1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_writer.h"
18
19 #include <lz4.h>
20 #include <lz4hc.h>
21 #include <sys/stat.h>
22 #include <zlib.h>
23
24 #include <memory>
25 #include <numeric>
26 #include <unordered_set>
27 #include <vector>
28
29 #include "art_field-inl.h"
30 #include "art_method-inl.h"
31 #include "base/callee_save_type.h"
32 #include "base/enums.h"
33 #include "base/globals.h"
34 #include "base/logging.h" // For VLOG.
35 #include "base/stl_util.h"
36 #include "base/unix_file/fd_file.h"
37 #include "class_linker-inl.h"
38 #include "class_root.h"
39 #include "compiled_method.h"
40 #include "dex/dex_file-inl.h"
41 #include "dex/dex_file_types.h"
42 #include "driver/compiler_options.h"
43 #include "elf/elf_utils.h"
44 #include "elf_file.h"
45 #include "gc/accounting/card_table-inl.h"
46 #include "gc/accounting/heap_bitmap.h"
47 #include "gc/accounting/space_bitmap-inl.h"
48 #include "gc/collector/concurrent_copying.h"
49 #include "gc/heap-visit-objects-inl.h"
50 #include "gc/heap.h"
51 #include "gc/space/large_object_space.h"
52 #include "gc/space/region_space.h"
53 #include "gc/space/space-inl.h"
54 #include "gc/verification.h"
55 #include "handle_scope-inl.h"
56 #include "image.h"
57 #include "imt_conflict_table.h"
58 #include "intern_table-inl.h"
59 #include "jni/jni_internal.h"
60 #include "linear_alloc.h"
61 #include "lock_word.h"
62 #include "mirror/array-inl.h"
63 #include "mirror/class-inl.h"
64 #include "mirror/class_ext-inl.h"
65 #include "mirror/class_loader.h"
66 #include "mirror/dex_cache-inl.h"
67 #include "mirror/dex_cache.h"
68 #include "mirror/executable.h"
69 #include "mirror/method.h"
70 #include "mirror/object-inl.h"
71 #include "mirror/object-refvisitor-inl.h"
72 #include "mirror/object_array-alloc-inl.h"
73 #include "mirror/object_array-inl.h"
74 #include "mirror/string-inl.h"
75 #include "oat.h"
76 #include "oat_file.h"
77 #include "oat_file_manager.h"
78 #include "optimizing/intrinsic_objects.h"
79 #include "runtime.h"
80 #include "scoped_thread_state_change-inl.h"
81 #include "subtype_check.h"
82 #include "utils/dex_cache_arrays_layout-inl.h"
83 #include "well_known_classes.h"
84
85 using ::art::mirror::Class;
86 using ::art::mirror::DexCache;
87 using ::art::mirror::Object;
88 using ::art::mirror::ObjectArray;
89 using ::art::mirror::String;
90
91 namespace art {
92 namespace linker {
93
MaybeCompressData(ArrayRef<const uint8_t> source,ImageHeader::StorageMode image_storage_mode,std::vector<uint8_t> * storage)94 static ArrayRef<const uint8_t> MaybeCompressData(ArrayRef<const uint8_t> source,
95 ImageHeader::StorageMode image_storage_mode,
96 /*out*/ std::vector<uint8_t>* storage) {
97 const uint64_t compress_start_time = NanoTime();
98
99 switch (image_storage_mode) {
100 case ImageHeader::kStorageModeLZ4: {
101 storage->resize(LZ4_compressBound(source.size()));
102 size_t data_size = LZ4_compress_default(
103 reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())),
104 reinterpret_cast<char*>(storage->data()),
105 source.size(),
106 storage->size());
107 storage->resize(data_size);
108 break;
109 }
110 case ImageHeader::kStorageModeLZ4HC: {
111 // Bound is same as non HC.
112 storage->resize(LZ4_compressBound(source.size()));
113 size_t data_size = LZ4_compress_HC(
114 reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())),
115 reinterpret_cast<char*>(storage->data()),
116 source.size(),
117 storage->size(),
118 LZ4HC_CLEVEL_MAX);
119 storage->resize(data_size);
120 break;
121 }
122 case ImageHeader::kStorageModeUncompressed: {
123 return source;
124 }
125 default: {
126 LOG(FATAL) << "Unsupported";
127 UNREACHABLE();
128 }
129 }
130
131 DCHECK(image_storage_mode == ImageHeader::kStorageModeLZ4 ||
132 image_storage_mode == ImageHeader::kStorageModeLZ4HC);
133 VLOG(compiler) << "Compressed from " << source.size() << " to " << storage->size() << " in "
134 << PrettyDuration(NanoTime() - compress_start_time);
135 if (kIsDebugBuild) {
136 std::vector<uint8_t> decompressed(source.size());
137 const size_t decompressed_size = LZ4_decompress_safe(
138 reinterpret_cast<char*>(storage->data()),
139 reinterpret_cast<char*>(decompressed.data()),
140 storage->size(),
141 decompressed.size());
142 CHECK_EQ(decompressed_size, decompressed.size());
143 CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode;
144 }
145 return ArrayRef<const uint8_t>(*storage);
146 }
147
148 // Separate objects into multiple bins to optimize dirty memory use.
149 static constexpr bool kBinObjects = true;
150
GetAppClassLoader() const151 ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
152 REQUIRES_SHARED(Locks::mutator_lock_) {
153 return compiler_options_.IsAppImage()
154 ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
155 : nullptr;
156 }
157
IsImageObject(ObjPtr<mirror::Object> obj) const158 bool ImageWriter::IsImageObject(ObjPtr<mirror::Object> obj) const {
159 // For boot image, we keep all objects remaining after the GC in PrepareImageAddressSpace().
160 if (compiler_options_.IsBootImage()) {
161 return true;
162 }
163 // Objects already in the boot image do not belong to the image being written.
164 if (IsInBootImage(obj.Ptr())) {
165 return false;
166 }
167 // DexCaches for the boot class path components that are not a part of the boot image
168 // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
169 // include them in the app image. So make sure we include only the app DexCaches.
170 if (obj->IsDexCache() &&
171 !ContainsElement(compiler_options_.GetDexFilesForOatFile(),
172 obj->AsDexCache()->GetDexFile())) {
173 return false;
174 }
175 return true;
176 }
177
178 // Return true if an object is already in an image space.
IsInBootImage(const void * obj) const179 bool ImageWriter::IsInBootImage(const void* obj) const {
180 gc::Heap* const heap = Runtime::Current()->GetHeap();
181 if (compiler_options_.IsBootImage()) {
182 DCHECK(heap->GetBootImageSpaces().empty());
183 return false;
184 }
185 for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
186 const uint8_t* image_begin = boot_image_space->Begin();
187 // Real image end including ArtMethods and ArtField sections.
188 const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
189 if (image_begin <= obj && obj < image_end) {
190 return true;
191 }
192 }
193 return false;
194 }
195
IsInBootOatFile(const void * ptr) const196 bool ImageWriter::IsInBootOatFile(const void* ptr) const {
197 gc::Heap* const heap = Runtime::Current()->GetHeap();
198 if (compiler_options_.IsBootImage()) {
199 DCHECK(heap->GetBootImageSpaces().empty());
200 return false;
201 }
202 for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
203 const ImageHeader& image_header = boot_image_space->GetImageHeader();
204 if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
205 return true;
206 }
207 }
208 return false;
209 }
210
ClearDexFileCookies()211 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
212 auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
213 DCHECK(obj != nullptr);
214 Class* klass = obj->GetClass();
215 if (klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile)) {
216 ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
217 // Null out the cookie to enable determinism. b/34090128
218 field->SetObject</*kTransactionActive*/false>(obj, nullptr);
219 }
220 };
221 Runtime::Current()->GetHeap()->VisitObjects(visitor);
222 }
223
PrepareImageAddressSpace(TimingLogger * timings)224 bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) {
225 target_ptr_size_ = InstructionSetPointerSize(compiler_options_.GetInstructionSet());
226
227 Thread* const self = Thread::Current();
228
229 gc::Heap* const heap = Runtime::Current()->GetHeap();
230 {
231 ScopedObjectAccess soa(self);
232 {
233 TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
234 PruneNonImageClasses(); // Remove junk
235 }
236
237 if (compiler_options_.IsAppImage()) {
238 TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
239 // Clear dex file cookies for app images to enable app image determinism. This is required
240 // since the cookie field contains long pointers to DexFiles which are not deterministic.
241 // b/34090128
242 ClearDexFileCookies();
243 }
244 }
245
246 {
247 TimingLogger::ScopedTiming t("CollectGarbage", timings);
248 heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage.
249 }
250
251 if (kIsDebugBuild) {
252 ScopedObjectAccess soa(self);
253 CheckNonImageClassesRemoved();
254 }
255
256 {
257 // Preload deterministic contents to the dex cache arrays we're going to write.
258 ScopedObjectAccess soa(self);
259 ObjPtr<mirror::ClassLoader> class_loader = GetAppClassLoader();
260 std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
261 for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
262 if (!IsImageObject(dex_cache)) {
263 continue; // Boot image DexCache is not written to the app image.
264 }
265 PreloadDexCache(dex_cache, class_loader);
266 }
267 }
268
269 // Used to store information that will later be used to calculate image
270 // offsets to string references in the AppImage.
271 std::vector<HeapReferencePointerInfo> string_ref_info;
272 if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
273 // Count the number of string fields so we can allocate the appropriate
274 // amount of space in the image section.
275 TimingLogger::ScopedTiming t("AppImage:CollectStringReferenceInfo", timings);
276 ScopedObjectAccess soa(self);
277
278 if (kIsDebugBuild) {
279 VerifyNativeGCRootInvariants();
280 CHECK_EQ(image_infos_.size(), 1u);
281 }
282
283 string_ref_info = CollectStringReferenceInfo();
284 image_infos_.back().num_string_references_ = string_ref_info.size();
285 }
286
287 {
288 TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
289 ScopedObjectAccess soa(self);
290 CalculateNewObjectOffsets();
291 }
292
293 // Obtain class count for debugging purposes
294 if (VLOG_IS_ON(compiler) && compiler_options_.IsAppImage()) {
295 ScopedObjectAccess soa(self);
296
297 size_t app_image_class_count = 0;
298
299 for (ImageInfo& info : image_infos_) {
300 info.class_table_->Visit([&](ObjPtr<mirror::Class> klass)
301 REQUIRES_SHARED(Locks::mutator_lock_) {
302 if (!IsInBootImage(klass.Ptr())) {
303 ++app_image_class_count;
304 }
305
306 // Indicate that we would like to continue visiting classes.
307 return true;
308 });
309 }
310
311 VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << app_image_class_count;
312 }
313
314 if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
315 // Use the string reference information obtained earlier to calculate image
316 // offsets. These will later be written to the image by Write/CopyMetadata.
317 TimingLogger::ScopedTiming t("AppImage:CalculateImageOffsets", timings);
318 ScopedObjectAccess soa(self);
319
320 size_t managed_string_refs = 0;
321 size_t native_string_refs = 0;
322
323 /*
324 * Iterate over the string reference info and calculate image offsets.
325 * The first element of the pair is either the object the reference belongs
326 * to or the beginning of the native reference array it is located in. In
327 * the first case the second element is the offset of the field relative to
328 * the object's base address. In the second case, it is the index of the
329 * StringDexCacheType object in the array.
330 */
331 for (const HeapReferencePointerInfo& ref_info : string_ref_info) {
332 uint32_t base_offset;
333
334 if (HasDexCacheStringNativeRefTag(ref_info.first)) {
335 ++native_string_refs;
336 auto* obj_ptr = reinterpret_cast<mirror::Object*>(ClearDexCacheNativeRefTags(
337 ref_info.first));
338 base_offset = SetDexCacheStringNativeRefTag(GetImageOffset(obj_ptr));
339 } else if (HasDexCachePreResolvedStringNativeRefTag(ref_info.first)) {
340 ++native_string_refs;
341 auto* obj_ptr = reinterpret_cast<mirror::Object*>(ClearDexCacheNativeRefTags(
342 ref_info.first));
343 base_offset = SetDexCachePreResolvedStringNativeRefTag(GetImageOffset(obj_ptr));
344 } else {
345 ++managed_string_refs;
346 base_offset = GetImageOffset(reinterpret_cast<mirror::Object*>(ref_info.first));
347 }
348
349 string_reference_offsets_.emplace_back(base_offset, ref_info.second);
350 }
351
352 CHECK_EQ(image_infos_.back().num_string_references_,
353 string_reference_offsets_.size());
354
355 VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << string_reference_offsets_.size();
356 VLOG(compiler) << "Dex2Oat:AppImage:managedStringReferences = " << managed_string_refs;
357 VLOG(compiler) << "Dex2Oat:AppImage:nativeStringReferences = " << native_string_refs;
358 }
359
360 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
361 // bin size sums being calculated.
362 TimingLogger::ScopedTiming t("AllocMemory", timings);
363 return AllocMemory();
364 }
365
366 class ImageWriter::CollectStringReferenceVisitor {
367 public:
CollectStringReferenceVisitor(const ImageWriter & image_writer)368 explicit CollectStringReferenceVisitor(const ImageWriter& image_writer)
369 : image_writer_(image_writer),
370 curr_obj_(nullptr),
371 string_ref_info_(0),
372 dex_cache_string_ref_counter_(0) {}
373
374 // Used to prevent repeated null checks in the code that calls the visitor.
375 ALWAYS_INLINE
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const376 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
377 REQUIRES_SHARED(Locks::mutator_lock_) {
378 if (!root->IsNull()) {
379 VisitRoot(root);
380 }
381 }
382
383 /*
384 * Counts the number of native references to strings reachable through
385 * DexCache objects for verification later.
386 */
387 ALWAYS_INLINE
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const388 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
389 REQUIRES_SHARED(Locks::mutator_lock_) {
390 ObjPtr<mirror::Object> referred_obj = root->AsMirrorPtr();
391
392 if (curr_obj_->IsDexCache() &&
393 image_writer_.IsValidAppImageStringReference(referred_obj)) {
394 ++dex_cache_string_ref_counter_;
395 }
396 }
397
398 // Collects info for managed fields that reference managed Strings.
399 ALWAYS_INLINE
operator ()(ObjPtr<mirror::Object> obj,MemberOffset member_offset,bool is_static ATTRIBUTE_UNUSED) const400 void operator() (ObjPtr<mirror::Object> obj,
401 MemberOffset member_offset,
402 bool is_static ATTRIBUTE_UNUSED) const
403 REQUIRES_SHARED(Locks::mutator_lock_) {
404 ObjPtr<mirror::Object> referred_obj =
405 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
406 member_offset);
407
408 if (image_writer_.IsValidAppImageStringReference(referred_obj)) {
409 string_ref_info_.emplace_back(reinterpret_cast<uintptr_t>(obj.Ptr()),
410 member_offset.Uint32Value());
411 }
412 }
413
414 ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const415 void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
416 ObjPtr<mirror::Reference> ref) const
417 REQUIRES_SHARED(Locks::mutator_lock_) {
418 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
419 }
420
AddStringRefInfo(uint32_t first,uint32_t second)421 void AddStringRefInfo(uint32_t first, uint32_t second) {
422 string_ref_info_.emplace_back(first, second);
423 }
424
MoveRefInfo()425 std::vector<HeapReferencePointerInfo>&& MoveRefInfo() {
426 return std::move(string_ref_info_);
427 }
428
429 // Used by the wrapper function to obtain a native reference count.
GetDexCacheStringRefCount() const430 size_t GetDexCacheStringRefCount() const {
431 return dex_cache_string_ref_counter_;
432 }
433
SetObject(ObjPtr<mirror::Object> obj)434 void SetObject(ObjPtr<mirror::Object> obj) {
435 curr_obj_ = obj;
436 dex_cache_string_ref_counter_ = 0;
437 }
438
439 private:
440 const ImageWriter& image_writer_;
441 ObjPtr<mirror::Object> curr_obj_;
442 mutable std::vector<HeapReferencePointerInfo> string_ref_info_;
443 mutable size_t dex_cache_string_ref_counter_;
444 };
445
CollectStringReferenceInfo() const446 std::vector<ImageWriter::HeapReferencePointerInfo> ImageWriter::CollectStringReferenceInfo() const
447 REQUIRES_SHARED(Locks::mutator_lock_) {
448 gc::Heap* const heap = Runtime::Current()->GetHeap();
449 CollectStringReferenceVisitor visitor(*this);
450
451 /*
452 * References to managed strings can occur either in the managed heap or in
453 * native memory regions. Information about managed references is collected
454 * by the CollectStringReferenceVisitor and directly added to the internal
455 * info vector.
456 *
457 * Native references to managed strings can only occur through DexCache
458 * objects. This is verified by VerifyNativeGCRootInvariants(). Due to the
459 * fact that these native references are encapsulated in std::atomic objects
460 * the VisitReferences() function can't pass the visiting object the address
461 * of the reference. Instead, the VisitReferences() function loads the
462 * reference into a temporary variable and passes that address to the
463 * visitor. As a consequence of this we can't uniquely identify the location
464 * of the string reference in the visitor.
465 *
466 * Due to these limitations, the visitor will only count the number of
467 * managed strings reachable through the native references of a DexCache
468 * object. If there are any such strings, this function will then iterate
469 * over the native references, test the string for membership in the
470 * AppImage, and add the tagged DexCache pointer and string array offset to
471 * the info vector if necessary.
472 */
473 heap->VisitObjects([this, &visitor](ObjPtr<mirror::Object> object)
474 REQUIRES_SHARED(Locks::mutator_lock_) {
475 if (IsImageObject(object)) {
476 visitor.SetObject(object);
477
478 if (object->IsDexCache()) {
479 object->VisitReferences</* kVisitNativeRoots= */ true,
480 kVerifyNone,
481 kWithoutReadBarrier>(visitor, visitor);
482
483 if (visitor.GetDexCacheStringRefCount() > 0) {
484 size_t string_info_collected = 0;
485
486 ObjPtr<mirror::DexCache> dex_cache = object->AsDexCache();
487 // Both of the dex cache string arrays are visited, so add up the total in the check.
488 DCHECK_LE(visitor.GetDexCacheStringRefCount(),
489 dex_cache->NumPreResolvedStrings() + dex_cache->NumStrings());
490
491 for (uint32_t index = 0; index < dex_cache->NumStrings(); ++index) {
492 // GetResolvedString() can't be used here due to the circular
493 // nature of the cache and the collision detection this requires.
494 ObjPtr<mirror::String> referred_string =
495 dex_cache->GetStrings()[index].load().object.Read();
496
497 if (IsValidAppImageStringReference(referred_string)) {
498 ++string_info_collected;
499 visitor.AddStringRefInfo(
500 SetDexCacheStringNativeRefTag(reinterpret_cast<uintptr_t>(object.Ptr())), index);
501 }
502 }
503
504 // Visit all of the preinitialized strings.
505 GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings();
506 for (size_t index = 0; index < dex_cache->NumPreResolvedStrings(); ++index) {
507 ObjPtr<mirror::String> referred_string = preresolved_strings[index].Read();
508 if (IsValidAppImageStringReference(referred_string)) {
509 ++string_info_collected;
510 visitor.AddStringRefInfo(SetDexCachePreResolvedStringNativeRefTag(
511 reinterpret_cast<uintptr_t>(object.Ptr())),
512 index);
513 }
514 }
515
516 DCHECK_EQ(string_info_collected, visitor.GetDexCacheStringRefCount());
517 }
518 } else {
519 object->VisitReferences</* kVisitNativeRoots= */ false,
520 kVerifyNone,
521 kWithoutReadBarrier>(visitor, visitor);
522 }
523 }
524 });
525
526 return visitor.MoveRefInfo();
527 }
528
529 class ImageWriter::NativeGCRootInvariantVisitor {
530 public:
NativeGCRootInvariantVisitor(const ImageWriter & image_writer)531 explicit NativeGCRootInvariantVisitor(const ImageWriter& image_writer) :
532 curr_obj_(nullptr), class_violation_(false), class_loader_violation_(false),
533 image_writer_(image_writer) {}
534
535 ALWAYS_INLINE
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const536 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
537 REQUIRES_SHARED(Locks::mutator_lock_) {
538 if (!root->IsNull()) {
539 VisitRoot(root);
540 }
541 }
542
543 ALWAYS_INLINE
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const544 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
545 REQUIRES_SHARED(Locks::mutator_lock_) {
546 ObjPtr<mirror::Object> referred_obj = root->AsMirrorPtr();
547
548 if (curr_obj_->IsClass()) {
549 class_violation_ = class_violation_ ||
550 image_writer_.IsValidAppImageStringReference(referred_obj);
551
552 } else if (curr_obj_->IsClassLoader()) {
553 class_loader_violation_ = class_loader_violation_ ||
554 image_writer_.IsValidAppImageStringReference(referred_obj);
555
556 } else if (!curr_obj_->IsDexCache()) {
557 LOG(FATAL) << "Dex2Oat:AppImage | " <<
558 "Native reference to String found in unexpected object type.";
559 }
560 }
561
562 ALWAYS_INLINE
operator ()(ObjPtr<mirror::Object> obj ATTRIBUTE_UNUSED,MemberOffset member_offset ATTRIBUTE_UNUSED,bool is_static ATTRIBUTE_UNUSED) const563 void operator() (ObjPtr<mirror::Object> obj ATTRIBUTE_UNUSED,
564 MemberOffset member_offset ATTRIBUTE_UNUSED,
565 bool is_static ATTRIBUTE_UNUSED) const
566 REQUIRES_SHARED(Locks::mutator_lock_) {}
567
568 ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const569 void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
570 ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
571 REQUIRES_SHARED(Locks::mutator_lock_) {}
572
573 // Returns true iff the only reachable native string references are through DexCache objects.
InvariantsHold() const574 bool InvariantsHold() const {
575 return !(class_violation_ || class_loader_violation_);
576 }
577
578 ObjPtr<mirror::Object> curr_obj_;
579 mutable bool class_violation_;
580 mutable bool class_loader_violation_;
581
582 private:
583 const ImageWriter& image_writer_;
584 };
585
VerifyNativeGCRootInvariants() const586 void ImageWriter::VerifyNativeGCRootInvariants() const REQUIRES_SHARED(Locks::mutator_lock_) {
587 gc::Heap* const heap = Runtime::Current()->GetHeap();
588
589 NativeGCRootInvariantVisitor visitor(*this);
590
591 heap->VisitObjects([this, &visitor](ObjPtr<mirror::Object> object)
592 REQUIRES_SHARED(Locks::mutator_lock_) {
593 visitor.curr_obj_ = object;
594
595 if (!IsInBootImage(object.Ptr())) {
596 object->VisitReferences</* kVisitNativeReferences= */ true,
597 kVerifyNone,
598 kWithoutReadBarrier>(visitor, visitor);
599 }
600 });
601
602 bool error = false;
603 std::ostringstream error_str;
604
605 /*
606 * Build the error string
607 */
608
609 if (UNLIKELY(visitor.class_violation_)) {
610 error_str << "Class";
611 error = true;
612 }
613
614 if (UNLIKELY(visitor.class_loader_violation_)) {
615 if (error) {
616 error_str << ", ";
617 }
618
619 error_str << "ClassLoader";
620 }
621
622 CHECK(visitor.InvariantsHold()) <<
623 "Native GC root invariant failure. String ref invariants don't hold for the following " <<
624 "object types: " << error_str.str();
625 }
626
CopyMetadata()627 void ImageWriter::CopyMetadata() {
628 DCHECK(compiler_options_.IsAppImage());
629 CHECK_EQ(image_infos_.size(), 1u);
630
631 const ImageInfo& image_info = image_infos_.back();
632 std::vector<ImageSection> image_sections = image_info.CreateImageSections().second;
633
634 auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
635 image_info.image_.Begin() +
636 image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
637
638 std::copy(string_reference_offsets_.begin(),
639 string_reference_offsets_.end(),
640 sfo_section_base);
641 }
642
IsValidAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const643 bool ImageWriter::IsValidAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
644 return referred_obj != nullptr &&
645 !IsInBootImage(referred_obj.Ptr()) &&
646 referred_obj->IsString();
647 }
648
649 // Helper class that erases the image file if it isn't properly flushed and closed.
650 class ImageWriter::ImageFileGuard {
651 public:
652 ImageFileGuard() noexcept = default;
653 ImageFileGuard(ImageFileGuard&& other) noexcept = default;
654 ImageFileGuard& operator=(ImageFileGuard&& other) noexcept = default;
655
~ImageFileGuard()656 ~ImageFileGuard() {
657 if (image_file_ != nullptr) {
658 // Failure, erase the image file.
659 image_file_->Erase();
660 }
661 }
662
reset(File * image_file)663 void reset(File* image_file) {
664 image_file_.reset(image_file);
665 }
666
operator ==(std::nullptr_t)667 bool operator==(std::nullptr_t) {
668 return image_file_ == nullptr;
669 }
670
operator !=(std::nullptr_t)671 bool operator!=(std::nullptr_t) {
672 return image_file_ != nullptr;
673 }
674
operator ->() const675 File* operator->() const {
676 return image_file_.get();
677 }
678
WriteHeaderAndClose(const std::string & image_filename,const ImageHeader * image_header)679 bool WriteHeaderAndClose(const std::string& image_filename, const ImageHeader* image_header) {
680 // The header is uncompressed since it contains whether the image is compressed or not.
681 if (!image_file_->PwriteFully(image_header, sizeof(ImageHeader), 0)) {
682 PLOG(ERROR) << "Failed to write image file header " << image_filename;
683 return false;
684 }
685
686 // FlushCloseOrErase() takes care of erasing, so the destructor does not need
687 // to do that whether the FlushCloseOrErase() succeeds or fails.
688 std::unique_ptr<File> image_file = std::move(image_file_);
689 if (image_file->FlushCloseOrErase() != 0) {
690 PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
691 return false;
692 }
693
694 return true;
695 }
696
697 private:
698 std::unique_ptr<File> image_file_;
699 };
700
Write(int image_fd,const std::vector<std::string> & image_filenames,const std::vector<std::string> & oat_filenames)701 bool ImageWriter::Write(int image_fd,
702 const std::vector<std::string>& image_filenames,
703 const std::vector<std::string>& oat_filenames) {
704 // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
705 // oat_filenames.
706 CHECK(!image_filenames.empty());
707 if (image_fd != kInvalidFd) {
708 CHECK_EQ(image_filenames.size(), 1u);
709 }
710 CHECK(!oat_filenames.empty());
711 CHECK_EQ(image_filenames.size(), oat_filenames.size());
712
713 Thread* const self = Thread::Current();
714 {
715 ScopedObjectAccess soa(self);
716 for (size_t i = 0; i < oat_filenames.size(); ++i) {
717 CreateHeader(i);
718 CopyAndFixupNativeData(i);
719 }
720 }
721
722 {
723 // TODO: heap validation can't handle these fix up passes.
724 ScopedObjectAccess soa(self);
725 Runtime::Current()->GetHeap()->DisableObjectValidation();
726 CopyAndFixupObjects();
727 }
728
729 if (compiler_options_.IsAppImage()) {
730 CopyMetadata();
731 }
732
733 // Primary image header shall be written last for two reasons. First, this ensures
734 // that we shall not end up with a valid primary image and invalid secondary image.
735 // Second, its checksum shall include the checksums of the secondary images (XORed).
736 // This way only the primary image checksum needs to be checked to determine whether
737 // any of the images or oat files are out of date. (Oat file checksums are included
738 // in the image checksum calculation.)
739 ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
740 ImageFileGuard primary_image_file;
741 for (size_t i = 0; i < image_filenames.size(); ++i) {
742 const std::string& image_filename = image_filenames[i];
743 ImageInfo& image_info = GetImageInfo(i);
744 ImageFileGuard image_file;
745 if (image_fd != kInvalidFd) {
746 if (image_filename.empty()) {
747 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
748 // Empty the file in case it already exists.
749 if (image_file != nullptr) {
750 TEMP_FAILURE_RETRY(image_file->SetLength(0));
751 TEMP_FAILURE_RETRY(image_file->Flush());
752 }
753 } else {
754 LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
755 }
756 } else {
757 image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
758 }
759
760 if (image_file == nullptr) {
761 LOG(ERROR) << "Failed to open image file " << image_filename;
762 return false;
763 }
764
765 if (!compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
766 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
767 return EXIT_FAILURE;
768 }
769
770 // Image data size excludes the bitmap and the header.
771 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
772
773 // Block sources (from the image).
774 const bool is_compressed = image_storage_mode_ != ImageHeader::kStorageModeUncompressed;
775 std::vector<std::pair<uint32_t, uint32_t>> block_sources;
776 std::vector<ImageHeader::Block> blocks;
777
778 // Add a set of solid blocks such that no block is larger than the maximum size. A solid block
779 // is a block that must be decompressed all at once.
780 auto add_blocks = [&](uint32_t offset, uint32_t size) {
781 while (size != 0u) {
782 const uint32_t cur_size = std::min(size, compiler_options_.MaxImageBlockSize());
783 block_sources.emplace_back(offset, cur_size);
784 offset += cur_size;
785 size -= cur_size;
786 }
787 };
788
789 add_blocks(sizeof(ImageHeader), image_header->GetImageSize() - sizeof(ImageHeader));
790
791 // Checksum of compressed image data and header.
792 uint32_t image_checksum = adler32(0L, Z_NULL, 0);
793 image_checksum = adler32(image_checksum,
794 reinterpret_cast<const uint8_t*>(image_header),
795 sizeof(ImageHeader));
796 // Copy and compress blocks.
797 size_t out_offset = sizeof(ImageHeader);
798 for (const std::pair<uint32_t, uint32_t> block : block_sources) {
799 ArrayRef<const uint8_t> raw_image_data(image_info.image_.Begin() + block.first,
800 block.second);
801 std::vector<uint8_t> compressed_data;
802 ArrayRef<const uint8_t> image_data =
803 MaybeCompressData(raw_image_data, image_storage_mode_, &compressed_data);
804
805 if (!is_compressed) {
806 // For uncompressed, preserve alignment since the image will be directly mapped.
807 out_offset = block.first;
808 }
809
810 // Fill in the compressed location of the block.
811 blocks.emplace_back(ImageHeader::Block(
812 image_storage_mode_,
813 /*data_offset=*/ out_offset,
814 /*data_size=*/ image_data.size(),
815 /*image_offset=*/ block.first,
816 /*image_size=*/ block.second));
817
818 // Write out the image + fields + methods.
819 if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) {
820 PLOG(ERROR) << "Failed to write image file data " << image_filename;
821 image_file->Erase();
822 return false;
823 }
824 out_offset += image_data.size();
825 image_checksum = adler32(image_checksum, image_data.data(), image_data.size());
826 }
827
828 // Write the block metadata directly after the image sections.
829 // Note: This is not part of the mapped image and is not preserved after decompressing, it's
830 // only used for image loading. For this reason, only write it out for compressed images.
831 if (is_compressed) {
832 // Align up since the compressed data is not necessarily aligned.
833 out_offset = RoundUp(out_offset, alignof(ImageHeader::Block));
834 CHECK(!blocks.empty());
835 const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]);
836 if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) {
837 PLOG(ERROR) << "Failed to write image blocks " << image_filename;
838 image_file->Erase();
839 return false;
840 }
841 image_header->blocks_offset_ = out_offset;
842 image_header->blocks_count_ = blocks.size();
843 out_offset += blocks_bytes;
844 }
845
846 // Data size includes everything except the bitmap.
847 image_header->data_size_ = out_offset - sizeof(ImageHeader);
848
849 // Update and write the bitmap section. Note that the bitmap section is relative to the
850 // possibly compressed image.
851 ImageSection& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
852 // Align up since data size may be unaligned if the image is compressed.
853 out_offset = RoundUp(out_offset, kPageSize);
854 bitmap_section = ImageSection(out_offset, bitmap_section.Size());
855
856 if (!image_file->PwriteFully(image_info.image_bitmap_->Begin(),
857 bitmap_section.Size(),
858 bitmap_section.Offset())) {
859 PLOG(ERROR) << "Failed to write image file bitmap " << image_filename;
860 return false;
861 }
862
863 int err = image_file->Flush();
864 if (err < 0) {
865 PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
866 return false;
867 }
868
869 // Calculate the image checksum of the remaining data.
870 image_checksum = adler32(image_checksum,
871 reinterpret_cast<const uint8_t*>(image_info.image_bitmap_->Begin()),
872 bitmap_section.Size());
873 image_header->SetImageChecksum(image_checksum);
874
875 if (VLOG_IS_ON(compiler)) {
876 const size_t separately_written_section_size = bitmap_section.Size();
877 const size_t total_uncompressed_size = image_info.image_size_ +
878 separately_written_section_size;
879 const size_t total_compressed_size = out_offset + separately_written_section_size;
880
881 VLOG(compiler) << "Dex2Oat:uncompressedImageSize = " << total_uncompressed_size;
882 if (total_uncompressed_size != total_compressed_size) {
883 VLOG(compiler) << "Dex2Oat:compressedImageSize = " << total_compressed_size;
884 }
885 }
886
887 CHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()))
888 << "Bitmap should be at the end of the file";
889
890 // Write header last in case the compiler gets killed in the middle of image writing.
891 // We do not want to have a corrupted image with a valid header.
892 // Delay the writing of the primary image header until after writing secondary images.
893 if (i == 0u) {
894 primary_image_file = std::move(image_file);
895 } else {
896 if (!image_file.WriteHeaderAndClose(image_filename, image_header)) {
897 return false;
898 }
899 // Update the primary image checksum with the secondary image checksum.
900 primary_header->SetImageChecksum(primary_header->GetImageChecksum() ^ image_checksum);
901 }
902 }
903 DCHECK(primary_image_file != nullptr);
904 if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header)) {
905 return false;
906 }
907
908 return true;
909 }
910
SetImageOffset(mirror::Object * object,size_t offset)911 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
912 DCHECK(object != nullptr);
913 DCHECK_NE(offset, 0U);
914
915 // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
916 object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
917 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
918 DCHECK(IsImageOffsetAssigned(object));
919 }
920
UpdateImageOffset(mirror::Object * obj,uintptr_t offset)921 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
922 DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
923 obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
924 DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
925 }
926
AssignImageOffset(mirror::Object * object,ImageWriter::BinSlot bin_slot)927 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
928 DCHECK(object != nullptr);
929 DCHECK_NE(image_objects_offset_begin_, 0u);
930
931 size_t oat_index = GetOatIndex(object);
932 ImageInfo& image_info = GetImageInfo(oat_index);
933 size_t bin_slot_offset = image_info.GetBinSlotOffset(bin_slot.GetBin());
934 size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
935 DCHECK_ALIGNED(new_offset, kObjectAlignment);
936
937 SetImageOffset(object, new_offset);
938 DCHECK_LT(new_offset, image_info.image_end_);
939 }
940
IsImageOffsetAssigned(mirror::Object * object) const941 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
942 // Will also return true if the bin slot was assigned since we are reusing the lock word.
943 DCHECK(object != nullptr);
944 return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
945 }
946
GetImageOffset(mirror::Object * object) const947 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
948 DCHECK(object != nullptr);
949 DCHECK(IsImageOffsetAssigned(object));
950 LockWord lock_word = object->GetLockWord(false);
951 size_t offset = lock_word.ForwardingAddress();
952 size_t oat_index = GetOatIndex(object);
953 const ImageInfo& image_info = GetImageInfo(oat_index);
954 DCHECK_LT(offset, image_info.image_end_);
955 return offset;
956 }
957
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)958 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
959 DCHECK(object != nullptr);
960 DCHECK(!IsImageOffsetAssigned(object));
961 DCHECK(!IsImageBinSlotAssigned(object));
962
963 // Before we stomp over the lock word, save the hash code for later.
964 LockWord lw(object->GetLockWord(false));
965 switch (lw.GetState()) {
966 case LockWord::kFatLocked:
967 FALLTHROUGH_INTENDED;
968 case LockWord::kThinLocked: {
969 std::ostringstream oss;
970 bool thin = (lw.GetState() == LockWord::kThinLocked);
971 oss << (thin ? "Thin" : "Fat")
972 << " locked object " << object << "(" << object->PrettyTypeOf()
973 << ") found during object copy";
974 if (thin) {
975 oss << ". Lock owner:" << lw.ThinLockOwner();
976 }
977 LOG(FATAL) << oss.str();
978 UNREACHABLE();
979 }
980 case LockWord::kUnlocked:
981 // No hash, don't need to save it.
982 break;
983 case LockWord::kHashCode:
984 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
985 saved_hashcode_map_.emplace(object, lw.GetHashCode());
986 break;
987 default:
988 LOG(FATAL) << "Unreachable.";
989 UNREACHABLE();
990 }
991 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
992 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
993 DCHECK(IsImageBinSlotAssigned(object));
994 }
995
PrepareDexCacheArraySlots()996 void ImageWriter::PrepareDexCacheArraySlots() {
997 // Prepare dex cache array starts based on the ordering specified in the CompilerOptions.
998 // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
999 // when AssignImageBinSlot() assigns their indexes out or order.
1000 for (const DexFile* dex_file : compiler_options_.GetDexFilesForOatFile()) {
1001 auto it = dex_file_oat_index_map_.find(dex_file);
1002 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1003 ImageInfo& image_info = GetImageInfo(it->second);
1004 image_info.dex_cache_array_starts_.Put(
1005 dex_file, image_info.GetBinSlotSize(Bin::kDexCacheArray));
1006 DexCacheArraysLayout layout(target_ptr_size_, dex_file);
1007 image_info.IncrementBinSlotSize(Bin::kDexCacheArray, layout.Size());
1008 }
1009
1010 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1011 Thread* const self = Thread::Current();
1012 ReaderMutexLock mu(self, *Locks::dex_lock_);
1013 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1014 ObjPtr<mirror::DexCache> dex_cache =
1015 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1016 if (dex_cache == nullptr || !IsImageObject(dex_cache)) {
1017 continue;
1018 }
1019 const DexFile* dex_file = dex_cache->GetDexFile();
1020 CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
1021 << "Dex cache should have been pruned " << dex_file->GetLocation()
1022 << "; possibly in class path";
1023 DexCacheArraysLayout layout(target_ptr_size_, dex_file);
1024 DCHECK(layout.Valid());
1025 size_t oat_index = GetOatIndexForDexCache(dex_cache);
1026 ImageInfo& image_info = GetImageInfo(oat_index);
1027 uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
1028 DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
1029 AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
1030 start + layout.TypesOffset(),
1031 oat_index);
1032 DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
1033 AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
1034 start + layout.MethodsOffset(),
1035 oat_index);
1036 DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
1037 AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
1038 start + layout.FieldsOffset(),
1039 oat_index);
1040 DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
1041 AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), oat_index);
1042
1043 AddDexCacheArrayRelocation(dex_cache->GetResolvedMethodTypes(),
1044 start + layout.MethodTypesOffset(),
1045 oat_index);
1046 AddDexCacheArrayRelocation(dex_cache->GetResolvedCallSites(),
1047 start + layout.CallSitesOffset(),
1048 oat_index);
1049
1050 // Preresolved strings aren't part of the special layout.
1051 GcRoot<mirror::String>* preresolved_strings = dex_cache->GetPreResolvedStrings();
1052 if (preresolved_strings != nullptr) {
1053 DCHECK(!IsInBootImage(preresolved_strings));
1054 // Add the array to the metadata section.
1055 const size_t count = dex_cache->NumPreResolvedStrings();
1056 auto bin = BinTypeForNativeRelocationType(NativeObjectRelocationType::kGcRootPointer);
1057 for (size_t i = 0; i < count; ++i) {
1058 native_object_relocations_.emplace(&preresolved_strings[i],
1059 NativeObjectRelocation { oat_index,
1060 image_info.GetBinSlotSize(bin),
1061 NativeObjectRelocationType::kGcRootPointer });
1062 image_info.IncrementBinSlotSize(bin, sizeof(GcRoot<mirror::Object>));
1063 }
1064 }
1065 }
1066 }
1067
AddDexCacheArrayRelocation(void * array,size_t offset,size_t oat_index)1068 void ImageWriter::AddDexCacheArrayRelocation(void* array,
1069 size_t offset,
1070 size_t oat_index) {
1071 if (array != nullptr) {
1072 DCHECK(!IsInBootImage(array));
1073 native_object_relocations_.emplace(array,
1074 NativeObjectRelocation { oat_index, offset, NativeObjectRelocationType::kDexCacheArray });
1075 }
1076 }
1077
AddMethodPointerArray(ObjPtr<mirror::PointerArray> arr)1078 void ImageWriter::AddMethodPointerArray(ObjPtr<mirror::PointerArray> arr) {
1079 DCHECK(arr != nullptr);
1080 if (kIsDebugBuild) {
1081 for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
1082 ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
1083 if (method != nullptr && !method->IsRuntimeMethod()) {
1084 ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
1085 CHECK(klass == nullptr || KeepClass(klass))
1086 << Class::PrettyClass(klass) << " should be a kept class";
1087 }
1088 }
1089 }
1090 // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
1091 // ArtMethods.
1092 pointer_arrays_.emplace(arr.Ptr(), Bin::kArtMethodClean);
1093 }
1094
AssignImageBinSlot(mirror::Object * object,size_t oat_index)1095 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
1096 DCHECK(object != nullptr);
1097 size_t object_size = object->SizeOf();
1098
1099 // The magic happens here. We segregate objects into different bins based
1100 // on how likely they are to get dirty at runtime.
1101 //
1102 // Likely-to-dirty objects get packed together into the same bin so that
1103 // at runtime their page dirtiness ratio (how many dirty objects a page has) is
1104 // maximized.
1105 //
1106 // This means more pages will stay either clean or shared dirty (with zygote) and
1107 // the app will use less of its own (private) memory.
1108 Bin bin = Bin::kRegular;
1109
1110 if (kBinObjects) {
1111 //
1112 // Changing the bin of an object is purely a memory-use tuning.
1113 // It has no change on runtime correctness.
1114 //
1115 // Memory analysis has determined that the following types of objects get dirtied
1116 // the most:
1117 //
1118 // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
1119 // a fixed layout which helps improve generated code (using PC-relative addressing),
1120 // so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
1121 // Since these arrays are huge, most pages do not overlap other objects and it's not
1122 // really important where they are for the clean/dirty separation. Due to their
1123 // special PC-relative addressing, we arbitrarily keep them at the end.
1124 // * Class'es which are verified [their clinit runs only at runtime]
1125 // - classes in general [because their static fields get overwritten]
1126 // - initialized classes with all-final statics are unlikely to be ever dirty,
1127 // so bin them separately
1128 // * Art Methods that are:
1129 // - native [their native entry point is not looked up until runtime]
1130 // - have declaring classes that aren't initialized
1131 // [their interpreter/quick entry points are trampolines until the class
1132 // becomes initialized]
1133 //
1134 // We also assume the following objects get dirtied either never or extremely rarely:
1135 // * Strings (they are immutable)
1136 // * Art methods that aren't native and have initialized declared classes
1137 //
1138 // We assume that "regular" bin objects are highly unlikely to become dirtied,
1139 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
1140 //
1141 if (object->IsClass()) {
1142 bin = Bin::kClassVerified;
1143 ObjPtr<mirror::Class> klass = object->AsClass();
1144
1145 // Add non-embedded vtable to the pointer array table if there is one.
1146 ObjPtr<mirror::PointerArray> vtable = klass->GetVTable();
1147 if (vtable != nullptr) {
1148 AddMethodPointerArray(vtable);
1149 }
1150 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable();
1151 if (iftable != nullptr) {
1152 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
1153 if (iftable->GetMethodArrayCount(i) > 0) {
1154 AddMethodPointerArray(iftable->GetMethodArray(i));
1155 }
1156 }
1157 }
1158
1159 // Move known dirty objects into their own sections. This includes:
1160 // - classes with dirty static fields.
1161 if (dirty_image_objects_ != nullptr &&
1162 dirty_image_objects_->find(klass->PrettyDescriptor()) != dirty_image_objects_->end()) {
1163 bin = Bin::kKnownDirty;
1164 } else if (klass->GetStatus() == ClassStatus::kInitialized) {
1165 bin = Bin::kClassInitialized;
1166
1167 // If the class's static fields are all final, put it into a separate bin
1168 // since it's very likely it will stay clean.
1169 uint32_t num_static_fields = klass->NumStaticFields();
1170 if (num_static_fields == 0) {
1171 bin = Bin::kClassInitializedFinalStatics;
1172 } else {
1173 // Maybe all the statics are final?
1174 bool all_final = true;
1175 for (uint32_t i = 0; i < num_static_fields; ++i) {
1176 ArtField* field = klass->GetStaticField(i);
1177 if (!field->IsFinal()) {
1178 all_final = false;
1179 break;
1180 }
1181 }
1182
1183 if (all_final) {
1184 bin = Bin::kClassInitializedFinalStatics;
1185 }
1186 }
1187 }
1188 } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
1189 bin = Bin::kString; // Strings are almost always immutable (except for object header).
1190 } else if (object->GetClass<kVerifyNone>() == GetClassRoot<mirror::Object>()) {
1191 // Instance of java lang object, probably a lock object. This means it will be dirty when we
1192 // synchronize on it.
1193 bin = Bin::kMiscDirty;
1194 } else if (object->IsDexCache()) {
1195 // Dex file field becomes dirty when the image is loaded.
1196 bin = Bin::kMiscDirty;
1197 }
1198 // else bin = kBinRegular
1199 }
1200
1201 // Assign the oat index too.
1202 DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
1203 oat_index_map_.emplace(object, oat_index);
1204
1205 ImageInfo& image_info = GetImageInfo(oat_index);
1206
1207 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
1208 // How many bytes the current bin is at (aligned).
1209 size_t current_offset = image_info.GetBinSlotSize(bin);
1210 // Move the current bin size up to accommodate the object we just assigned a bin slot.
1211 image_info.IncrementBinSlotSize(bin, offset_delta);
1212
1213 BinSlot new_bin_slot(bin, current_offset);
1214 SetImageBinSlot(object, new_bin_slot);
1215
1216 image_info.IncrementBinSlotCount(bin, 1u);
1217
1218 // Grow the image closer to the end by the object we just assigned.
1219 image_info.image_end_ += offset_delta;
1220 }
1221
WillMethodBeDirty(ArtMethod * m) const1222 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
1223 if (m->IsNative()) {
1224 return true;
1225 }
1226 ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass();
1227 // Initialized is highly unlikely to dirty since there's no entry points to mutate.
1228 return declaring_class == nullptr || declaring_class->GetStatus() != ClassStatus::kInitialized;
1229 }
1230
IsImageBinSlotAssigned(mirror::Object * object) const1231 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
1232 DCHECK(object != nullptr);
1233
1234 // We always stash the bin slot into a lockword, in the 'forwarding address' state.
1235 // If it's in some other state, then we haven't yet assigned an image bin slot.
1236 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
1237 return false;
1238 } else if (kIsDebugBuild) {
1239 LockWord lock_word = object->GetLockWord(false);
1240 size_t offset = lock_word.ForwardingAddress();
1241 BinSlot bin_slot(offset);
1242 size_t oat_index = GetOatIndex(object);
1243 const ImageInfo& image_info = GetImageInfo(oat_index);
1244 DCHECK_LT(bin_slot.GetIndex(), image_info.GetBinSlotSize(bin_slot.GetBin()))
1245 << "bin slot offset should not exceed the size of that bin";
1246 }
1247 return true;
1248 }
1249
GetImageBinSlot(mirror::Object * object) const1250 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
1251 DCHECK(object != nullptr);
1252 DCHECK(IsImageBinSlotAssigned(object));
1253
1254 LockWord lock_word = object->GetLockWord(false);
1255 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
1256 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
1257
1258 BinSlot bin_slot(static_cast<uint32_t>(offset));
1259 size_t oat_index = GetOatIndex(object);
1260 const ImageInfo& image_info = GetImageInfo(oat_index);
1261 DCHECK_LT(bin_slot.GetIndex(), image_info.GetBinSlotSize(bin_slot.GetBin()));
1262
1263 return bin_slot;
1264 }
1265
AllocMemory()1266 bool ImageWriter::AllocMemory() {
1267 for (ImageInfo& image_info : image_infos_) {
1268 const size_t length = RoundUp(image_info.CreateImageSections().first, kPageSize);
1269
1270 std::string error_msg;
1271 image_info.image_ = MemMap::MapAnonymous("image writer image",
1272 length,
1273 PROT_READ | PROT_WRITE,
1274 /*low_4gb=*/ false,
1275 &error_msg);
1276 if (UNLIKELY(!image_info.image_.IsValid())) {
1277 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
1278 return false;
1279 }
1280
1281 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
1282 CHECK_LE(image_info.image_end_, length);
1283 image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
1284 "image bitmap", image_info.image_.Begin(), RoundUp(image_info.image_end_, kPageSize)));
1285 if (image_info.image_bitmap_.get() == nullptr) {
1286 LOG(ERROR) << "Failed to allocate memory for image bitmap";
1287 return false;
1288 }
1289 }
1290 return true;
1291 }
1292
IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)1293 static bool IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)
1294 REQUIRES_SHARED(Locks::mutator_lock_) {
1295 return klass->GetClassLoader() == nullptr;
1296 }
1297
IsBootClassLoaderNonImageClass(mirror::Class * klass)1298 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
1299 return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
1300 }
1301
1302 // This visitor follows the references of an instance, recursively then prune this class
1303 // if a type of any field is pruned.
1304 class ImageWriter::PruneObjectReferenceVisitor {
1305 public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,std::unordered_set<mirror::Object * > * visited,bool * result)1306 PruneObjectReferenceVisitor(ImageWriter* image_writer,
1307 bool* early_exit,
1308 std::unordered_set<mirror::Object*>* visited,
1309 bool* result)
1310 : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
1311
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1312 ALWAYS_INLINE void VisitRootIfNonNull(
1313 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
1314 REQUIRES_SHARED(Locks::mutator_lock_) { }
1315
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1316 ALWAYS_INLINE void VisitRoot(
1317 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
1318 REQUIRES_SHARED(Locks::mutator_lock_) { }
1319
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1320 ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
1321 MemberOffset offset,
1322 bool is_static ATTRIBUTE_UNUSED) const
1323 REQUIRES_SHARED(Locks::mutator_lock_) {
1324 mirror::Object* ref =
1325 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1326 if (ref == nullptr || visited_->find(ref) != visited_->end()) {
1327 return;
1328 }
1329
1330 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
1331 Runtime::Current()->GetClassLinker()->GetClassRoots();
1332 ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
1333 if (klass == GetClassRoot<mirror::Method>(class_roots) ||
1334 klass == GetClassRoot<mirror::Constructor>(class_roots)) {
1335 // Prune all classes using reflection because the content they held will not be fixup.
1336 *result_ = true;
1337 }
1338
1339 if (ref->IsClass()) {
1340 *result_ = *result_ ||
1341 image_writer_->PruneAppImageClassInternal(ref->AsClass(), early_exit_, visited_);
1342 } else {
1343 // Record the object visited in case of circular reference.
1344 visited_->emplace(ref);
1345 *result_ = *result_ ||
1346 image_writer_->PruneAppImageClassInternal(klass, early_exit_, visited_);
1347 ref->VisitReferences(*this, *this);
1348 // Clean up before exit for next call of this function.
1349 visited_->erase(ref);
1350 }
1351 }
1352
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1353 ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1354 ObjPtr<mirror::Reference> ref) const
1355 REQUIRES_SHARED(Locks::mutator_lock_) {
1356 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1357 }
1358
GetResult() const1359 ALWAYS_INLINE bool GetResult() const {
1360 return result_;
1361 }
1362
1363 private:
1364 ImageWriter* image_writer_;
1365 bool* early_exit_;
1366 std::unordered_set<mirror::Object*>* visited_;
1367 bool* const result_;
1368 };
1369
1370
PruneAppImageClass(ObjPtr<mirror::Class> klass)1371 bool ImageWriter::PruneAppImageClass(ObjPtr<mirror::Class> klass) {
1372 bool early_exit = false;
1373 std::unordered_set<mirror::Object*> visited;
1374 return PruneAppImageClassInternal(klass, &early_exit, &visited);
1375 }
1376
PruneAppImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,std::unordered_set<mirror::Object * > * visited)1377 bool ImageWriter::PruneAppImageClassInternal(
1378 ObjPtr<mirror::Class> klass,
1379 bool* early_exit,
1380 std::unordered_set<mirror::Object*>* visited) {
1381 DCHECK(early_exit != nullptr);
1382 DCHECK(visited != nullptr);
1383 DCHECK(compiler_options_.IsAppImage());
1384 if (klass == nullptr || IsInBootImage(klass.Ptr())) {
1385 return false;
1386 }
1387 auto found = prune_class_memo_.find(klass.Ptr());
1388 if (found != prune_class_memo_.end()) {
1389 // Already computed, return the found value.
1390 return found->second;
1391 }
1392 // Circular dependencies, return false but do not store the result in the memoization table.
1393 if (visited->find(klass.Ptr()) != visited->end()) {
1394 *early_exit = true;
1395 return false;
1396 }
1397 visited->emplace(klass.Ptr());
1398 bool result = IsBootClassLoaderClass(klass);
1399 std::string temp;
1400 // Prune if not an image class, this handles any broken sets of image classes such as having a
1401 // class in the set but not it's superclass.
1402 result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
1403 bool my_early_exit = false; // Only for ourselves, ignore caller.
1404 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
1405 // app image.
1406 if (klass->IsErroneous()) {
1407 result = true;
1408 } else {
1409 ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
1410 CHECK(ext.IsNull() || ext->GetVerifyError() == nullptr) << klass->PrettyClass();
1411 }
1412 if (!result) {
1413 // Check interfaces since these wont be visited through VisitReferences.)
1414 ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
1415 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
1416 result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
1417 &my_early_exit,
1418 visited);
1419 }
1420 }
1421 if (klass->IsObjectArrayClass()) {
1422 result = result || PruneAppImageClassInternal(klass->GetComponentType(),
1423 &my_early_exit,
1424 visited);
1425 }
1426 // Check static fields and their classes.
1427 if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
1428 size_t num_static_fields = klass->NumReferenceStaticFields();
1429 // Presumably GC can happen when we are cross compiling, it should not cause performance
1430 // problems to do pointer size logic.
1431 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
1432 Runtime::Current()->GetClassLinker()->GetImagePointerSize());
1433 for (size_t i = 0u; i < num_static_fields; ++i) {
1434 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
1435 if (ref != nullptr) {
1436 if (ref->IsClass()) {
1437 result = result || PruneAppImageClassInternal(ref->AsClass(),
1438 &my_early_exit,
1439 visited);
1440 } else {
1441 mirror::Class* type = ref->GetClass();
1442 result = result || PruneAppImageClassInternal(type,
1443 &my_early_exit,
1444 visited);
1445 if (!result) {
1446 // For non-class case, also go through all the types mentioned by it's fields'
1447 // references recursively to decide whether to keep this class.
1448 bool tmp = false;
1449 PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
1450 ref->VisitReferences(visitor, visitor);
1451 result = result || tmp;
1452 }
1453 }
1454 }
1455 field_offset = MemberOffset(field_offset.Uint32Value() +
1456 sizeof(mirror::HeapReference<mirror::Object>));
1457 }
1458 }
1459 result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
1460 &my_early_exit,
1461 visited);
1462 // Remove the class if the dex file is not in the set of dex files. This happens for classes that
1463 // are from uses-library if there is no profile. b/30688277
1464 ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
1465 if (dex_cache != nullptr) {
1466 result = result ||
1467 dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
1468 }
1469 // Erase the element we stored earlier since we are exiting the function.
1470 auto it = visited->find(klass.Ptr());
1471 DCHECK(it != visited->end());
1472 visited->erase(it);
1473 // Only store result if it is true or none of the calls early exited due to circular
1474 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
1475 // a child call and we can remember the result.
1476 if (result == true || !my_early_exit || visited->empty()) {
1477 prune_class_memo_[klass.Ptr()] = result;
1478 }
1479 *early_exit |= my_early_exit;
1480 return result;
1481 }
1482
KeepClass(ObjPtr<mirror::Class> klass)1483 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
1484 if (klass == nullptr) {
1485 return false;
1486 }
1487 if (!compiler_options_.IsBootImage() &&
1488 Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
1489 // Already in boot image, return true.
1490 return true;
1491 }
1492 std::string temp;
1493 if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
1494 return false;
1495 }
1496 if (compiler_options_.IsAppImage()) {
1497 // For app images, we need to prune boot loader classes that are not in the boot image since
1498 // these may have already been loaded when the app image is loaded.
1499 // Keep classes in the boot image space since we don't want to re-resolve these.
1500 return !PruneAppImageClass(klass);
1501 }
1502 return true;
1503 }
1504
1505 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
1506 public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)1507 PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
1508 : image_writer_(image_writer),
1509 class_loader_(class_loader),
1510 classes_to_prune_(),
1511 defined_class_count_(0u) { }
1512
operator ()(ObjPtr<mirror::Class> klass)1513 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
1514 if (!image_writer_->KeepClass(klass.Ptr())) {
1515 classes_to_prune_.insert(klass.Ptr());
1516 if (klass->GetClassLoader() == class_loader_) {
1517 ++defined_class_count_;
1518 }
1519 }
1520 return true;
1521 }
1522
Prune()1523 size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
1524 ClassTable* class_table =
1525 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
1526 for (mirror::Class* klass : classes_to_prune_) {
1527 std::string storage;
1528 const char* descriptor = klass->GetDescriptor(&storage);
1529 bool result = class_table->Remove(descriptor);
1530 DCHECK(result);
1531 DCHECK(!class_table->Remove(descriptor)) << descriptor;
1532 }
1533 return defined_class_count_;
1534 }
1535
1536 private:
1537 ImageWriter* const image_writer_;
1538 const ObjPtr<mirror::ClassLoader> class_loader_;
1539 std::unordered_set<mirror::Class*> classes_to_prune_;
1540 size_t defined_class_count_;
1541 };
1542
1543 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
1544 public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)1545 explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
1546 : image_writer_(image_writer), removed_class_count_(0) {}
1547
Visit(ObjPtr<mirror::ClassLoader> class_loader)1548 void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
1549 REQUIRES_SHARED(Locks::mutator_lock_) {
1550 PruneClassesVisitor classes_visitor(image_writer_, class_loader);
1551 ClassTable* class_table =
1552 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
1553 class_table->Visit(classes_visitor);
1554 removed_class_count_ += classes_visitor.Prune();
1555 }
1556
GetRemovedClassCount() const1557 size_t GetRemovedClassCount() const {
1558 return removed_class_count_;
1559 }
1560
1561 private:
1562 ImageWriter* const image_writer_;
1563 size_t removed_class_count_;
1564 };
1565
VisitClassLoaders(ClassLoaderVisitor * visitor)1566 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
1567 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1568 visitor->Visit(nullptr); // Visit boot class loader.
1569 Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
1570 }
1571
PruneDexCache(ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)1572 void ImageWriter::PruneDexCache(ObjPtr<mirror::DexCache> dex_cache,
1573 ObjPtr<mirror::ClassLoader> class_loader) {
1574 Runtime* runtime = Runtime::Current();
1575 ClassLinker* class_linker = runtime->GetClassLinker();
1576 const DexFile& dex_file = *dex_cache->GetDexFile();
1577 // Prune methods.
1578 dex::TypeIndex last_class_idx; // Initialized to invalid index.
1579 ObjPtr<mirror::Class> last_class = nullptr;
1580 mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
1581 for (size_t slot_idx = 0, num = dex_cache->NumResolvedMethods(); slot_idx != num; ++slot_idx) {
1582 auto pair =
1583 mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_);
1584 uint32_t stored_index = pair.index;
1585 ArtMethod* method = pair.object;
1586 if (method == nullptr) {
1587 continue; // Empty entry.
1588 }
1589 // Check if the referenced class is in the image. Note that we want to check the referenced
1590 // class rather than the declaring class to preserve the semantics, i.e. using a MethodId
1591 // results in resolving the referenced class and that can for example throw OOME.
1592 const dex::MethodId& method_id = dex_file.GetMethodId(stored_index);
1593 if (method_id.class_idx_ != last_class_idx) {
1594 last_class_idx = method_id.class_idx_;
1595 last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
1596 if (last_class != nullptr && !KeepClass(last_class)) {
1597 last_class = nullptr;
1598 }
1599 }
1600 if (last_class == nullptr) {
1601 dex_cache->ClearResolvedMethod(stored_index, target_ptr_size_);
1602 }
1603 }
1604 // Prune fields.
1605 mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
1606 last_class_idx = dex::TypeIndex(); // Initialized to invalid index.
1607 last_class = nullptr;
1608 for (size_t slot_idx = 0, num = dex_cache->NumResolvedFields(); slot_idx != num; ++slot_idx) {
1609 auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_);
1610 uint32_t stored_index = pair.index;
1611 ArtField* field = pair.object;
1612 if (field == nullptr) {
1613 continue; // Empty entry.
1614 }
1615 // Check if the referenced class is in the image. Note that we want to check the referenced
1616 // class rather than the declaring class to preserve the semantics, i.e. using a FieldId
1617 // results in resolving the referenced class and that can for example throw OOME.
1618 const dex::FieldId& field_id = dex_file.GetFieldId(stored_index);
1619 if (field_id.class_idx_ != last_class_idx) {
1620 last_class_idx = field_id.class_idx_;
1621 last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
1622 if (last_class != nullptr && !KeepClass(last_class)) {
1623 last_class = nullptr;
1624 }
1625 }
1626 if (last_class == nullptr) {
1627 dex_cache->ClearResolvedField(stored_index, target_ptr_size_);
1628 }
1629 }
1630 // Prune types.
1631 for (size_t slot_idx = 0, num = dex_cache->NumResolvedTypes(); slot_idx != num; ++slot_idx) {
1632 mirror::TypeDexCachePair pair =
1633 dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
1634 uint32_t stored_index = pair.index;
1635 ObjPtr<mirror::Class> klass = pair.object.Read();
1636 if (klass != nullptr && !KeepClass(klass)) {
1637 dex_cache->ClearResolvedType(dex::TypeIndex(stored_index));
1638 }
1639 }
1640 // Strings do not need pruning.
1641 }
1642
PreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)1643 void ImageWriter::PreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,
1644 ObjPtr<mirror::ClassLoader> class_loader) {
1645 // To ensure deterministic contents of the hash-based arrays, each slot shall contain
1646 // the candidate with the lowest index. As we're processing entries in increasing index
1647 // order, this means trying to look up the entry for the current index if the slot is
1648 // empty or if it contains a higher index.
1649
1650 Runtime* runtime = Runtime::Current();
1651 ClassLinker* class_linker = runtime->GetClassLinker();
1652 const DexFile& dex_file = *dex_cache->GetDexFile();
1653 // Preload the methods array and make the contents deterministic.
1654 mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
1655 dex::TypeIndex last_class_idx; // Initialized to invalid index.
1656 ObjPtr<mirror::Class> last_class = nullptr;
1657 for (size_t i = 0, num = dex_cache->GetDexFile()->NumMethodIds(); i != num; ++i) {
1658 uint32_t slot_idx = dex_cache->MethodSlotIndex(i);
1659 auto pair =
1660 mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_);
1661 uint32_t stored_index = pair.index;
1662 ArtMethod* method = pair.object;
1663 if (method != nullptr && i > stored_index) {
1664 continue; // Already checked.
1665 }
1666 // Check if the referenced class is in the image. Note that we want to check the referenced
1667 // class rather than the declaring class to preserve the semantics, i.e. using a MethodId
1668 // results in resolving the referenced class and that can for example throw OOME.
1669 const dex::MethodId& method_id = dex_file.GetMethodId(i);
1670 if (method_id.class_idx_ != last_class_idx) {
1671 last_class_idx = method_id.class_idx_;
1672 last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
1673 }
1674 if (method == nullptr || i < stored_index) {
1675 if (last_class != nullptr) {
1676 // Try to resolve the method with the class linker, which will insert
1677 // it into the dex cache if successful.
1678 method = class_linker->FindResolvedMethod(last_class, dex_cache, class_loader, i);
1679 DCHECK(method == nullptr || dex_cache->GetResolvedMethod(i, target_ptr_size_) == method);
1680 }
1681 } else {
1682 DCHECK_EQ(i, stored_index);
1683 DCHECK(last_class != nullptr);
1684 }
1685 }
1686 // Preload the fields array and make the contents deterministic.
1687 mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
1688 last_class_idx = dex::TypeIndex(); // Initialized to invalid index.
1689 last_class = nullptr;
1690 for (size_t i = 0, end = dex_file.NumFieldIds(); i < end; ++i) {
1691 uint32_t slot_idx = dex_cache->FieldSlotIndex(i);
1692 auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_);
1693 uint32_t stored_index = pair.index;
1694 ArtField* field = pair.object;
1695 if (field != nullptr && i > stored_index) {
1696 continue; // Already checked.
1697 }
1698 // Check if the referenced class is in the image. Note that we want to check the referenced
1699 // class rather than the declaring class to preserve the semantics, i.e. using a FieldId
1700 // results in resolving the referenced class and that can for example throw OOME.
1701 const dex::FieldId& field_id = dex_file.GetFieldId(i);
1702 if (field_id.class_idx_ != last_class_idx) {
1703 last_class_idx = field_id.class_idx_;
1704 last_class = class_linker->LookupResolvedType(last_class_idx, dex_cache, class_loader);
1705 if (last_class != nullptr && !KeepClass(last_class)) {
1706 last_class = nullptr;
1707 }
1708 }
1709 if (field == nullptr || i < stored_index) {
1710 if (last_class != nullptr) {
1711 // Try to resolve the field with the class linker, which will insert
1712 // it into the dex cache if successful.
1713 field = class_linker->FindResolvedFieldJLS(last_class, dex_cache, class_loader, i);
1714 DCHECK(field == nullptr || dex_cache->GetResolvedField(i, target_ptr_size_) == field);
1715 }
1716 } else {
1717 DCHECK_EQ(i, stored_index);
1718 DCHECK(last_class != nullptr);
1719 }
1720 }
1721 // Preload the types array and make the contents deterministic.
1722 // This is done after fields and methods as their lookup can touch the types array.
1723 for (size_t i = 0, end = dex_cache->GetDexFile()->NumTypeIds(); i < end; ++i) {
1724 dex::TypeIndex type_idx(i);
1725 uint32_t slot_idx = dex_cache->TypeSlotIndex(type_idx);
1726 mirror::TypeDexCachePair pair =
1727 dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
1728 uint32_t stored_index = pair.index;
1729 ObjPtr<mirror::Class> klass = pair.object.Read();
1730 if (klass == nullptr || i < stored_index) {
1731 klass = class_linker->LookupResolvedType(type_idx, dex_cache, class_loader);
1732 DCHECK(klass == nullptr || dex_cache->GetResolvedType(type_idx) == klass);
1733 }
1734 }
1735 // Preload the strings array and make the contents deterministic.
1736 for (size_t i = 0, end = dex_cache->GetDexFile()->NumStringIds(); i < end; ++i) {
1737 dex::StringIndex string_idx(i);
1738 uint32_t slot_idx = dex_cache->StringSlotIndex(string_idx);
1739 mirror::StringDexCachePair pair =
1740 dex_cache->GetStrings()[slot_idx].load(std::memory_order_relaxed);
1741 uint32_t stored_index = pair.index;
1742 ObjPtr<mirror::String> string = pair.object.Read();
1743 if (string == nullptr || i < stored_index) {
1744 string = class_linker->LookupString(string_idx, dex_cache);
1745 DCHECK(string == nullptr || dex_cache->GetResolvedString(string_idx) == string);
1746 }
1747 }
1748 }
1749
PruneNonImageClasses()1750 void ImageWriter::PruneNonImageClasses() {
1751 Runtime* runtime = Runtime::Current();
1752 ClassLinker* class_linker = runtime->GetClassLinker();
1753 Thread* self = Thread::Current();
1754 ScopedAssertNoThreadSuspension sa(__FUNCTION__);
1755
1756 // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
1757 // sure the other ones don't get unloaded before the OatWriter runs.
1758 class_linker->VisitClassTables(
1759 [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
1760 table->RemoveStrongRoots(
1761 [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
1762 ObjPtr<mirror::Object> obj = root.Read();
1763 if (obj->IsDexCache()) {
1764 // Return true if the dex file is not one of the ones in the map.
1765 return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
1766 dex_file_oat_index_map_.end();
1767 }
1768 // Return false to avoid removing.
1769 return false;
1770 });
1771 });
1772
1773 // Remove the undesired classes from the class roots.
1774 {
1775 PruneClassLoaderClassesVisitor class_loader_visitor(this);
1776 VisitClassLoaders(&class_loader_visitor);
1777 VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1778 }
1779
1780 // Clear references to removed classes from the DexCaches.
1781 std::vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
1782 for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1783 // Pass the class loader associated with the DexCache. This can either be
1784 // the app's `class_loader` or `nullptr` if boot class loader.
1785 bool is_app_image_dex_cache = compiler_options_.IsAppImage() && IsImageObject(dex_cache);
1786 PruneDexCache(dex_cache, is_app_image_dex_cache ? GetAppClassLoader() : nullptr);
1787 }
1788
1789 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1790 class_linker->DropFindArrayClassCache();
1791
1792 // Clear to save RAM.
1793 prune_class_memo_.clear();
1794 }
1795
FindDexCaches(Thread * self)1796 std::vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
1797 std::vector<ObjPtr<mirror::DexCache>> dex_caches;
1798 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1799 ReaderMutexLock mu2(self, *Locks::dex_lock_);
1800 dex_caches.reserve(class_linker->GetDexCachesData().size());
1801 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1802 if (self->IsJWeakCleared(data.weak_root)) {
1803 continue;
1804 }
1805 dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1806 }
1807 return dex_caches;
1808 }
1809
CheckNonImageClassesRemoved()1810 void ImageWriter::CheckNonImageClassesRemoved() {
1811 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1812 if (obj->IsClass() && !IsInBootImage(obj)) {
1813 ObjPtr<Class> klass = obj->AsClass();
1814 if (!KeepClass(klass)) {
1815 DumpImageClasses();
1816 CHECK(KeepClass(klass))
1817 << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1818 }
1819 }
1820 };
1821 gc::Heap* heap = Runtime::Current()->GetHeap();
1822 heap->VisitObjects(visitor);
1823 }
1824
DumpImageClasses()1825 void ImageWriter::DumpImageClasses() {
1826 for (const std::string& image_class : compiler_options_.GetImageClasses()) {
1827 LOG(INFO) << " " << image_class;
1828 }
1829 }
1830
FindInternedString(mirror::String * string)1831 mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
1832 Thread* const self = Thread::Current();
1833 for (const ImageInfo& image_info : image_infos_) {
1834 const ObjPtr<mirror::String> found = image_info.intern_table_->LookupStrong(self, string);
1835 DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
1836 << string->ToModifiedUtf8();
1837 if (found != nullptr) {
1838 return found.Ptr();
1839 }
1840 }
1841 if (!compiler_options_.IsBootImage()) {
1842 Runtime* const runtime = Runtime::Current();
1843 ObjPtr<mirror::String> found = runtime->GetInternTable()->LookupStrong(self, string);
1844 // If we found it in the runtime intern table it could either be in the boot image or interned
1845 // during app image compilation. If it was in the boot image return that, otherwise return null
1846 // since it belongs to another image space.
1847 if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found.Ptr())) {
1848 return found.Ptr();
1849 }
1850 DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
1851 << string->ToModifiedUtf8();
1852 }
1853 return nullptr;
1854 }
1855
CollectDexCaches(Thread * self,size_t oat_index) const1856 ObjPtr<mirror::ObjectArray<mirror::Object>> ImageWriter::CollectDexCaches(Thread* self,
1857 size_t oat_index) const {
1858 std::unordered_set<const DexFile*> image_dex_files;
1859 for (auto& pair : dex_file_oat_index_map_) {
1860 const DexFile* image_dex_file = pair.first;
1861 size_t image_oat_index = pair.second;
1862 if (oat_index == image_oat_index) {
1863 image_dex_files.insert(image_dex_file);
1864 }
1865 }
1866
1867 // build an Object[] of all the DexCaches used in the source_space_.
1868 // Since we can't hold the dex lock when allocating the dex_caches
1869 // ObjectArray, we lock the dex lock twice, first to get the number
1870 // of dex caches first and then lock it again to copy the dex
1871 // caches. We check that the number of dex caches does not change.
1872 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1873 size_t dex_cache_count = 0;
1874 {
1875 ReaderMutexLock mu(self, *Locks::dex_lock_);
1876 // Count number of dex caches not in the boot image.
1877 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1878 ObjPtr<mirror::DexCache> dex_cache =
1879 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1880 if (dex_cache == nullptr) {
1881 continue;
1882 }
1883 const DexFile* dex_file = dex_cache->GetDexFile();
1884 if (IsImageObject(dex_cache)) {
1885 dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1886 }
1887 }
1888 }
1889 ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
1890 self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_count);
1891 CHECK(dex_caches != nullptr) << "Failed to allocate a dex cache array.";
1892 {
1893 ReaderMutexLock mu(self, *Locks::dex_lock_);
1894 size_t non_image_dex_caches = 0;
1895 // Re-count number of non image dex caches.
1896 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1897 ObjPtr<mirror::DexCache> dex_cache =
1898 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1899 if (dex_cache == nullptr) {
1900 continue;
1901 }
1902 const DexFile* dex_file = dex_cache->GetDexFile();
1903 if (IsImageObject(dex_cache)) {
1904 non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1905 }
1906 }
1907 CHECK_EQ(dex_cache_count, non_image_dex_caches)
1908 << "The number of non-image dex caches changed.";
1909 size_t i = 0;
1910 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1911 ObjPtr<mirror::DexCache> dex_cache =
1912 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1913 if (dex_cache == nullptr) {
1914 continue;
1915 }
1916 const DexFile* dex_file = dex_cache->GetDexFile();
1917 if (IsImageObject(dex_cache) &&
1918 image_dex_files.find(dex_file) != image_dex_files.end()) {
1919 dex_caches->Set<false>(i, dex_cache.Ptr());
1920 ++i;
1921 }
1922 }
1923 }
1924 return dex_caches;
1925 }
1926
CreateImageRoots(size_t oat_index,Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects) const1927 ObjPtr<ObjectArray<Object>> ImageWriter::CreateImageRoots(
1928 size_t oat_index,
1929 Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects) const {
1930 Runtime* runtime = Runtime::Current();
1931 ClassLinker* class_linker = runtime->GetClassLinker();
1932 Thread* self = Thread::Current();
1933 StackHandleScope<2> hs(self);
1934
1935 Handle<ObjectArray<Object>> dex_caches(hs.NewHandle(CollectDexCaches(self, oat_index)));
1936
1937 // build an Object[] of the roots needed to restore the runtime
1938 int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
1939 Handle<ObjectArray<Object>> image_roots(hs.NewHandle(ObjectArray<Object>::Alloc(
1940 self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size)));
1941 image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1942 image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1943 image_roots->Set<false>(ImageHeader::kOomeWhenThrowingException,
1944 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
1945 image_roots->Set<false>(ImageHeader::kOomeWhenThrowingOome,
1946 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
1947 image_roots->Set<false>(ImageHeader::kOomeWhenHandlingStackOverflow,
1948 runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
1949 image_roots->Set<false>(ImageHeader::kNoClassDefFoundError,
1950 runtime->GetPreAllocatedNoClassDefFoundError());
1951 if (!compiler_options_.IsAppImage()) {
1952 DCHECK(boot_image_live_objects != nullptr);
1953 image_roots->Set<false>(ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
1954 } else {
1955 DCHECK(boot_image_live_objects == nullptr);
1956 }
1957 for (int32_t i = 0; i != image_roots_size; ++i) {
1958 if (compiler_options_.IsAppImage() && i == ImageHeader::kAppImageClassLoader) {
1959 // image_roots[ImageHeader::kAppImageClassLoader] will be set later for app image.
1960 continue;
1961 }
1962 CHECK(image_roots->Get(i) != nullptr);
1963 }
1964 return image_roots.Get();
1965 }
1966
TryAssignBinSlot(WorkStack & work_stack,mirror::Object * obj,size_t oat_index)1967 mirror::Object* ImageWriter::TryAssignBinSlot(WorkStack& work_stack,
1968 mirror::Object* obj,
1969 size_t oat_index) {
1970 if (obj == nullptr || !IsImageObject(obj)) {
1971 // Object is null or already in the image, there is no work to do.
1972 return obj;
1973 }
1974 if (!IsImageBinSlotAssigned(obj)) {
1975 // We want to intern all strings but also assign offsets for the source string. Since the
1976 // pruning phase has already happened, if we intern a string to one in the image we still
1977 // end up copying an unreachable string.
1978 if (obj->IsString()) {
1979 // Need to check if the string is already interned in another image info so that we don't have
1980 // the intern tables of two different images contain the same string.
1981 mirror::String* interned = FindInternedString(obj->AsString().Ptr());
1982 if (interned == nullptr) {
1983 // Not in another image space, insert to our table.
1984 interned =
1985 GetImageInfo(oat_index).intern_table_->InternStrongImageString(obj->AsString()).Ptr();
1986 DCHECK_EQ(interned, obj);
1987 }
1988 } else if (obj->IsDexCache()) {
1989 oat_index = GetOatIndexForDexCache(obj->AsDexCache());
1990 } else if (obj->IsClass()) {
1991 // Visit and assign offsets for fields and field arrays.
1992 ObjPtr<mirror::Class> as_klass = obj->AsClass();
1993 ObjPtr<mirror::DexCache> dex_cache = as_klass->GetDexCache();
1994 DCHECK(!as_klass->IsErroneous()) << as_klass->GetStatus();
1995 if (compiler_options_.IsAppImage()) {
1996 // Extra sanity, no boot loader classes should be left!
1997 CHECK(!IsBootClassLoaderClass(as_klass)) << as_klass->PrettyClass();
1998 }
1999 LengthPrefixedArray<ArtField>* fields[] = {
2000 as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
2001 };
2002 // Overwrite the oat index value since the class' dex cache is more accurate of where it
2003 // belongs.
2004 oat_index = GetOatIndexForDexCache(dex_cache);
2005 ImageInfo& image_info = GetImageInfo(oat_index);
2006 if (!compiler_options_.IsAppImage()) {
2007 // Note: Avoid locking to prevent lock order violations from root visiting;
2008 // image_info.class_table_ is only accessed from the image writer.
2009 image_info.class_table_->InsertWithoutLocks(as_klass);
2010 }
2011 for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
2012 // Total array length including header.
2013 if (cur_fields != nullptr) {
2014 const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
2015 // Forward the entire array at once.
2016 auto it = native_object_relocations_.find(cur_fields);
2017 CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
2018 << " already forwarded";
2019 size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
2020 DCHECK(!IsInBootImage(cur_fields));
2021 native_object_relocations_.emplace(
2022 cur_fields,
2023 NativeObjectRelocation {
2024 oat_index, offset, NativeObjectRelocationType::kArtFieldArray
2025 });
2026 offset += header_size;
2027 // Forward individual fields so that we can quickly find where they belong.
2028 for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
2029 // Need to forward arrays separate of fields.
2030 ArtField* field = &cur_fields->At(i);
2031 auto it2 = native_object_relocations_.find(field);
2032 CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
2033 << " already assigned " << field->PrettyField() << " static=" << field->IsStatic();
2034 DCHECK(!IsInBootImage(field));
2035 native_object_relocations_.emplace(
2036 field,
2037 NativeObjectRelocation { oat_index,
2038 offset,
2039 NativeObjectRelocationType::kArtField });
2040 offset += sizeof(ArtField);
2041 }
2042 image_info.IncrementBinSlotSize(
2043 Bin::kArtField, header_size + cur_fields->size() * sizeof(ArtField));
2044 DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
2045 }
2046 }
2047 // Visit and assign offsets for methods.
2048 size_t num_methods = as_klass->NumMethods();
2049 if (num_methods != 0) {
2050 bool any_dirty = false;
2051 for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
2052 if (WillMethodBeDirty(&m)) {
2053 any_dirty = true;
2054 break;
2055 }
2056 }
2057 NativeObjectRelocationType type = any_dirty
2058 ? NativeObjectRelocationType::kArtMethodDirty
2059 : NativeObjectRelocationType::kArtMethodClean;
2060 Bin bin_type = BinTypeForNativeRelocationType(type);
2061 // Forward the entire array at once, but header first.
2062 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
2063 const size_t method_size = ArtMethod::Size(target_ptr_size_);
2064 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
2065 method_size,
2066 method_alignment);
2067 LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
2068 auto it = native_object_relocations_.find(array);
2069 CHECK(it == native_object_relocations_.end())
2070 << "Method array " << array << " already forwarded";
2071 size_t offset = image_info.GetBinSlotSize(bin_type);
2072 DCHECK(!IsInBootImage(array));
2073 native_object_relocations_.emplace(array,
2074 NativeObjectRelocation {
2075 oat_index,
2076 offset,
2077 any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
2078 : NativeObjectRelocationType::kArtMethodArrayClean });
2079 image_info.IncrementBinSlotSize(bin_type, header_size);
2080 for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
2081 AssignMethodOffset(&m, type, oat_index);
2082 }
2083 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
2084 }
2085 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
2086 // live.
2087 if (as_klass->ShouldHaveImt()) {
2088 ImTable* imt = as_klass->GetImt(target_ptr_size_);
2089 if (TryAssignImTableOffset(imt, oat_index)) {
2090 // Since imt's can be shared only do this the first time to not double count imt method
2091 // fixups.
2092 for (size_t i = 0; i < ImTable::kSize; ++i) {
2093 ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
2094 DCHECK(imt_method != nullptr);
2095 if (imt_method->IsRuntimeMethod() &&
2096 !IsInBootImage(imt_method) &&
2097 !NativeRelocationAssigned(imt_method)) {
2098 AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
2099 }
2100 }
2101 }
2102 }
2103 } else if (obj->IsClassLoader()) {
2104 // Register the class loader if it has a class table.
2105 // The fake boot class loader should not get registered.
2106 ObjPtr<mirror::ClassLoader> class_loader = obj->AsClassLoader();
2107 if (class_loader->GetClassTable() != nullptr) {
2108 DCHECK(compiler_options_.IsAppImage());
2109 if (class_loader == GetAppClassLoader()) {
2110 ImageInfo& image_info = GetImageInfo(oat_index);
2111 // Note: Avoid locking to prevent lock order violations from root visiting;
2112 // image_info.class_table_ table is only accessed from the image writer
2113 // and class_loader->GetClassTable() is iterated but not modified.
2114 image_info.class_table_->CopyWithoutLocks(*class_loader->GetClassTable());
2115 }
2116 }
2117 }
2118 AssignImageBinSlot(obj, oat_index);
2119 work_stack.emplace(obj, oat_index);
2120 }
2121 if (obj->IsString()) {
2122 // Always return the interned string if there exists one.
2123 mirror::String* interned = FindInternedString(obj->AsString().Ptr());
2124 if (interned != nullptr) {
2125 return interned;
2126 }
2127 }
2128 return obj;
2129 }
2130
NativeRelocationAssigned(void * ptr) const2131 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
2132 return native_object_relocations_.find(ptr) != native_object_relocations_.end();
2133 }
2134
TryAssignImTableOffset(ImTable * imt,size_t oat_index)2135 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
2136 // No offset, or already assigned.
2137 if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
2138 return false;
2139 }
2140 // If the method is a conflict method we also want to assign the conflict table offset.
2141 ImageInfo& image_info = GetImageInfo(oat_index);
2142 const size_t size = ImTable::SizeInBytes(target_ptr_size_);
2143 native_object_relocations_.emplace(
2144 imt,
2145 NativeObjectRelocation {
2146 oat_index,
2147 image_info.GetBinSlotSize(Bin::kImTable),
2148 NativeObjectRelocationType::kIMTable});
2149 image_info.IncrementBinSlotSize(Bin::kImTable, size);
2150 return true;
2151 }
2152
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)2153 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
2154 // No offset, or already assigned.
2155 if (table == nullptr || NativeRelocationAssigned(table)) {
2156 return;
2157 }
2158 CHECK(!IsInBootImage(table));
2159 // If the method is a conflict method we also want to assign the conflict table offset.
2160 ImageInfo& image_info = GetImageInfo(oat_index);
2161 const size_t size = table->ComputeSize(target_ptr_size_);
2162 native_object_relocations_.emplace(
2163 table,
2164 NativeObjectRelocation {
2165 oat_index,
2166 image_info.GetBinSlotSize(Bin::kIMTConflictTable),
2167 NativeObjectRelocationType::kIMTConflictTable});
2168 image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
2169 }
2170
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)2171 void ImageWriter::AssignMethodOffset(ArtMethod* method,
2172 NativeObjectRelocationType type,
2173 size_t oat_index) {
2174 DCHECK(!IsInBootImage(method));
2175 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
2176 << ArtMethod::PrettyMethod(method);
2177 if (method->IsRuntimeMethod()) {
2178 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
2179 }
2180 ImageInfo& image_info = GetImageInfo(oat_index);
2181 Bin bin_type = BinTypeForNativeRelocationType(type);
2182 size_t offset = image_info.GetBinSlotSize(bin_type);
2183 native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
2184 image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
2185 }
2186
UnbinObjectsIntoOffset(mirror::Object * obj)2187 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
2188 DCHECK(!IsInBootImage(obj));
2189 CHECK(obj != nullptr);
2190
2191 // We know the bin slot, and the total bin sizes for all objects by now,
2192 // so calculate the object's final image offset.
2193
2194 DCHECK(IsImageBinSlotAssigned(obj));
2195 BinSlot bin_slot = GetImageBinSlot(obj);
2196 // Change the lockword from a bin slot into an offset
2197 AssignImageOffset(obj, bin_slot);
2198 }
2199
2200 class ImageWriter::VisitReferencesVisitor {
2201 public:
VisitReferencesVisitor(ImageWriter * image_writer,WorkStack * work_stack,size_t oat_index)2202 VisitReferencesVisitor(ImageWriter* image_writer, WorkStack* work_stack, size_t oat_index)
2203 : image_writer_(image_writer), work_stack_(work_stack), oat_index_(oat_index) {}
2204
2205 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2206 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2207 REQUIRES_SHARED(Locks::mutator_lock_) {
2208 if (!root->IsNull()) {
2209 VisitRoot(root);
2210 }
2211 }
2212
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2213 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2214 REQUIRES_SHARED(Locks::mutator_lock_) {
2215 root->Assign(VisitReference(root->AsMirrorPtr()));
2216 }
2217
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2218 ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
2219 MemberOffset offset,
2220 bool is_static ATTRIBUTE_UNUSED) const
2221 REQUIRES_SHARED(Locks::mutator_lock_) {
2222 mirror::Object* ref =
2223 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
2224 obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref));
2225 }
2226
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2227 ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
2228 ObjPtr<mirror::Reference> ref) const
2229 REQUIRES_SHARED(Locks::mutator_lock_) {
2230 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
2231 }
2232
2233 private:
VisitReference(mirror::Object * ref) const2234 mirror::Object* VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
2235 return image_writer_->TryAssignBinSlot(*work_stack_, ref, oat_index_);
2236 }
2237
2238 ImageWriter* const image_writer_;
2239 WorkStack* const work_stack_;
2240 const size_t oat_index_;
2241 };
2242
2243 class ImageWriter::GetRootsVisitor : public RootVisitor {
2244 public:
GetRootsVisitor(std::vector<mirror::Object * > * roots)2245 explicit GetRootsVisitor(std::vector<mirror::Object*>* roots) : roots_(roots) {}
2246
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2247 void VisitRoots(mirror::Object*** roots,
2248 size_t count,
2249 const RootInfo& info ATTRIBUTE_UNUSED) override
2250 REQUIRES_SHARED(Locks::mutator_lock_) {
2251 for (size_t i = 0; i < count; ++i) {
2252 roots_->push_back(*roots[i]);
2253 }
2254 }
2255
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2256 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2257 size_t count,
2258 const RootInfo& info ATTRIBUTE_UNUSED) override
2259 REQUIRES_SHARED(Locks::mutator_lock_) {
2260 for (size_t i = 0; i < count; ++i) {
2261 roots_->push_back(roots[i]->AsMirrorPtr());
2262 }
2263 }
2264
2265 private:
2266 std::vector<mirror::Object*>* const roots_;
2267 };
2268
ProcessWorkStack(WorkStack * work_stack)2269 void ImageWriter::ProcessWorkStack(WorkStack* work_stack) {
2270 while (!work_stack->empty()) {
2271 std::pair<mirror::Object*, size_t> pair(work_stack->top());
2272 work_stack->pop();
2273 VisitReferencesVisitor visitor(this, work_stack, /*oat_index*/ pair.second);
2274 // Walk references and assign bin slots for them.
2275 pair.first->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
2276 visitor,
2277 visitor);
2278 }
2279 }
2280
CalculateNewObjectOffsets()2281 void ImageWriter::CalculateNewObjectOffsets() {
2282 Thread* const self = Thread::Current();
2283 Runtime* const runtime = Runtime::Current();
2284 VariableSizedHandleScope handles(self);
2285 MutableHandle<ObjectArray<Object>> boot_image_live_objects = handles.NewHandle(
2286 compiler_options_.IsAppImage()
2287 ? nullptr
2288 : IntrinsicObjects::AllocateBootImageLiveObjects(self, runtime->GetClassLinker()));
2289 std::vector<Handle<ObjectArray<Object>>> image_roots;
2290 for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
2291 image_roots.push_back(handles.NewHandle(CreateImageRoots(i, boot_image_live_objects)));
2292 }
2293
2294 gc::Heap* const heap = runtime->GetHeap();
2295
2296 // Leave space for the header, but do not write it yet, we need to
2297 // know where image_roots is going to end up
2298 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
2299
2300 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
2301 // Write the image runtime methods.
2302 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
2303 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
2304 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
2305 image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
2306 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
2307 image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
2308 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
2309 image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
2310 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2311 image_methods_[ImageHeader::kSaveEverythingMethod] =
2312 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
2313 image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
2314 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
2315 image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
2316 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
2317 // Visit image methods first to have the main runtime methods in the first image.
2318 for (auto* m : image_methods_) {
2319 CHECK(m != nullptr);
2320 CHECK(m->IsRuntimeMethod());
2321 DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
2322 << "Trampolines should be in boot image";
2323 if (!IsInBootImage(m)) {
2324 AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
2325 }
2326 }
2327
2328 // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
2329 // this lock while holding other locks may cause lock order violations.
2330 {
2331 auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2332 Monitor::Deflate(Thread::Current(), obj);
2333 };
2334 heap->VisitObjects(deflate_monitor);
2335 }
2336
2337 // From this point on, there shall be no GC anymore and no objects shall be allocated.
2338 // We can now assign a BitSlot to each object and store it in its lockword.
2339
2340 // Work list of <object, oat_index> for objects. Everything on the stack must already be
2341 // assigned a bin slot.
2342 WorkStack work_stack;
2343
2344 // Special case interned strings to put them in the image they are likely to be resolved from.
2345 for (const DexFile* dex_file : compiler_options_.GetDexFilesForOatFile()) {
2346 auto it = dex_file_oat_index_map_.find(dex_file);
2347 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2348 const size_t oat_index = it->second;
2349 InternTable* const intern_table = runtime->GetInternTable();
2350 for (size_t i = 0, count = dex_file->NumStringIds(); i < count; ++i) {
2351 uint32_t utf16_length;
2352 const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i),
2353 &utf16_length);
2354 mirror::String* string = intern_table->LookupStrong(self, utf16_length, utf8_data).Ptr();
2355 TryAssignBinSlot(work_stack, string, oat_index);
2356 }
2357 }
2358
2359 // Get the GC roots and then visit them separately to avoid lock violations since the root visitor
2360 // visits roots while holding various locks.
2361 {
2362 std::vector<mirror::Object*> roots;
2363 GetRootsVisitor root_visitor(&roots);
2364 runtime->VisitRoots(&root_visitor);
2365 for (mirror::Object* obj : roots) {
2366 TryAssignBinSlot(work_stack, obj, GetDefaultOatIndex());
2367 }
2368 }
2369 ProcessWorkStack(&work_stack);
2370
2371 // For app images, there may be objects that are only held live by the boot image. One
2372 // example is finalizer references. Forward these objects so that EnsureBinSlotAssignedCallback
2373 // does not fail any checks.
2374 if (compiler_options_.IsAppImage()) {
2375 for (gc::space::ImageSpace* space : heap->GetBootImageSpaces()) {
2376 DCHECK(space->IsImageSpace());
2377 gc::accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
2378 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
2379 reinterpret_cast<uintptr_t>(space->Limit()),
2380 [this, &work_stack](mirror::Object* obj)
2381 REQUIRES_SHARED(Locks::mutator_lock_) {
2382 VisitReferencesVisitor visitor(this, &work_stack, GetDefaultOatIndex());
2383 // Visit all references and try to assign bin slots for them (calls TryAssignBinSlot).
2384 obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
2385 visitor,
2386 visitor);
2387 });
2388 }
2389 // Process the work stack in case anything was added by TryAssignBinSlot.
2390 ProcessWorkStack(&work_stack);
2391
2392 // Store the class loader in the class roots.
2393 CHECK_EQ(image_roots.size(), 1u);
2394 image_roots[0]->Set<false>(ImageHeader::kAppImageClassLoader, GetAppClassLoader());
2395 }
2396
2397 // Verify that all objects have assigned image bin slots.
2398 {
2399 auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
2400 REQUIRES_SHARED(Locks::mutator_lock_) {
2401 if (IsImageObject(obj)) {
2402 CHECK(IsImageBinSlotAssigned(obj)) << mirror::Object::PrettyTypeOf(obj) << " " << obj;
2403 }
2404 };
2405 heap->VisitObjects(ensure_bin_slots_assigned);
2406 }
2407
2408 // Calculate size of the dex cache arrays slot and prepare offsets.
2409 PrepareDexCacheArraySlots();
2410
2411 // Calculate the sizes of the intern tables, class tables, and fixup tables.
2412 for (ImageInfo& image_info : image_infos_) {
2413 // Calculate how big the intern table will be after being serialized.
2414 InternTable* const intern_table = image_info.intern_table_.get();
2415 CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
2416 if (intern_table->StrongSize() != 0u) {
2417 image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
2418 }
2419
2420 // Calculate the size of the class table.
2421 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2422 DCHECK_EQ(image_info.class_table_->NumReferencedZygoteClasses(), 0u);
2423 if (image_info.class_table_->NumReferencedNonZygoteClasses() != 0u) {
2424 image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
2425 }
2426 }
2427
2428 // Calculate bin slot offsets.
2429 for (size_t oat_index = 0; oat_index < image_infos_.size(); ++oat_index) {
2430 ImageInfo& image_info = image_infos_[oat_index];
2431 size_t bin_offset = image_objects_offset_begin_;
2432 // Need to visit the objects in bin order since alignment requirements might change the
2433 // section sizes.
2434 // Avoid using ObjPtr since VisitObjects invalidates. This is safe since concurrent GC can not
2435 // occur during image writing.
2436 using BinPair = std::pair<BinSlot, mirror::Object*>;
2437 std::vector<BinPair> objects;
2438 heap->VisitObjects([&](mirror::Object* obj)
2439 REQUIRES_SHARED(Locks::mutator_lock_) {
2440 // Only visit the oat index for the current image.
2441 if (IsImageObject(obj) && GetOatIndex(obj) == oat_index) {
2442 objects.emplace_back(GetImageBinSlot(obj), obj);
2443 }
2444 });
2445 std::sort(objects.begin(), objects.end(), [](const BinPair& a, const BinPair& b) -> bool {
2446 if (a.first.GetBin() != b.first.GetBin()) {
2447 return a.first.GetBin() < b.first.GetBin();
2448 }
2449 // Note that the index is really the relative offset in this case.
2450 return a.first.GetIndex() < b.first.GetIndex();
2451 });
2452 auto it = objects.begin();
2453 for (size_t i = 0; i != kNumberOfBins; ++i) {
2454 Bin bin = enum_cast<Bin>(i);
2455 switch (bin) {
2456 case Bin::kArtMethodClean:
2457 case Bin::kArtMethodDirty: {
2458 bin_offset = RoundUp(bin_offset, method_alignment);
2459 break;
2460 }
2461 case Bin::kDexCacheArray:
2462 bin_offset = RoundUp(bin_offset, DexCacheArraysLayout::Alignment(target_ptr_size_));
2463 break;
2464 case Bin::kImTable:
2465 case Bin::kIMTConflictTable: {
2466 bin_offset = RoundUp(bin_offset, static_cast<size_t>(target_ptr_size_));
2467 break;
2468 }
2469 default: {
2470 // Normal alignment.
2471 }
2472 }
2473 image_info.bin_slot_offsets_[i] = bin_offset;
2474
2475 // If the bin is for mirror objects, assign the offsets since we may need to change sizes
2476 // from alignment requirements.
2477 if (i < static_cast<size_t>(Bin::kMirrorCount)) {
2478 const size_t start_offset = bin_offset;
2479 // Visit and assign offsets for all objects of the bin type.
2480 while (it != objects.end() && it->first.GetBin() == bin) {
2481 ObjPtr<mirror::Object> obj(it->second);
2482 const size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
2483 // If the object spans region bondaries, add padding objects between.
2484 // TODO: Instead of adding padding, we should consider reordering the bins to reduce
2485 // wasted space.
2486 if (region_size_ != 0u) {
2487 const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
2488 const size_t next_region = RoundUp(offset_after_header, region_size_);
2489 if (offset_after_header != next_region &&
2490 offset_after_header + object_size > next_region) {
2491 // Add padding objects until aligned.
2492 while (bin_offset - sizeof(ImageHeader) < next_region) {
2493 image_info.padding_object_offsets_.push_back(bin_offset);
2494 bin_offset += kObjectAlignment;
2495 region_alignment_wasted_ += kObjectAlignment;
2496 image_info.image_end_ += kObjectAlignment;
2497 }
2498 CHECK_EQ(bin_offset - sizeof(ImageHeader), next_region);
2499 }
2500 }
2501 SetImageOffset(obj.Ptr(), bin_offset);
2502 bin_offset = bin_offset + object_size;
2503 ++it;
2504 }
2505 image_info.bin_slot_sizes_[i] = bin_offset - start_offset;
2506 } else {
2507 bin_offset += image_info.bin_slot_sizes_[i];
2508 }
2509 }
2510 // NOTE: There may be additional padding between the bin slots and the intern table.
2511 DCHECK_EQ(image_info.image_end_,
2512 image_info.GetBinSizeSum(Bin::kMirrorCount) + image_objects_offset_begin_);
2513 }
2514
2515 VLOG(image) << "Space wasted for region alignment " << region_alignment_wasted_;
2516
2517 // Calculate image offsets.
2518 size_t image_offset = 0;
2519 for (ImageInfo& image_info : image_infos_) {
2520 image_info.image_begin_ = global_image_begin_ + image_offset;
2521 image_info.image_offset_ = image_offset;
2522 image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kPageSize);
2523 // There should be no gaps until the next image.
2524 image_offset += image_info.image_size_;
2525 }
2526
2527 size_t i = 0;
2528 for (ImageInfo& image_info : image_infos_) {
2529 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
2530 i++;
2531 }
2532
2533 // Update the native relocations by adding their bin sums.
2534 for (auto& pair : native_object_relocations_) {
2535 NativeObjectRelocation& relocation = pair.second;
2536 Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
2537 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2538 relocation.offset += image_info.GetBinSlotOffset(bin_type);
2539 }
2540
2541 // Remember the boot image live objects as raw pointer. No GC can happen anymore.
2542 boot_image_live_objects_ = boot_image_live_objects.Get();
2543 }
2544
CreateImageSections() const2545 std::pair<size_t, std::vector<ImageSection>> ImageWriter::ImageInfo::CreateImageSections() const {
2546 std::vector<ImageSection> sections(ImageHeader::kSectionCount);
2547
2548 // Do not round up any sections here that are represented by the bins since it
2549 // will break offsets.
2550
2551 /*
2552 * Objects section
2553 */
2554 sections[ImageHeader::kSectionObjects] =
2555 ImageSection(0u, image_end_);
2556
2557 /*
2558 * Field section
2559 */
2560 sections[ImageHeader::kSectionArtFields] =
2561 ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
2562
2563 /*
2564 * Method section
2565 */
2566 sections[ImageHeader::kSectionArtMethods] =
2567 ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
2568 GetBinSlotSize(Bin::kArtMethodClean) +
2569 GetBinSlotSize(Bin::kArtMethodDirty));
2570
2571 /*
2572 * IMT section
2573 */
2574 sections[ImageHeader::kSectionImTables] =
2575 ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
2576
2577 /*
2578 * Conflict Tables section
2579 */
2580 sections[ImageHeader::kSectionIMTConflictTables] =
2581 ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
2582
2583 /*
2584 * Runtime Methods section
2585 */
2586 sections[ImageHeader::kSectionRuntimeMethods] =
2587 ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
2588
2589 /*
2590 * DexCache Arrays section.
2591 */
2592 const ImageSection& dex_cache_arrays_section =
2593 sections[ImageHeader::kSectionDexCacheArrays] =
2594 ImageSection(GetBinSlotOffset(Bin::kDexCacheArray),
2595 GetBinSlotSize(Bin::kDexCacheArray));
2596
2597 /*
2598 * Interned Strings section
2599 */
2600
2601 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
2602 size_t cur_pos = RoundUp(dex_cache_arrays_section.End(), sizeof(uint64_t));
2603
2604 const ImageSection& interned_strings_section =
2605 sections[ImageHeader::kSectionInternedStrings] =
2606 ImageSection(cur_pos, intern_table_bytes_);
2607
2608 /*
2609 * Class Table section
2610 */
2611
2612 // Obtain the new position and round it up to the appropriate alignment.
2613 cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
2614
2615 const ImageSection& class_table_section =
2616 sections[ImageHeader::kSectionClassTable] =
2617 ImageSection(cur_pos, class_table_bytes_);
2618
2619 /*
2620 * String Field Offsets section
2621 */
2622
2623 // Round up to the alignment of the offsets we are going to store.
2624 cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
2625
2626 // The size of string_reference_offsets_ can't be used here because it hasn't
2627 // been filled with AppImageReferenceOffsetInfo objects yet. The
2628 // num_string_references_ value is calculated separately, before we can
2629 // compute the actual offsets.
2630 const ImageSection& string_reference_offsets =
2631 sections[ImageHeader::kSectionStringReferenceOffsets] =
2632 ImageSection(cur_pos,
2633 sizeof(typename decltype(string_reference_offsets_)::value_type) *
2634 num_string_references_);
2635
2636 /*
2637 * Metadata section.
2638 */
2639
2640 // Round up to the alignment of the offsets we are going to store.
2641 cur_pos = RoundUp(string_reference_offsets.End(),
2642 mirror::DexCache::PreResolvedStringsAlignment());
2643
2644 const ImageSection& metadata_section =
2645 sections[ImageHeader::kSectionMetadata] =
2646 ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
2647
2648 // Return the number of bytes described by these sections, and the sections
2649 // themselves.
2650 return make_pair(metadata_section.End(), std::move(sections));
2651 }
2652
CreateHeader(size_t oat_index)2653 void ImageWriter::CreateHeader(size_t oat_index) {
2654 ImageInfo& image_info = GetImageInfo(oat_index);
2655 const uint8_t* oat_file_begin = image_info.oat_file_begin_;
2656 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
2657 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
2658
2659 uint32_t image_reservation_size = image_info.image_size_;
2660 DCHECK_ALIGNED(image_reservation_size, kPageSize);
2661 uint32_t component_count = 1u;
2662 if (!compiler_options_.IsAppImage()) {
2663 if (oat_index == 0u) {
2664 const ImageInfo& last_info = image_infos_.back();
2665 const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
2666 DCHECK_ALIGNED(image_info.image_begin_, kPageSize);
2667 image_reservation_size =
2668 dchecked_integral_cast<uint32_t>(RoundUp(end - image_info.image_begin_, kPageSize));
2669 component_count = image_infos_.size();
2670 } else {
2671 image_reservation_size = 0u;
2672 component_count = 0u;
2673 }
2674 }
2675
2676 // Create the image sections.
2677 auto section_info_pair = image_info.CreateImageSections();
2678 const size_t image_end = section_info_pair.first;
2679 std::vector<ImageSection>& sections = section_info_pair.second;
2680
2681 // Finally bitmap section.
2682 const size_t bitmap_bytes = image_info.image_bitmap_->Size();
2683 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
2684 *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
2685 if (VLOG_IS_ON(compiler)) {
2686 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
2687 size_t idx = 0;
2688 for (const ImageSection& section : sections) {
2689 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
2690 ++idx;
2691 }
2692 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
2693 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
2694 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
2695 << " Image offset=" << image_info.image_offset_ << std::dec;
2696 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
2697 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
2698 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
2699 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
2700 }
2701 // Store boot image info for app image so that we can relocate.
2702 uint32_t boot_image_begin = 0;
2703 uint32_t boot_image_end = 0;
2704 uint32_t boot_oat_begin = 0;
2705 uint32_t boot_oat_end = 0;
2706 gc::Heap* const heap = Runtime::Current()->GetHeap();
2707 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
2708
2709 // Create the header, leave 0 for data size since we will fill this in as we are writing the
2710 // image.
2711 new (image_info.image_.Begin()) ImageHeader(
2712 image_reservation_size,
2713 component_count,
2714 PointerToLowMemUInt32(image_info.image_begin_),
2715 image_end,
2716 sections.data(),
2717 image_info.image_roots_address_,
2718 image_info.oat_checksum_,
2719 PointerToLowMemUInt32(oat_file_begin),
2720 PointerToLowMemUInt32(image_info.oat_data_begin_),
2721 PointerToLowMemUInt32(oat_data_end),
2722 PointerToLowMemUInt32(oat_file_end),
2723 boot_image_begin,
2724 boot_oat_end - boot_image_begin,
2725 static_cast<uint32_t>(target_ptr_size_));
2726 }
2727
GetImageMethodAddress(ArtMethod * method)2728 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
2729 NativeObjectRelocation relocation = GetNativeRelocation(method);
2730 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2731 CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
2732 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
2733 }
2734
GetIntrinsicReferenceAddress(uint32_t intrinsic_data)2735 const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
2736 DCHECK(compiler_options_.IsBootImage());
2737 switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
2738 case IntrinsicObjects::PatchType::kIntegerValueOfArray: {
2739 const uint8_t* base_address =
2740 reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
2741 MemberOffset data_offset =
2742 IntrinsicObjects::GetIntegerValueOfArrayDataOffset(boot_image_live_objects_);
2743 return base_address + data_offset.Uint32Value();
2744 }
2745 case IntrinsicObjects::PatchType::kIntegerValueOfObject: {
2746 uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2747 ObjPtr<mirror::Object> value =
2748 IntrinsicObjects::GetIntegerValueOfObject(boot_image_live_objects_, index);
2749 return GetImageAddress(value.Ptr());
2750 }
2751 }
2752 LOG(FATAL) << "UNREACHABLE";
2753 UNREACHABLE();
2754 }
2755
2756
2757 class ImageWriter::FixupRootVisitor : public RootVisitor {
2758 public:
FixupRootVisitor(ImageWriter * image_writer)2759 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
2760 }
2761
VisitRoots(mirror::Object *** roots ATTRIBUTE_UNUSED,size_t count ATTRIBUTE_UNUSED,const RootInfo & info ATTRIBUTE_UNUSED)2762 void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED,
2763 size_t count ATTRIBUTE_UNUSED,
2764 const RootInfo& info ATTRIBUTE_UNUSED)
2765 override REQUIRES_SHARED(Locks::mutator_lock_) {
2766 LOG(FATAL) << "Unsupported";
2767 }
2768
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2769 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2770 size_t count,
2771 const RootInfo& info ATTRIBUTE_UNUSED)
2772 override REQUIRES_SHARED(Locks::mutator_lock_) {
2773 for (size_t i = 0; i < count; ++i) {
2774 // Copy the reference. Since we do not have the address for recording the relocation,
2775 // it needs to be recorded explicitly by the user of FixupRootVisitor.
2776 ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
2777 roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
2778 }
2779 }
2780
2781 private:
2782 ImageWriter* const image_writer_;
2783 };
2784
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2785 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2786 for (size_t i = 0; i < ImTable::kSize; ++i) {
2787 ArtMethod* method = orig->Get(i, target_ptr_size_);
2788 void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2789 CopyAndFixupPointer(address, method);
2790 DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2791 }
2792 }
2793
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2794 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2795 const size_t count = orig->NumEntries(target_ptr_size_);
2796 for (size_t i = 0; i < count; ++i) {
2797 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2798 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2799 CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2800 CopyAndFixupPointer(
2801 copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
2802 DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2803 NativeLocationInImage(interface_method));
2804 DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2805 NativeLocationInImage(implementation_method));
2806 }
2807 }
2808
CopyAndFixupNativeData(size_t oat_index)2809 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2810 const ImageInfo& image_info = GetImageInfo(oat_index);
2811 // Copy ArtFields and methods to their locations and update the array for convenience.
2812 for (auto& pair : native_object_relocations_) {
2813 NativeObjectRelocation& relocation = pair.second;
2814 // Only work with fields and methods that are in the current oat file.
2815 if (relocation.oat_index != oat_index) {
2816 continue;
2817 }
2818 auto* dest = image_info.image_.Begin() + relocation.offset;
2819 DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
2820 DCHECK(!IsInBootImage(pair.first));
2821 switch (relocation.type) {
2822 case NativeObjectRelocationType::kArtField: {
2823 memcpy(dest, pair.first, sizeof(ArtField));
2824 CopyAndFixupReference(
2825 reinterpret_cast<ArtField*>(dest)->GetDeclaringClassAddressWithoutBarrier(),
2826 reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass());
2827 break;
2828 }
2829 case NativeObjectRelocationType::kRuntimeMethod:
2830 case NativeObjectRelocationType::kArtMethodClean:
2831 case NativeObjectRelocationType::kArtMethodDirty: {
2832 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2833 reinterpret_cast<ArtMethod*>(dest),
2834 oat_index);
2835 break;
2836 }
2837 // For arrays, copy just the header since the elements will get copied by their corresponding
2838 // relocations.
2839 case NativeObjectRelocationType::kArtFieldArray: {
2840 memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
2841 break;
2842 }
2843 case NativeObjectRelocationType::kArtMethodArrayClean:
2844 case NativeObjectRelocationType::kArtMethodArrayDirty: {
2845 size_t size = ArtMethod::Size(target_ptr_size_);
2846 size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2847 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
2848 // Clear padding to avoid non-deterministic data in the image.
2849 // Historical note: We also did that to placate Valgrind.
2850 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
2851 break;
2852 }
2853 case NativeObjectRelocationType::kDexCacheArray:
2854 // Nothing to copy here, everything is done in FixupDexCache().
2855 break;
2856 case NativeObjectRelocationType::kIMTable: {
2857 ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
2858 ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
2859 CopyAndFixupImTable(orig_imt, dest_imt);
2860 break;
2861 }
2862 case NativeObjectRelocationType::kIMTConflictTable: {
2863 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
2864 CopyAndFixupImtConflictTable(
2865 orig_table,
2866 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
2867 break;
2868 }
2869 case NativeObjectRelocationType::kGcRootPointer: {
2870 auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
2871 auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
2872 CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
2873 break;
2874 }
2875 }
2876 }
2877 // Fixup the image method roots.
2878 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
2879 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
2880 ArtMethod* method = image_methods_[i];
2881 CHECK(method != nullptr);
2882 CopyAndFixupPointer(
2883 reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
2884 }
2885 FixupRootVisitor root_visitor(this);
2886
2887 // Write the intern table into the image.
2888 if (image_info.intern_table_bytes_ > 0) {
2889 const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
2890 InternTable* const intern_table = image_info.intern_table_.get();
2891 uint8_t* const intern_table_memory_ptr =
2892 image_info.image_.Begin() + intern_table_section.Offset();
2893 const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
2894 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
2895 // Fixup the pointers in the newly written intern table to contain image addresses.
2896 InternTable temp_intern_table;
2897 // Note that we require that ReadFromMemory does not make an internal copy of the elements so
2898 // that the VisitRoots() will update the memory directly rather than the copies.
2899 // This also relies on visit roots not doing any verification which could fail after we update
2900 // the roots to be the image addresses.
2901 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
2902 VoidFunctor(),
2903 /*is_boot_image=*/ false);
2904 CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
2905 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
2906 // Record relocations. (The root visitor does not get to see the slot addresses.)
2907 MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
2908 DCHECK(!temp_intern_table.strong_interns_.tables_.empty());
2909 DCHECK(!temp_intern_table.strong_interns_.tables_[0].Empty()); // Inserted at the beginning.
2910 }
2911 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
2912 // class loaders. Writing multiple class tables into the image is currently unsupported.
2913 if (image_info.class_table_bytes_ > 0u) {
2914 const ImageSection& class_table_section = image_header->GetClassTableSection();
2915 uint8_t* const class_table_memory_ptr =
2916 image_info.image_.Begin() + class_table_section.Offset();
2917 Thread* self = Thread::Current();
2918 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
2919
2920 ClassTable* table = image_info.class_table_.get();
2921 CHECK(table != nullptr);
2922 const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
2923 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
2924 // Fixup the pointers in the newly written class table to contain image addresses. See
2925 // above comment for intern tables.
2926 ClassTable temp_class_table;
2927 temp_class_table.ReadFromMemory(class_table_memory_ptr);
2928 CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(),
2929 table->NumReferencedNonZygoteClasses() + table->NumReferencedZygoteClasses());
2930 UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
2931 temp_class_table.VisitRoots(visitor);
2932 // Record relocations. (The root visitor does not get to see the slot addresses.)
2933 // Note that the low bits in the slots contain bits of the descriptors' hash codes
2934 // but the relocation works fine for these "adjusted" references.
2935 ReaderMutexLock lock(self, temp_class_table.lock_);
2936 DCHECK(!temp_class_table.classes_.empty());
2937 DCHECK(!temp_class_table.classes_[0].empty()); // The ClassSet was inserted at the beginning.
2938 }
2939 }
2940
FixupPointerArray(mirror::Object * dst,mirror::PointerArray * arr,Bin array_type)2941 void ImageWriter::FixupPointerArray(mirror::Object* dst,
2942 mirror::PointerArray* arr,
2943 Bin array_type) {
2944 CHECK(arr->IsIntArray() || arr->IsLongArray()) << arr->GetClass()->PrettyClass() << " " << arr;
2945 // Fixup int and long pointers for the ArtMethod or ArtField arrays.
2946 const size_t num_elements = arr->GetLength();
2947 CopyAndFixupReference(
2948 dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()), arr->GetClass());
2949 auto* dest_array = down_cast<mirror::PointerArray*>(dst);
2950 for (size_t i = 0, count = num_elements; i < count; ++i) {
2951 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
2952 if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
2953 auto it = native_object_relocations_.find(elem);
2954 if (UNLIKELY(it == native_object_relocations_.end())) {
2955 if (it->second.IsArtMethodRelocation()) {
2956 auto* method = reinterpret_cast<ArtMethod*>(elem);
2957 LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
2958 << method << " idx=" << i << "/" << num_elements << " with declaring class "
2959 << Class::PrettyClass(method->GetDeclaringClass());
2960 } else {
2961 CHECK_EQ(array_type, Bin::kArtField);
2962 auto* field = reinterpret_cast<ArtField*>(elem);
2963 LOG(FATAL) << "No relocation entry for ArtField " << field->PrettyField() << " @ "
2964 << field << " idx=" << i << "/" << num_elements << " with declaring class "
2965 << Class::PrettyClass(field->GetDeclaringClass());
2966 }
2967 UNREACHABLE();
2968 }
2969 }
2970 CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
2971 }
2972 }
2973
CopyAndFixupObject(Object * obj)2974 void ImageWriter::CopyAndFixupObject(Object* obj) {
2975 if (!IsImageObject(obj)) {
2976 return;
2977 }
2978 size_t offset = GetImageOffset(obj);
2979 size_t oat_index = GetOatIndex(obj);
2980 ImageInfo& image_info = GetImageInfo(oat_index);
2981 auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
2982 DCHECK_LT(offset, image_info.image_end_);
2983 const auto* src = reinterpret_cast<const uint8_t*>(obj);
2984
2985 image_info.image_bitmap_->Set(dst); // Mark the obj as live.
2986
2987 const size_t n = obj->SizeOf();
2988
2989 if (kIsDebugBuild && region_size_ != 0u) {
2990 const size_t offset_after_header = offset - sizeof(ImageHeader);
2991 const size_t next_region = RoundUp(offset_after_header, region_size_);
2992 if (offset_after_header != next_region) {
2993 // If the object is not on a region bondary, it must not be cross region.
2994 CHECK_LT(offset_after_header, next_region)
2995 << "offset_after_header=" << offset_after_header << " size=" << n;
2996 CHECK_LE(offset_after_header + n, next_region)
2997 << "offset_after_header=" << offset_after_header << " size=" << n;
2998 }
2999 }
3000 DCHECK_LE(offset + n, image_info.image_.Size());
3001 memcpy(dst, src, n);
3002
3003 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
3004 // word.
3005 const auto it = saved_hashcode_map_.find(obj);
3006 dst->SetLockWord(it != saved_hashcode_map_.end() ?
3007 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
3008 if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
3009 // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
3010 // safe since we mark all of the objects that may reference non immune objects as gray.
3011 CHECK(dst->AtomicSetMarkBit(0, 1));
3012 }
3013 FixupObject(obj, dst);
3014 }
3015
3016 // Rewrite all the references in the copied object to point to their image address equivalent
3017 class ImageWriter::FixupVisitor {
3018 public:
FixupVisitor(ImageWriter * image_writer,Object * copy)3019 FixupVisitor(ImageWriter* image_writer, Object* copy)
3020 : image_writer_(image_writer), copy_(copy) {
3021 }
3022
3023 // Ignore class roots since we don't have a way to map them to the destination. These are handled
3024 // with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3025 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3026 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3027 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
3028
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3029 void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3030 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3031 ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
3032 // Copy the reference and record the fixup if necessary.
3033 image_writer_->CopyAndFixupReference(
3034 copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
3035 }
3036
3037 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const3038 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3039 ObjPtr<mirror::Reference> ref) const
3040 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3041 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
3042 }
3043
3044 protected:
3045 ImageWriter* const image_writer_;
3046 mirror::Object* const copy_;
3047 };
3048
CopyAndFixupObjects()3049 void ImageWriter::CopyAndFixupObjects() {
3050 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3051 DCHECK(obj != nullptr);
3052 CopyAndFixupObject(obj);
3053 };
3054 Runtime::Current()->GetHeap()->VisitObjects(visitor);
3055 // Copy the padding objects since they are required for in order traversal of the image space.
3056 for (const ImageInfo& image_info : image_infos_) {
3057 for (const size_t offset : image_info.padding_object_offsets_) {
3058 auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
3059 dst->SetClass<kVerifyNone>(GetImageAddress(GetClassRoot<mirror::Object>().Ptr()));
3060 dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
3061 image_info.image_bitmap_->Set(dst); // Mark the obj as live.
3062 }
3063 }
3064 // We no longer need the hashcode map, values have already been copied to target objects.
3065 saved_hashcode_map_.clear();
3066 }
3067
3068 class ImageWriter::FixupClassVisitor final : public FixupVisitor {
3069 public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)3070 FixupClassVisitor(ImageWriter* image_writer, Object* copy)
3071 : FixupVisitor(image_writer, copy) {}
3072
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const3073 void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
3074 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3075 DCHECK(obj->IsClass());
3076 FixupVisitor::operator()(obj, offset, /*is_static*/false);
3077 }
3078
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const3079 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
3080 ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
3081 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3082 LOG(FATAL) << "Reference not expected here.";
3083 }
3084 };
3085
GetNativeRelocation(void * obj)3086 ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) {
3087 DCHECK(obj != nullptr);
3088 DCHECK(!IsInBootImage(obj));
3089 auto it = native_object_relocations_.find(obj);
3090 CHECK(it != native_object_relocations_.end()) << obj << " spaces "
3091 << Runtime::Current()->GetHeap()->DumpSpaces();
3092 return it->second;
3093 }
3094
3095 template <typename T>
PrettyPrint(T * ptr)3096 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
3097 std::ostringstream oss;
3098 oss << ptr;
3099 return oss.str();
3100 }
3101
3102 template <>
PrettyPrint(ArtMethod * method)3103 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
3104 return ArtMethod::PrettyMethod(method);
3105 }
3106
3107 template <typename T>
NativeLocationInImage(T * obj)3108 T* ImageWriter::NativeLocationInImage(T* obj) {
3109 if (obj == nullptr || IsInBootImage(obj)) {
3110 return obj;
3111 } else {
3112 NativeObjectRelocation relocation = GetNativeRelocation(obj);
3113 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3114 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
3115 }
3116 }
3117
3118 template <typename T>
NativeCopyLocation(T * obj)3119 T* ImageWriter::NativeCopyLocation(T* obj) {
3120 const NativeObjectRelocation relocation = GetNativeRelocation(obj);
3121 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3122 return reinterpret_cast<T*>(image_info.image_.Begin() + relocation.offset);
3123 }
3124
3125 class ImageWriter::NativeLocationVisitor {
3126 public:
NativeLocationVisitor(ImageWriter * image_writer)3127 explicit NativeLocationVisitor(ImageWriter* image_writer)
3128 : image_writer_(image_writer) {}
3129
3130 template <typename T>
operator ()(T * ptr,void ** dest_addr) const3131 T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
3132 if (ptr != nullptr) {
3133 image_writer_->CopyAndFixupPointer(dest_addr, ptr);
3134 }
3135 // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
3136 // with the value we return here. We should try to avoid the duplicate work.
3137 return image_writer_->NativeLocationInImage(ptr);
3138 }
3139
3140 private:
3141 ImageWriter* const image_writer_;
3142 };
3143
FixupClass(mirror::Class * orig,mirror::Class * copy)3144 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
3145 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
3146 FixupClassVisitor visitor(this, copy);
3147 ObjPtr<mirror::Object>(orig)->VisitReferences(visitor, visitor);
3148
3149 if (kBitstringSubtypeCheckEnabled && compiler_options_.IsAppImage()) {
3150 // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
3151 // values to the parent of that class.
3152 //
3153 // Every time this happens, the parent class has to mutate to increment
3154 // the "Next" value.
3155 //
3156 // If any of these parents are in the boot image, the changes [in the parents]
3157 // would be lost when the app image is reloaded.
3158 //
3159 // To prevent newly loaded classes (not in the app image) from being reassigned
3160 // the same bitstring value as an existing app image class, uninitialize
3161 // all the classes in the app image.
3162 //
3163 // On startup, the class linker will then re-initialize all the app
3164 // image bitstrings. See also ClassLinker::AddImageSpace.
3165 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
3166 // Lock every time to prevent a dcheck failure when we suspend with the lock held.
3167 SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
3168 }
3169
3170 // Remove the clinitThreadId. This is required for image determinism.
3171 copy->SetClinitThreadId(static_cast<pid_t>(0));
3172 }
3173
FixupObject(Object * orig,Object * copy)3174 void ImageWriter::FixupObject(Object* orig, Object* copy) {
3175 DCHECK(orig != nullptr);
3176 DCHECK(copy != nullptr);
3177 if (kUseBakerReadBarrier) {
3178 orig->AssertReadBarrierState();
3179 }
3180 if (orig->IsIntArray() || orig->IsLongArray()) {
3181 // Is this a native pointer array?
3182 auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
3183 if (it != pointer_arrays_.end()) {
3184 // Should only need to fixup every pointer array exactly once.
3185 FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), it->second);
3186 pointer_arrays_.erase(it);
3187 return;
3188 }
3189 }
3190 if (orig->IsClass()) {
3191 FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
3192 } else {
3193 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
3194 Runtime::Current()->GetClassLinker()->GetClassRoots();
3195 ObjPtr<mirror::Class> klass = orig->GetClass();
3196 if (klass == GetClassRoot<mirror::Method>(class_roots) ||
3197 klass == GetClassRoot<mirror::Constructor>(class_roots)) {
3198 // Need to go update the ArtMethod.
3199 auto* dest = down_cast<mirror::Executable*>(copy);
3200 auto* src = down_cast<mirror::Executable*>(orig);
3201 ArtMethod* src_method = src->GetArtMethod();
3202 CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
3203 } else if (klass == GetClassRoot<mirror::DexCache>(class_roots)) {
3204 FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
3205 } else if (klass->IsClassLoaderClass()) {
3206 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
3207 // If src is a ClassLoader, set the class table to null so that it gets recreated by the
3208 // ClassLoader.
3209 copy_loader->SetClassTable(nullptr);
3210 // Also set allocator to null to be safe. The allocator is created when we create the class
3211 // table. We also never expect to unload things in the image since they are held live as
3212 // roots.
3213 copy_loader->SetAllocator(nullptr);
3214 }
3215 FixupVisitor visitor(this, copy);
3216 orig->VisitReferences(visitor, visitor);
3217 }
3218 }
3219
3220 template <typename T>
FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>> * orig_array,std::atomic<mirror::DexCachePair<T>> * new_array,uint32_t array_index)3221 void ImageWriter::FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* orig_array,
3222 std::atomic<mirror::DexCachePair<T>>* new_array,
3223 uint32_t array_index) {
3224 static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>),
3225 "Size check for removing std::atomic<>.");
3226 mirror::DexCachePair<T>* orig_pair =
3227 reinterpret_cast<mirror::DexCachePair<T>*>(&orig_array[array_index]);
3228 mirror::DexCachePair<T>* new_pair =
3229 reinterpret_cast<mirror::DexCachePair<T>*>(&new_array[array_index]);
3230 CopyAndFixupReference(
3231 new_pair->object.AddressWithoutBarrier(), orig_pair->object.Read());
3232 new_pair->index = orig_pair->index;
3233 }
3234
3235 template <typename T>
FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>> * orig_array,std::atomic<mirror::NativeDexCachePair<T>> * new_array,uint32_t array_index)3236 void ImageWriter::FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* orig_array,
3237 std::atomic<mirror::NativeDexCachePair<T>>* new_array,
3238 uint32_t array_index) {
3239 static_assert(
3240 sizeof(std::atomic<mirror::NativeDexCachePair<T>>) == sizeof(mirror::NativeDexCachePair<T>),
3241 "Size check for removing std::atomic<>.");
3242 if (target_ptr_size_ == PointerSize::k64) {
3243 DexCache::ConversionPair64* orig_pair =
3244 reinterpret_cast<DexCache::ConversionPair64*>(orig_array) + array_index;
3245 DexCache::ConversionPair64* new_pair =
3246 reinterpret_cast<DexCache::ConversionPair64*>(new_array) + array_index;
3247 *new_pair = *orig_pair; // Copy original value and index.
3248 if (orig_pair->first != 0u) {
3249 CopyAndFixupPointer(
3250 reinterpret_cast<void**>(&new_pair->first), reinterpret_cast64<void*>(orig_pair->first));
3251 }
3252 } else {
3253 DexCache::ConversionPair32* orig_pair =
3254 reinterpret_cast<DexCache::ConversionPair32*>(orig_array) + array_index;
3255 DexCache::ConversionPair32* new_pair =
3256 reinterpret_cast<DexCache::ConversionPair32*>(new_array) + array_index;
3257 *new_pair = *orig_pair; // Copy original value and index.
3258 if (orig_pair->first != 0u) {
3259 CopyAndFixupPointer(
3260 reinterpret_cast<void**>(&new_pair->first), reinterpret_cast32<void*>(orig_pair->first));
3261 }
3262 }
3263 }
3264
FixupDexCacheArrayEntry(GcRoot<mirror::CallSite> * orig_array,GcRoot<mirror::CallSite> * new_array,uint32_t array_index)3265 void ImageWriter::FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* orig_array,
3266 GcRoot<mirror::CallSite>* new_array,
3267 uint32_t array_index) {
3268 CopyAndFixupReference(
3269 new_array[array_index].AddressWithoutBarrier(), orig_array[array_index].Read());
3270 }
3271
3272 template <typename EntryType>
FixupDexCacheArray(DexCache * orig_dex_cache,DexCache * copy_dex_cache,MemberOffset array_offset,uint32_t size)3273 void ImageWriter::FixupDexCacheArray(DexCache* orig_dex_cache,
3274 DexCache* copy_dex_cache,
3275 MemberOffset array_offset,
3276 uint32_t size) {
3277 EntryType* orig_array = orig_dex_cache->GetFieldPtr64<EntryType*>(array_offset);
3278 DCHECK_EQ(orig_array != nullptr, size != 0u);
3279 if (orig_array != nullptr) {
3280 // Though the DexCache array fields are usually treated as native pointers, we clear
3281 // the top 32 bits for 32-bit targets.
3282 CopyAndFixupPointer(copy_dex_cache, array_offset, orig_array, PointerSize::k64);
3283 EntryType* new_array = NativeCopyLocation(orig_array);
3284 for (uint32_t i = 0; i != size; ++i) {
3285 FixupDexCacheArrayEntry(orig_array, new_array, i);
3286 }
3287 }
3288 }
3289
FixupDexCache(DexCache * orig_dex_cache,DexCache * copy_dex_cache)3290 void ImageWriter::FixupDexCache(DexCache* orig_dex_cache, DexCache* copy_dex_cache) {
3291 FixupDexCacheArray<mirror::StringDexCacheType>(orig_dex_cache,
3292 copy_dex_cache,
3293 DexCache::StringsOffset(),
3294 orig_dex_cache->NumStrings());
3295 FixupDexCacheArray<mirror::TypeDexCacheType>(orig_dex_cache,
3296 copy_dex_cache,
3297 DexCache::ResolvedTypesOffset(),
3298 orig_dex_cache->NumResolvedTypes());
3299 FixupDexCacheArray<mirror::MethodDexCacheType>(orig_dex_cache,
3300 copy_dex_cache,
3301 DexCache::ResolvedMethodsOffset(),
3302 orig_dex_cache->NumResolvedMethods());
3303 FixupDexCacheArray<mirror::FieldDexCacheType>(orig_dex_cache,
3304 copy_dex_cache,
3305 DexCache::ResolvedFieldsOffset(),
3306 orig_dex_cache->NumResolvedFields());
3307 FixupDexCacheArray<mirror::MethodTypeDexCacheType>(orig_dex_cache,
3308 copy_dex_cache,
3309 DexCache::ResolvedMethodTypesOffset(),
3310 orig_dex_cache->NumResolvedMethodTypes());
3311 FixupDexCacheArray<GcRoot<mirror::CallSite>>(orig_dex_cache,
3312 copy_dex_cache,
3313 DexCache::ResolvedCallSitesOffset(),
3314 orig_dex_cache->NumResolvedCallSites());
3315 if (orig_dex_cache->GetPreResolvedStrings() != nullptr) {
3316 CopyAndFixupPointer(copy_dex_cache,
3317 DexCache::PreResolvedStringsOffset(),
3318 orig_dex_cache->GetPreResolvedStrings(),
3319 PointerSize::k64);
3320 }
3321
3322 // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
3323 // compiler pointers in here will make the output non-deterministic.
3324 copy_dex_cache->SetDexFile(nullptr);
3325 }
3326
GetOatAddress(StubType type) const3327 const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
3328 DCHECK_LE(type, StubType::kLast);
3329 // If we are compiling an app image, we need to use the stubs of the boot image.
3330 if (!compiler_options_.IsBootImage()) {
3331 // Use the current image pointers.
3332 const std::vector<gc::space::ImageSpace*>& image_spaces =
3333 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3334 DCHECK(!image_spaces.empty());
3335 const OatFile* oat_file = image_spaces[0]->GetOatFile();
3336 CHECK(oat_file != nullptr);
3337 const OatHeader& header = oat_file->GetOatHeader();
3338 switch (type) {
3339 // TODO: We could maybe clean this up if we stored them in an array in the oat header.
3340 case StubType::kQuickGenericJNITrampoline:
3341 return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
3342 case StubType::kJNIDlsymLookup:
3343 return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
3344 case StubType::kQuickIMTConflictTrampoline:
3345 return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
3346 case StubType::kQuickResolutionTrampoline:
3347 return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
3348 case StubType::kQuickToInterpreterBridge:
3349 return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
3350 default:
3351 UNREACHABLE();
3352 }
3353 }
3354 const ImageInfo& primary_image_info = GetImageInfo(0);
3355 return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
3356 }
3357
GetQuickCode(ArtMethod * method,const ImageInfo & image_info,bool * quick_is_interpreted)3358 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
3359 const ImageInfo& image_info,
3360 bool* quick_is_interpreted) {
3361 DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
3362 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
3363 DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
3364 DCHECK(method->IsInvokable()) << method->PrettyMethod();
3365 DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
3366
3367 // Use original code if it exists. Otherwise, set the code pointer to the resolution
3368 // trampoline.
3369
3370 // Quick entrypoint:
3371 const void* quick_oat_entry_point =
3372 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
3373 const uint8_t* quick_code;
3374
3375 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass().Ptr()))) {
3376 DCHECK(method->IsCopied());
3377 // If the code is not in the oat file corresponding to this image (e.g. default methods)
3378 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
3379 } else {
3380 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
3381 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
3382 }
3383
3384 *quick_is_interpreted = false;
3385 if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
3386 method->GetDeclaringClass()->IsInitialized())) {
3387 // We have code for a non-static or initialized method, just use the code.
3388 } else if (quick_code == nullptr && method->IsNative() &&
3389 (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
3390 // Non-static or initialized native method missing compiled code, use generic JNI version.
3391 quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline);
3392 } else if (quick_code == nullptr && !method->IsNative()) {
3393 // We don't have code at all for a non-native method, use the interpreter.
3394 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3395 *quick_is_interpreted = true;
3396 } else {
3397 CHECK(!method->GetDeclaringClass()->IsInitialized());
3398 // We have code for a static method, but need to go through the resolution stub for class
3399 // initialization.
3400 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3401 }
3402 if (!IsInBootOatFile(quick_code)) {
3403 // DCHECK_GE(quick_code, oat_data_begin_);
3404 }
3405 return quick_code;
3406 }
3407
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,size_t oat_index)3408 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
3409 ArtMethod* copy,
3410 size_t oat_index) {
3411 if (orig->IsAbstract()) {
3412 // Ignore the single-implementation info for abstract method.
3413 // Do this on orig instead of copy, otherwise there is a crash due to methods
3414 // are copied before classes.
3415 // TODO: handle fixup of single-implementation method for abstract method.
3416 orig->SetHasSingleImplementation(false);
3417 orig->SetSingleImplementation(
3418 nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
3419 }
3420
3421 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
3422
3423 CopyAndFixupReference(
3424 copy->GetDeclaringClassAddressWithoutBarrier(), orig->GetDeclaringClassUnchecked());
3425
3426 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
3427 // oat_begin_
3428
3429 // The resolution method has a special trampoline to call.
3430 Runtime* runtime = Runtime::Current();
3431 const void* quick_code;
3432 if (orig->IsRuntimeMethod()) {
3433 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
3434 if (orig_table != nullptr) {
3435 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
3436 quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
3437 CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
3438 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
3439 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3440 } else {
3441 bool found_one = false;
3442 for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
3443 auto idx = static_cast<CalleeSaveType>(i);
3444 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
3445 found_one = true;
3446 break;
3447 }
3448 }
3449 CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
3450 CHECK(copy->IsRuntimeMethod());
3451 CHECK(copy->GetEntryPointFromQuickCompiledCode() == nullptr);
3452 quick_code = nullptr;
3453 }
3454 } else {
3455 // We assume all methods have code. If they don't currently then we set them to the use the
3456 // resolution trampoline. Abstract methods never have code and so we need to make sure their
3457 // use results in an AbstractMethodError. We use the interpreter to achieve this.
3458 if (UNLIKELY(!orig->IsInvokable())) {
3459 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3460 } else {
3461 bool quick_is_interpreted;
3462 const ImageInfo& image_info = image_infos_[oat_index];
3463 quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
3464
3465 // JNI entrypoint:
3466 if (orig->IsNative()) {
3467 // The native method's pointer is set to a stub to lookup via dlsym.
3468 // Note this is not the code_ pointer, that is handled above.
3469 copy->SetEntryPointFromJniPtrSize(
3470 GetOatAddress(StubType::kJNIDlsymLookup), target_ptr_size_);
3471 } else {
3472 CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
3473 }
3474 }
3475 }
3476 if (quick_code != nullptr) {
3477 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
3478 }
3479 }
3480
GetBinSizeSum(Bin up_to) const3481 size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
3482 DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
3483 return std::accumulate(&bin_slot_sizes_[0],
3484 &bin_slot_sizes_[0] + static_cast<size_t>(up_to),
3485 /*init*/ static_cast<size_t>(0));
3486 }
3487
BinSlot(uint32_t lockword)3488 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
3489 // These values may need to get updated if more bins are added to the enum Bin
3490 static_assert(kBinBits == 3, "wrong number of bin bits");
3491 static_assert(kBinShift == 27, "wrong number of shift");
3492 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
3493
3494 DCHECK_LT(GetBin(), Bin::kMirrorCount);
3495 DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
3496 }
3497
BinSlot(Bin bin,uint32_t index)3498 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
3499 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
3500 DCHECK_EQ(index, GetIndex());
3501 }
3502
GetBin() const3503 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
3504 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
3505 }
3506
GetIndex() const3507 uint32_t ImageWriter::BinSlot::GetIndex() const {
3508 return lockword_ & ~kBinMask;
3509 }
3510
BinTypeForNativeRelocationType(NativeObjectRelocationType type)3511 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
3512 switch (type) {
3513 case NativeObjectRelocationType::kArtField:
3514 case NativeObjectRelocationType::kArtFieldArray:
3515 return Bin::kArtField;
3516 case NativeObjectRelocationType::kArtMethodClean:
3517 case NativeObjectRelocationType::kArtMethodArrayClean:
3518 return Bin::kArtMethodClean;
3519 case NativeObjectRelocationType::kArtMethodDirty:
3520 case NativeObjectRelocationType::kArtMethodArrayDirty:
3521 return Bin::kArtMethodDirty;
3522 case NativeObjectRelocationType::kDexCacheArray:
3523 return Bin::kDexCacheArray;
3524 case NativeObjectRelocationType::kRuntimeMethod:
3525 return Bin::kRuntimeMethod;
3526 case NativeObjectRelocationType::kIMTable:
3527 return Bin::kImTable;
3528 case NativeObjectRelocationType::kIMTConflictTable:
3529 return Bin::kIMTConflictTable;
3530 case NativeObjectRelocationType::kGcRootPointer:
3531 return Bin::kMetadata;
3532 }
3533 UNREACHABLE();
3534 }
3535
GetOatIndex(mirror::Object * obj) const3536 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
3537 if (!IsMultiImage()) {
3538 return GetDefaultOatIndex();
3539 }
3540 auto it = oat_index_map_.find(obj);
3541 DCHECK(it != oat_index_map_.end()) << obj;
3542 return it->second;
3543 }
3544
GetOatIndexForDexFile(const DexFile * dex_file) const3545 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
3546 if (!IsMultiImage()) {
3547 return GetDefaultOatIndex();
3548 }
3549 auto it = dex_file_oat_index_map_.find(dex_file);
3550 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
3551 return it->second;
3552 }
3553
GetOatIndexForDexCache(ObjPtr<mirror::DexCache> dex_cache) const3554 size_t ImageWriter::GetOatIndexForDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
3555 return (dex_cache == nullptr)
3556 ? GetDefaultOatIndex()
3557 : GetOatIndexForDexFile(dex_cache->GetDexFile());
3558 }
3559
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)3560 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
3561 size_t oat_loaded_size,
3562 size_t oat_data_offset,
3563 size_t oat_data_size) {
3564 DCHECK_GE(oat_loaded_size, oat_data_offset);
3565 DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
3566
3567 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
3568 DCHECK(images_end != nullptr); // Image space must be ready.
3569 for (const ImageInfo& info : image_infos_) {
3570 DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
3571 }
3572
3573 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3574 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
3575 cur_image_info.oat_loaded_size_ = oat_loaded_size;
3576 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
3577 cur_image_info.oat_size_ = oat_data_size;
3578
3579 if (compiler_options_.IsAppImage()) {
3580 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
3581 return;
3582 }
3583
3584 // Update the oat_offset of the next image info.
3585 if (oat_index + 1u != oat_filenames_.size()) {
3586 // There is a following one.
3587 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
3588 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
3589 }
3590 }
3591
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)3592 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
3593 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3594 cur_image_info.oat_checksum_ = oat_header.GetChecksum();
3595
3596 if (oat_index == GetDefaultOatIndex()) {
3597 // Primary oat file, read the trampolines.
3598 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookup,
3599 oat_header.GetJniDlsymLookupOffset());
3600 cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
3601 oat_header.GetQuickGenericJniTrampolineOffset());
3602 cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
3603 oat_header.GetQuickImtConflictTrampolineOffset());
3604 cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
3605 oat_header.GetQuickResolutionTrampolineOffset());
3606 cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
3607 oat_header.GetQuickToInterpreterBridgeOffset());
3608 }
3609 }
3610
ImageWriter(const CompilerOptions & compiler_options,uintptr_t image_begin,ImageHeader::StorageMode image_storage_mode,const std::vector<std::string> & oat_filenames,const std::unordered_map<const DexFile *,size_t> & dex_file_oat_index_map,jobject class_loader,const HashSet<std::string> * dirty_image_objects)3611 ImageWriter::ImageWriter(
3612 const CompilerOptions& compiler_options,
3613 uintptr_t image_begin,
3614 ImageHeader::StorageMode image_storage_mode,
3615 const std::vector<std::string>& oat_filenames,
3616 const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map,
3617 jobject class_loader,
3618 const HashSet<std::string>* dirty_image_objects)
3619 : compiler_options_(compiler_options),
3620 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
3621 image_objects_offset_begin_(0),
3622 target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
3623 image_infos_(oat_filenames.size()),
3624 dirty_methods_(0u),
3625 clean_methods_(0u),
3626 app_class_loader_(class_loader),
3627 boot_image_live_objects_(nullptr),
3628 image_storage_mode_(image_storage_mode),
3629 oat_filenames_(oat_filenames),
3630 dex_file_oat_index_map_(dex_file_oat_index_map),
3631 dirty_image_objects_(dirty_image_objects) {
3632 DCHECK(compiler_options.IsBootImage() || compiler_options.IsAppImage());
3633 CHECK_NE(image_begin, 0U);
3634 std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
3635 CHECK_EQ(compiler_options.IsBootImage(),
3636 Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
3637 << "Compiling a boot image should occur iff there are no boot image spaces loaded";
3638 if (compiler_options_.IsAppImage()) {
3639 // Make sure objects are not crossing region boundaries for app images.
3640 region_size_ = gc::space::RegionSpace::kRegionSize;
3641 }
3642 }
3643
ImageInfo()3644 ImageWriter::ImageInfo::ImageInfo()
3645 : intern_table_(new InternTable),
3646 class_table_(new ClassTable) {}
3647
3648 template <typename DestType>
CopyAndFixupReference(DestType * dest,ObjPtr<mirror::Object> src)3649 void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
3650 static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
3651 std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
3652 "DestType must be a Compressed-/HeapReference<Object>.");
3653 dest->Assign(GetImageAddress(src.Ptr()));
3654 }
3655
CopyAndFixupPointer(void ** target,void * value,PointerSize pointer_size)3656 void ImageWriter::CopyAndFixupPointer(void** target, void* value, PointerSize pointer_size) {
3657 void* new_value = NativeLocationInImage(value);
3658 if (pointer_size == PointerSize::k32) {
3659 *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
3660 } else {
3661 *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
3662 }
3663 DCHECK(value != nullptr);
3664 }
3665
CopyAndFixupPointer(void ** target,void * value)3666 void ImageWriter::CopyAndFixupPointer(void** target, void* value)
3667 REQUIRES_SHARED(Locks::mutator_lock_) {
3668 CopyAndFixupPointer(target, value, target_ptr_size_);
3669 }
3670
CopyAndFixupPointer(void * object,MemberOffset offset,void * value,PointerSize pointer_size)3671 void ImageWriter::CopyAndFixupPointer(
3672 void* object, MemberOffset offset, void* value, PointerSize pointer_size) {
3673 void** target =
3674 reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
3675 return CopyAndFixupPointer(target, value, pointer_size);
3676 }
3677
CopyAndFixupPointer(void * object,MemberOffset offset,void * value)3678 void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, void* value) {
3679 return CopyAndFixupPointer(object, offset, value, target_ptr_size_);
3680 }
3681
3682 } // namespace linker
3683 } // namespace art
3684