERF_SAMPLE_IDENTIFIER = 1U << 16, 139 PERF_SAMPLE_TRANSACTION = 1U << 17, 140 141 PERF_SAMPLE_MAX = 1U << 18, /* non-ABI */ 142 }; 143 144 /* 145 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set 146 * 147 * If the user does not pass priv level information via branch_sample_type, 148 * the kernel uses the event's priv level. Branch and event priv levels do 149 * not have to match. Branch priv level is checked for permissions. 150 * 151 * The branch types can be combined, however BRANCH_ANY covers all types 152 * of branches and therefore it supersedes all the other types. 153 */ 154 enum perf_branch_sample_type { 155 PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */ 156 PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */ 157 PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */ 158 159 PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */ 160 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */ 161 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */ 162 PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */ 163 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << 7, /* transaction aborts */ 164 PERF_SAMPLE_BRANCH_IN_TX = 1U << 8, /* in transaction */ 165 PERF_SAMPLE_BRANCH_NO_TX = 1U << 9, /* not in transaction */ 166 PERF_SAMPLE_BRANCH_COND = 1U << 10, /* conditional branches */ 167 168 PERF_SAMPLE_BRANCH_MAX = 1U << 11, /* non-ABI */ 169 }; 170 171 #define PERF_SAMPLE_BRANCH_PLM_ALL \ 172 (PERF_SAMPLE_BRANCH_USER | PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_HV) 173 174 /* 175 * Values to determine ABI of the registers dump. 176 */ 177 enum perf_sample_regs_abi { 178 PERF_SAMPLE_REGS_ABI_NONE = 0, 179 PERF_SAMPLE_REGS_ABI_32 = 1, 180 PERF_SAMPLE_REGS_ABI_64 = 2, 181 }; 182 183 /* 184 * Values for the memory transaction event qualifier, mostly for 185 * abort events. Multiple bits can be set. 186 */ 187 enum { 188 PERF_TXN_ELISION = (1 << 0), /* From elision */ 189 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */ 190 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */ 191 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */ 192 PERF_TXN_RETRY = (1 << 4), /* Retry possible */ 193 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */ 194 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */ 195 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */ 196 197 PERF_TXN_MAX = (1 << 8), /* non-ABI */ 198 199 /* bits 32..63 are reserved for the abort code */ 200 201 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32), 202 PERF_TXN_ABORT_SHIFT = 32, 203 }; 204 205 /* 206 * The format of the data returned by read() on a perf event fd, 207 * as specified by attr.read_format: 208 * 209 * struct read_format { 210 * { u64 value; 211 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 212 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 213 * { u64 id; } && PERF_FORMAT_ID 214 * } && !PERF_FORMAT_GROUP 215 * 216 * { u64 nr; 217 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED 218 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING 219 * { u64 value; 220 * { u64 id; } && PERF_FORMAT_ID 221 * } cntr[nr]; 222 * } && PERF_FORMAT_GROUP 223 * }; 224 */ 225 enum perf_event_read_format { 226 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0, 227 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1, 228 PERF_FORMAT_ID = 1U << 2, 229 PERF_FORMAT_GROUP = 1U << 3, 230 231 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */ 232 }; 233 234 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */ 235 #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */ 236 #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */ 237 #define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */ 238 /* add: sample_stack_user */ 239 240 /* 241 * Hardware event_id to monitor via a performance monitoring event: 242 */ 243 struct perf_event_attr { 244 /* 245 * Major type: hardware/software/tracepoint/etc. 246 */ 247 __u32 type; 248 249 /* 250 * Size of the attr structure, for fwd/bwd compat. 251 */ 252 __u32 size; 253 254 /* 255 * Type specific configuration information. 256 */ 257 __u64 config; 258 259 union { 260 __u64 sample_period; 261 __u64 sample_freq; 262 }; 263 264 __u64 sample_type; 265 __u64 read_format; 266 267 __u64 disabled : 1, /* off by default */ 268 inherit : 1, /* children inherit it */ 269 pinned : 1, /* must always be on PMU */ 270 exclusive : 1, /* only group on PMU */ 271 exclude_user : 1, /* don't count user */ 272 exclude_kernel : 1, /* ditto kernel */ 273 exclude_hv : 1, /* ditto hypervisor */ 274 exclude_idle : 1, /* don't count when idle */ 275 mmap : 1, /* include mmap data */ 276 comm : 1, /* include comm data */ 277 freq : 1, /* use freq, not period */ 278 inherit_stat : 1, /* per task counts */ 279 enable_on_exec : 1, /* next exec enables */ 280 task : 1, /* trace fork/exit */ 281 watermark : 1, /* wakeup_watermark */ 282 /* 283 * precise_ip: 284 * 285 * 0 - SAMPLE_IP can have arbitrary skid 286 * 1 - SAMPLE_IP must have constant skid 287 * 2 - SAMPLE_IP requested to have 0 skid 288 * 3 - SAMPLE_IP must have 0 skid 289 * 290 * See also PERF_RECORD_MISC_EXACT_IP 291 */ 292 precise_ip : 2, /* skid constraint */ 293 mmap_data : 1, /* non-exec mmap data */ 294 sample_id_all : 1, /* sample_type all events */ 295 296 exclude_host : 1, /* don't count in host */ 297 exclude_guest : 1, /* don't count in guest */ 298 299 exclude_callchain_kernel : 1, /* exclude kernel callchains */ 300 exclude_callchain_user : 1, /* exclude user callchains */ 301 mmap2 : 1, /* include mmap with inode data */ 302 comm_exec : 1, /* flag comm events that are due to an exec */ 303 __reserved_1 : 39; 304 305 union { 306 __u32 wakeup_events; /* wakeup every n events */ 307 __u32 wakeup_watermark; /* bytes before wakeup */ 308 }; 309 310 __u32 bp_type; 311 union { 312 __u64 bp_addr; 313 __u64 config1; /* extension of config */ 314 }; 315 union { 316 __u64 bp_len; 317 __u64 config2; /* extension of config1 */ 318 }; 319 __u64 branch_sample_type; /* enum perf_branch_sample_type */ 320 321 /* 322 * Defines set of user regs to dump on samples. 323 * See asm/perf_regs.h for details. 324 */ 325 __u64 sample_regs_user; 326 327 /* 328 * Defines size of the user stack to dump on samples. 329 */ 330 __u32 sample_stack_user; 331 332 /* Align to u64. */ 333 __u32 __reserved_2; 334 }; 335 336 #define perf_flags(attr) (*(&(attr)->read_format + 1)) 337 338 /* 339 * Ioctls that can be done on a perf event fd: 340 */ 341 #define PERF_EVENT_IOC_ENABLE _IO('$', 0) 342 #define PERF_EVENT_IOC_DISABLE _IO('$', 1) 343 #define PERF_EVENT_IOC_REFRESH _IO('$', 2) 344 #define PERF_EVENT_IOC_RESET _IO('$', 3) 345 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64) 346 #define PERF_EVENT_IOC_SET_OUTPUT _IO('$', 5) 347 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *) 348 #define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *) 349 350 enum perf_event_ioc_flags { 351 PERF_IOC_FLAG_GROUP = 1U << 0, 352 }; 353 354 /* 355 * Structure of the page that can be mapped via mmap 356 */ 357 struct perf_event_mmap_page { 358 __u32 version; /* version number of this structure */ 359 __u32 compat_version; /* lowest version this is compat with */ 360 361 /* 362 * Bits needed to read the hw events in user-space. 363 * 364 * u32 seq, time_mult, time_shift, idx, width; 365 * u64 count, enabled, running; 366 * u64 cyc, time_offset; 367 * s64 pmc = 0; 368 * 369 * do { 370 * seq = pc->lock; 371 * barrier() 372 * 373 * enabled = pc->time_enabled; 374 * running = pc->time_running; 375 * 376 * if (pc->cap_usr_time && enabled != running) { 377 * cyc = rdtsc(); 378 * time_offset = pc->time_offset; 379 * time_mult = pc->time_mult; 380 * time_shift = pc->time_shift; 381 * } 382 * 383 * idx = pc->index; 384 * count = pc->offset; 385 * if (pc->cap_usr_rdpmc && idx) { 386 * width = pc->pmc_width; 387 * pmc = rdpmc(idx - 1); 388 * } 389 * 390 * barrier(); 391 * } while (pc->lock != seq); 392 * 393 * NOTE: for obvious reason this only works on self-monitoring 394 * processes. 395 */ 396 __u32 lock; /* seqlock for synchronization */ 397 __u32 index; /* hardware event identifier */ 398 __s64 offset; /* add to hardware event value */ 399 __u64 time_enabled; /* time event active */ 400 __u64 time_running; /* time event on cpu */ 401 union { 402 __u64 capabilities; 403 struct { 404 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */ 405 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */ 406 407 cap_user_rdpmc : 1, // The RDPMC instruction can be used to read 408 // counts 409 cap_user_time : 1, /* The time_* fields are used */ 410 cap_user_time_zero : 1, /* The time_zero field is used */ 411 cap_____res : 59; 412 }; 413 }; 414 415 /* 416 * If cap_usr_rdpmc this field provides the bit-width of the value 417 * read using the rdpmc() or equivalent instruction. This can be used 418 * to sign extend the result like: 419 * 420 * pmc <<= 64 - width; 421 * pmc >>= 64 - width; // signed shift right 422 * count += pmc; 423 */ 424 __u16 pmc_width; 425 426 /* 427 * If cap_usr_time the below fields can be used to compute the time 428 * delta since time_enabled (in ns) using rdtsc or similar. 429 * 430 * u64 quot, rem; 431 * u64 delta; 432 * 433 * quot = (cyc >> time_shift); 434 * rem = cyc & ((1 << time_shift) - 1); 435 * delta = time_offset + quot * time_mult + 436 * ((rem * time_mult) >> time_shift); 437 * 438 * Where time_offset,time_mult,time_shift and cyc are read in the 439 * seqcount loop described above. This delta can then be added to 440 * enabled and possible running (if idx), improving the scaling: 441 * 442 * enabled += delta; 443 * if (idx) 444 * running += delta; 445 * 446 * quot = count / running; 447 * rem = count % running; 448 * count = quot * enabled + (rem * enabled) / running; 449 */ 450 __u16 time_shift; 451 __u32 time_mult; 452 __u64 time_offset; 453 /* 454 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated 455 * from sample timestamps. 456 * 457 * time = timestamp - time_zero; 458 * quot = time / time_mult; 459 * rem = time % time_mult; 460 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult; 461 * 462 * And vice versa: 463 * 464 * quot = cyc >> time_shift; 465 * rem = cyc & ((1 << time_shift) - 1); 466 * timestamp = time_zero + quot * time_mult + 467 * ((rem * time_mult) >> time_shift); 468 */ 469 __u64 time_zero; 470 __u32 size; /* Header size up to __reserved[] fields. */ 471 472 /* 473 * Hole for extension of the self monitor capabilities 474 */ 475 476 __u8 __reserved[118 * 8 + 4]; /* align to 1k. */ 477 478 /* 479 * Control data for the mmap() data buffer. 480 * 481 * User-space reading the @data_head value should issue an smp_rmb(), 482 * after reading this value. 483 * 484 * When the mapping is PROT_WRITE the @data_tail value should be 485 * written by userspace to reflect the last read data, after issueing 486 * an smp_mb() to separate the data read from the ->data_tail store. 487 * In this case the kernel will not over-write unread data. 488 * 489 * See perf_output_put_handle() for the data ordering. 490 */ 491 __u64 data_head; /* head in the data section */ 492 __u64 data_tail; /* user-space written tail */ 493 }; 494 495 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0) 496 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0) 497 #define PERF_RECORD_MISC_KERNEL (1 << 0) 498 #define PERF_RECORD_MISC_USER (2 << 0) 499 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0) 500 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0) 501 #define PERF_RECORD_MISC_GUEST_USER (5 << 0) 502 503 /* 504 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on 505 * different events so can reuse the same bit position. 506 */ 507 #define PERF_RECORD_MISC_MMAP_DATA (1 << 13) 508 #define PERF_RECORD_MISC_COMM_EXEC (1 << 13) 509 /* 510 * Indicates that the content of PERF_SAMPLE_IP points to 511 * the actual instruction that triggered the event. See also 512 * perf_event_attr::precise_ip. 513 */ 514 #define PERF_RECORD_MISC_EXACT_IP (1 << 14) 515 /* 516 * Reserve the last bit to indicate some extended misc field 517 */ 518 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15) 519 520 struct perf_event_header { 521 __u32 type; 522 __u16 misc; 523 __u16 size; 524 }; 525 526 enum perf_event_type { 527 /* 528 * If perf_event_attr.sample_id_all is set then all event types will 529 * have the sample_type selected fields related to where/when 530 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU, 531 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed 532 * just after the perf_event_header and the fields already present for 533 * the existing fields, i.e. at the end of the payload. That way a newer 534 * perf.data file will be supported by older perf tools, with these new 535 * optional fields being ignored. 536 * 537 * struct sample_id { 538 * { u32 pid, tid; } && PERF_SAMPLE_TID 539 * { u64 time; } && PERF_SAMPLE_TIME 540 * { u64 id; } && PERF_SAMPLE_ID 541 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 542 * { u32 cpu, res; } && PERF_SAMPLE_CPU 543 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 544 * } && perf_event_attr::sample_id_all 545 * 546 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The 547 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed 548 * relative to header.size. 549 */ 550 551 /* 552 * The MMAP events record the PROT_EXEC mappings so that we can 553 * correlate userspace IPs to code. They have the following structure: 554 * 555 * struct { 556 * struct perf_event_header header; 557 * 558 * u32 pid, tid; 559 * u64 addr; 560 * u64 len; 561 * u64 pgoff; 562 * char filename[]; 563 * struct sample_id sample_id; 564 * }; 565 */ 566 PERF_RECORD_MMAP = 1, 567 568 /* 569 * struct { 570 * struct perf_event_header header; 571 * u64 id; 572 * u64 lost; 573 * struct sample_id sample_id; 574 * }; 575 */ 576 PERF_RECORD_LOST = 2, 577 578 /* 579 * struct { 580 * struct perf_event_header header; 581 * 582 * u32 pid, tid; 583 * char comm[]; 584 * struct sample_id sample_id; 585 * }; 586 */ 587 PERF_RECORD_COMM = 3, 588 589 /* 590 * struct { 591 * struct perf_event_header header; 592 * u32 pid, ppid; 593 * u32 tid, ptid; 594 * u64 time; 595 * struct sample_id sample_id; 596 * }; 597 */ 598 PERF_RECORD_EXIT = 4, 599 600 /* 601 * struct { 602 * struct perf_event_header header; 603 * u64 time; 604 * u64 id; 605 * u64 stream_id; 606 * struct sample_id sample_id; 607 * }; 608 */ 609 PERF_RECORD_THROTTLE = 5, 610 PERF_RECORD_UNTHROTTLE = 6, 611 612 /* 613 * struct { 614 * struct perf_event_header header; 615 * u32 pid, ppid; 616 * u32 tid, ptid; 617 * u64 time; 618 * struct sample_id sample_id; 619 * }; 620 */ 621 PERF_RECORD_FORK = 7, 622 623 /* 624 * struct { 625 * struct perf_event_header header; 626 * u32 pid, tid; 627 * 628 * struct read_format values; 629 * struct sample_id sample_id; 630 * }; 631 */ 632 PERF_RECORD_READ = 8, 633 634 /* 635 * struct { 636 * struct perf_event_header header; 637 * 638 * # 639 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. 640 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position 641 * # is fixed relative to header. 642 * # 643 * 644 * { u64 id; } && PERF_SAMPLE_IDENTIFIER 645 * { u64 ip; } && PERF_SAMPLE_IP 646 * { u32 pid, tid; } && PERF_SAMPLE_TID 647 * { u64 time; } && PERF_SAMPLE_TIME 648 * { u64 addr; } && PERF_SAMPLE_ADDR 649 * { u64 id; } && PERF_SAMPLE_ID 650 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID 651 * { u32 cpu, res; } && PERF_SAMPLE_CPU 652 * { u64 period; } && PERF_SAMPLE_PERIOD 653 * 654 * { struct read_format values; } && PERF_SAMPLE_READ 655 * 656 * { u64 nr, 657 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN 658 * 659 * # 660 * # The RAW record below is opaque data wrt the ABI 661 * # 662 * # That is, the ABI doesn't make any promises wrt to 663 * # the stability of its content, it may vary depending 664 * # on event, hardware, kernel version and phase of 665 * # the moon. 666 * # 667 * # In other words, PERF_SAMPLE_RAW contents are not an ABI. 668 * # 669 * 670 * { u32 size; 671 * char data[size];}&& PERF_SAMPLE_RAW 672 * 673 * { u64 nr; 674 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK 675 * 676 * { u64 abi; # enum perf_sample_regs_abi 677 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER 678 * 679 * { u64 size; 680 * char data[size]; 681 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER 682 * 683 * { u64 weight; } && PERF_SAMPLE_WEIGHT 684 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC 685 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION 686 * }; 687 */ 688 PERF_RECORD_SAMPLE = 9, 689 690 /* 691 * The MMAP2 records are an augmented version of MMAP, they add 692 * maj, min, ino numbers to be used to uniquely identify each mapping 693 * 694 * struct { 695 * struct perf_event_header header; 696 * 697 * u32 pid, tid; 698 * u64 addr; 699 * u64 len; 700 * u64 pgoff; 701 * u32 maj; 702 * u32 min; 703 * u64 ino; 704 * u64 ino_generation; 705 * u32 prot, flags; 706 * char filename[]; 707 * struct sample_id sample_id; 708 * }; 709 */ 710 PERF_RECORD_MMAP2 = 10, 711 712 /* 713 * Records that new data landed in the AUX buffer part. 714 * 715 * struct { 716 * struct perf_event_header header; 717 * 718 * u64 aux_offset; 719 * u64 aux_size; 720 * u64 flags; 721 * struct sample_id sample_id; 722 * }; 723 */ 724 PERF_RECORD_AUX = 11, 725 726 /* 727 * Indicates that instruction trace has started 728 * 729 * struct { 730 * struct perf_event_header header; 731 * u32 pid; 732 * u32 tid; 733 * }; 734 */ 735 PERF_RECORD_ITRACE_START = 12, 736 737 /* 738 * Records the dropped/lost sample number. 739 * 740 * struct { 741 * struct perf_event_header header; 742 * 743 * u64 lost; 744 * struct sample_id sample_id; 745 * }; 746 */ 747 PERF_RECORD_LOST_SAMPLES = 13, 748 749 /* 750 * Records a context switch in or out (flagged by 751 * PERF_RECORD_MISC_SWITCH_OUT). See also 752 * PERF_RECORD_SWITCH_CPU_WIDE. 753 * 754 * struct { 755 * struct perf_event_header header; 756 * struct sample_id sample_id; 757 * }; 758 */ 759 PERF_RECORD_SWITCH = 14, 760 761 /* 762 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and 763 * next_prev_tid that are the next (switching out) or previous 764 * (switching in) pid/tid. 765 * 766 * struct { 767 * struct perf_event_header header; 768 * u32 next_prev_pid; 769 * u32 next_prev_tid; 770 * struct sample_id sample_id; 771 * }; 772 */ 773 PERF_RECORD_SWITCH_CPU_WIDE = 15, 774 775 /* 776 * struct { 777 * struct perf_event_header header; 778 * u32 pid; 779 * u32 tid; 780 * u64 nr_namespaces; 781 * { u64 dev, inode; } [nr_namespaces]; 782 * struct sample_id sample_id; 783 * }; 784 */ 785 PERF_RECORD_NAMESPACES = 16, 786 787 PERF_RECORD_MAX, /* non-ABI */ 788 }; 789 790 #define PERF_MAX_STACK_DEPTH 127 791 792 enum perf_callchain_context { 793 PERF_CONTEXT_HV = (__u64)-32, 794 PERF_CONTEXT_KERNEL = (__u64)-128, 795 PERF_CONTEXT_USER = (__u64)-512, 796 797 PERF_CONTEXT_GUEST = (__u64)-2048, 798 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176, 799 PERF_CONTEXT_GUEST_USER = (__u64)-2560, 800 801 PERF_CONTEXT_MAX = (__u64)-4095, 802 }; 803 804 /** 805 * PERF_RECORD_AUX::flags bits 806 */ 807 #define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */ 808 #define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */ 809 #define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */ 810 811 #define PERF_FLAG_FD_NO_GROUP (1UL << 0) 812 #define PERF_FLAG_FD_OUTPUT (1UL << 1) 813 #define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */ 814 #define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */ 815 816 union perf_mem_data_src { 817 __u64 val; 818 struct { 819 __u64 mem_op : 5, /* type of opcode */ 820 mem_lvl : 14, /* memory hierarchy level */ 821 mem_snoop : 5, /* snoop mode */ 822 mem_lock : 2, /* lock instr */ 823 mem_dtlb : 7, /* tlb access */ 824 mem_rsvd : 31; 825 }; 826 }; 827 828 /* type of opcode (load/store/prefetch,code) */ 829 #define PERF_MEM_OP_NA 0x01 /* not available */ 830 #define PERF_MEM_OP_LOAD 0x02 /* load instruction */ 831 #define PERF_MEM_OP_STORE 0x04 /* store instruction */ 832 #define PERF_MEM_OP_PFETCH 0x08 /* prefetch */ 833 #define PERF_MEM_OP_EXEC 0x10 /* code (execution) */ 834 #define PERF_MEM_OP_SHIFT 0 835 836 /* memory hierarchy (memory level, hit or miss) */ 837 #define PERF_MEM_LVL_NA 0x01 /* not available */ 838 #define PERF_MEM_LVL_HIT 0x02 /* hit level */ 839 #define PERF_MEM_LVL_MISS 0x04 /* miss level */ 840 #define PERF_MEM_LVL_L1 0x08 /* L1 */ 841 #define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */ 842 #define PERF_MEM_LVL_L2 0x20 /* L2 */ 843 #define PERF_MEM_LVL_L3 0x40 /* L3 */ 844 #define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */ 845 #define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */ 846 #define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */ 847 #define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */ 848 #define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */ 849 #define PERF_MEM_LVL_IO 0x1000 /* I/O memory */ 850 #define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */ 851 #define PERF_MEM_LVL_SHIFT 5 852 853 /* snoop mode */ 854 #define PERF_MEM_SNOOP_NA 0x01 /* not available */ 855 #define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */ 856 #define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */ 857 #define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */ 858 #define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */ 859 #define PERF_MEM_SNOOP_SHIFT 19 860 861 /* locked instruction */ 862 #define PERF_MEM_LOCK_NA 0x01 /* not available */ 863 #define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */ 864 #define PERF_MEM_LOCK_SHIFT 24 865 866 /* TLB access */ 867 #define PERF_MEM_TLB_NA 0x01 /* not available */ 868 #define PERF_MEM_TLB_HIT 0x02 /* hit level */ 869 #define PERF_MEM_TLB_MISS 0x04 /* miss level */ 870 #define PERF_MEM_TLB_L1 0x08 /* L1 */ 871 #define PERF_MEM_TLB_L2 0x10 /* L2 */ 872 #define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/ 873 #define PERF_MEM_TLB_OS 0x40 /* OS fault handler */ 874 #define PERF_MEM_TLB_SHIFT 26 875 876 #define PERF_MEM_S(a, s) (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT) 877 878 /* 879 * single taken branch record layout: 880 * 881 * from: source instruction (may not always be a branch insn) 882 * to: branch target 883 * mispred: branch target was mispredicted 884 * predicted: branch target was predicted 885 * 886 * support for mispred, predicted is optional. In case it 887 * is not supported mispred = predicted = 0. 888 * 889 * in_tx: running in a hardware transaction 890 * abort: aborting a hardware transaction 891 */ 892 struct perf_branch_entry { 893 __u64 from; 894 __u64 to; 895 __u64 mispred : 1, /* target mispredicted */ 896 predicted : 1, /* target predicted */ 897 in_tx : 1, /* in transaction */ 898 abort : 1, /* transaction abort */ 899 reserved : 60; 900 }; 901 902 #endif /* _UAPI_LINUX_PERF_EVENT_H */ 903