• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- X86Disassembler.h - Disassembler for x86 and x86_64 ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
11 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
12 // instruction in this disassembler is:
13 //
14 // 1. Read the prefix bytes and determine the attributes of the instruction.
15 //    These attributes, recorded in enum attributeBits
16 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
17 //    provides a mapping from bitmasks to contexts, which are represented by
18 //    enum InstructionContext (ibid.).
19 //
20 // 2. Read the opcode, and determine what kind of opcode it is.  The
21 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
22 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
23 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
24 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
25 //
26 // 3. Depending on the opcode type, look in one of four ClassDecision structures
27 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
28 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
29 //    a ModRMDecision (ibid.).
30 //
31 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
32 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
33 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
34 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
35 //    ModR/M byte is required and how to interpret it.
36 //
37 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
38 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
39 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
40 //    meanings of its operands.
41 //
42 // 6. For each operand, its encoding is an entry from OperandEncoding
43 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
44 //    OperandType (ibid.).  The encoding indicates how to read it from the
45 //    instruction; the type indicates how to interpret the value once it has
46 //    been read.  For example, a register operand could be stored in the R/M
47 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
48 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
49 //    register, for instance).  Given this information, the operands can be
50 //    extracted and interpreted.
51 //
52 // 7. As the last step, the disassembler translates the instruction information
53 //    and operands into a format understandable by the client - in this case, an
54 //    MCInst for use by the MC infrastructure.
55 //
56 // The disassembler is broken broadly into two parts: the table emitter that
57 // emits the instruction decode tables discussed above during compilation, and
58 // the disassembler itself.  The table emitter is documented in more detail in
59 // utils/TableGen/X86DisassemblerEmitter.h.
60 //
61 // X86Disassembler.h contains the public interface for the disassembler,
62 //   adhering to the MCDisassembler interface.
63 // X86Disassembler.cpp contains the code responsible for step 7, and for
64 //   invoking the decoder to execute steps 1-6.
65 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
66 //   table emitter and the disassembler.
67 // X86DisassemblerDecoder.h contains the public interface of the decoder,
68 //   factored out into C for possible use by other projects.
69 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
70 //   responsible for steps 1-6.
71 //
72 //===----------------------------------------------------------------------===//
73 
74 #ifndef X86DISASSEMBLER_H
75 #define X86DISASSEMBLER_H
76 
77 #define INSTRUCTION_SPECIFIER_FIELDS  \
78   const char*             name;
79 
80 #define INSTRUCTION_IDS               \
81   const InstrUID *instructionIDs;
82 
83 #include "X86DisassemblerDecoderCommon.h"
84 
85 #undef INSTRUCTION_SPECIFIER_FIELDS
86 #undef INSTRUCTION_IDS
87 
88 #include "llvm/MC/MCDisassembler.h"
89 
90 struct InternalInstruction;
91 
92 namespace llvm {
93 
94 class MCInst;
95 class MCSubtargetInfo;
96 class MemoryObject;
97 class raw_ostream;
98 
99 struct EDInstInfo;
100 
101 namespace X86Disassembler {
102 
103 /// X86GenericDisassembler - Generic disassembler for all X86 platforms.
104 ///   All each platform class should have to do is subclass the constructor, and
105 ///   provide a different disassemblerMode value.
106 class X86GenericDisassembler : public MCDisassembler {
107 protected:
108   /// Constructor     - Initializes the disassembler.
109   ///
110   /// @param mode     - The X86 architecture mode to decode for.
111   X86GenericDisassembler(const MCSubtargetInfo &STI, DisassemblerMode mode);
112 public:
113   ~X86GenericDisassembler();
114 
115   /// getInstruction - See MCDisassembler.
116   DecodeStatus getInstruction(MCInst &instr,
117                               uint64_t &size,
118                               const MemoryObject &region,
119                               uint64_t address,
120                               raw_ostream &vStream,
121                               raw_ostream &cStream) const;
122 
123   /// getEDInfo - See MCDisassembler.
124   EDInstInfo *getEDInfo() const;
125 private:
126   DisassemblerMode              fMode;
127 };
128 
129 /// X86_16Disassembler - 16-bit X86 disassembler.
130 class X86_16Disassembler : public X86GenericDisassembler {
131 public:
X86_16Disassembler(const MCSubtargetInfo & STI)132   X86_16Disassembler(const MCSubtargetInfo &STI) :
133     X86GenericDisassembler(STI, MODE_16BIT) {
134   }
135 };
136 
137 /// X86_16Disassembler - 32-bit X86 disassembler.
138 class X86_32Disassembler : public X86GenericDisassembler {
139 public:
X86_32Disassembler(const MCSubtargetInfo & STI)140   X86_32Disassembler(const MCSubtargetInfo &STI) :
141     X86GenericDisassembler(STI, MODE_32BIT) {
142   }
143 };
144 
145 /// X86_16Disassembler - 64-bit X86 disassembler.
146 class X86_64Disassembler : public X86GenericDisassembler {
147 public:
X86_64Disassembler(const MCSubtargetInfo & STI)148   X86_64Disassembler(const MCSubtargetInfo &STI) :
149     X86GenericDisassembler(STI, MODE_64BIT) {
150   }
151 };
152 
153 } // namespace X86Disassembler
154 
155 } // namespace llvm
156 
157 #endif
158