1 //===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This file exposes an interface to building/using memory SSA to 12 /// walk memory instructions using a use/def graph. 13 /// 14 /// Memory SSA class builds an SSA form that links together memory access 15 /// instructions such as loads, stores, atomics, and calls. Additionally, it 16 /// does a trivial form of "heap versioning" Every time the memory state changes 17 /// in the program, we generate a new heap version. It generates 18 /// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions. 19 /// 20 /// As a trivial example, 21 /// define i32 @main() #0 { 22 /// entry: 23 /// %call = call noalias i8* @_Znwm(i64 4) #2 24 /// %0 = bitcast i8* %call to i32* 25 /// %call1 = call noalias i8* @_Znwm(i64 4) #2 26 /// %1 = bitcast i8* %call1 to i32* 27 /// store i32 5, i32* %0, align 4 28 /// store i32 7, i32* %1, align 4 29 /// %2 = load i32* %0, align 4 30 /// %3 = load i32* %1, align 4 31 /// %add = add nsw i32 %2, %3 32 /// ret i32 %add 33 /// } 34 /// 35 /// Will become 36 /// define i32 @main() #0 { 37 /// entry: 38 /// ; 1 = MemoryDef(0) 39 /// %call = call noalias i8* @_Znwm(i64 4) #3 40 /// %2 = bitcast i8* %call to i32* 41 /// ; 2 = MemoryDef(1) 42 /// %call1 = call noalias i8* @_Znwm(i64 4) #3 43 /// %4 = bitcast i8* %call1 to i32* 44 /// ; 3 = MemoryDef(2) 45 /// store i32 5, i32* %2, align 4 46 /// ; 4 = MemoryDef(3) 47 /// store i32 7, i32* %4, align 4 48 /// ; MemoryUse(3) 49 /// %7 = load i32* %2, align 4 50 /// ; MemoryUse(4) 51 /// %8 = load i32* %4, align 4 52 /// %add = add nsw i32 %7, %8 53 /// ret i32 %add 54 /// } 55 /// 56 /// Given this form, all the stores that could ever effect the load at %8 can be 57 /// gotten by using the MemoryUse associated with it, and walking from use to 58 /// def until you hit the top of the function. 59 /// 60 /// Each def also has a list of users associated with it, so you can walk from 61 /// both def to users, and users to defs. Note that we disambiguate MemoryUses, 62 /// but not the RHS of MemoryDefs. You can see this above at %7, which would 63 /// otherwise be a MemoryUse(4). Being disambiguated means that for a given 64 /// store, all the MemoryUses on its use lists are may-aliases of that store 65 /// (but the MemoryDefs on its use list may not be). 66 /// 67 /// MemoryDefs are not disambiguated because it would require multiple reaching 68 /// definitions, which would require multiple phis, and multiple memoryaccesses 69 /// per instruction. 70 // 71 //===----------------------------------------------------------------------===// 72 73 #ifndef LLVM_ANALYSIS_MEMORYSSA_H 74 #define LLVM_ANALYSIS_MEMORYSSA_H 75 76 #include "llvm/ADT/DenseMap.h" 77 #include "llvm/ADT/GraphTraits.h" 78 #include "llvm/ADT/SmallPtrSet.h" 79 #include "llvm/ADT/SmallVector.h" 80 #include "llvm/ADT/ilist.h" 81 #include "llvm/ADT/ilist_node.h" 82 #include "llvm/ADT/iterator.h" 83 #include "llvm/ADT/iterator_range.h" 84 #include "llvm/ADT/simple_ilist.h" 85 #include "llvm/Analysis/AliasAnalysis.h" 86 #include "llvm/Analysis/MemoryLocation.h" 87 #include "llvm/Analysis/PHITransAddr.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/DerivedUser.h" 90 #include "llvm/IR/Dominators.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/Use.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/IR/ValueHandle.h" 97 #include "llvm/Pass.h" 98 #include "llvm/Support/Casting.h" 99 #include <algorithm> 100 #include <cassert> 101 #include <cstddef> 102 #include <iterator> 103 #include <memory> 104 #include <utility> 105 106 namespace llvm { 107 108 class Function; 109 class Instruction; 110 class MemoryAccess; 111 class MemorySSAWalker; 112 class LLVMContext; 113 class raw_ostream; 114 115 namespace MSSAHelpers { 116 117 struct AllAccessTag {}; 118 struct DefsOnlyTag {}; 119 120 } // end namespace MSSAHelpers 121 122 enum : unsigned { 123 // Used to signify what the default invalid ID is for MemoryAccess's 124 // getID() 125 INVALID_MEMORYACCESS_ID = -1U 126 }; 127 128 template <class T> class memoryaccess_def_iterator_base; 129 using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>; 130 using const_memoryaccess_def_iterator = 131 memoryaccess_def_iterator_base<const MemoryAccess>; 132 133 // The base for all memory accesses. All memory accesses in a block are 134 // linked together using an intrusive list. 135 class MemoryAccess 136 : public DerivedUser, 137 public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>, 138 public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> { 139 public: 140 using AllAccessType = 141 ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>; 142 using DefsOnlyType = 143 ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>; 144 145 MemoryAccess(const MemoryAccess &) = delete; 146 MemoryAccess &operator=(const MemoryAccess &) = delete; 147 148 void *operator new(size_t) = delete; 149 150 // Methods for support type inquiry through isa, cast, and 151 // dyn_cast classof(const Value * V)152 static bool classof(const Value *V) { 153 unsigned ID = V->getValueID(); 154 return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal; 155 } 156 getBlock()157 BasicBlock *getBlock() const { return Block; } 158 159 void print(raw_ostream &OS) const; 160 void dump() const; 161 162 /// The user iterators for a memory access 163 using iterator = user_iterator; 164 using const_iterator = const_user_iterator; 165 166 /// This iterator walks over all of the defs in a given 167 /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For 168 /// MemoryUse/MemoryDef, this walks the defining access. 169 memoryaccess_def_iterator defs_begin(); 170 const_memoryaccess_def_iterator defs_begin() const; 171 memoryaccess_def_iterator defs_end(); 172 const_memoryaccess_def_iterator defs_end() const; 173 174 /// Get the iterators for the all access list and the defs only list 175 /// We default to the all access list. getIterator()176 AllAccessType::self_iterator getIterator() { 177 return this->AllAccessType::getIterator(); 178 } getIterator()179 AllAccessType::const_self_iterator getIterator() const { 180 return this->AllAccessType::getIterator(); 181 } getReverseIterator()182 AllAccessType::reverse_self_iterator getReverseIterator() { 183 return this->AllAccessType::getReverseIterator(); 184 } getReverseIterator()185 AllAccessType::const_reverse_self_iterator getReverseIterator() const { 186 return this->AllAccessType::getReverseIterator(); 187 } getDefsIterator()188 DefsOnlyType::self_iterator getDefsIterator() { 189 return this->DefsOnlyType::getIterator(); 190 } getDefsIterator()191 DefsOnlyType::const_self_iterator getDefsIterator() const { 192 return this->DefsOnlyType::getIterator(); 193 } getReverseDefsIterator()194 DefsOnlyType::reverse_self_iterator getReverseDefsIterator() { 195 return this->DefsOnlyType::getReverseIterator(); 196 } getReverseDefsIterator()197 DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const { 198 return this->DefsOnlyType::getReverseIterator(); 199 } 200 201 protected: 202 friend class MemoryDef; 203 friend class MemoryPhi; 204 friend class MemorySSA; 205 friend class MemoryUse; 206 friend class MemoryUseOrDef; 207 208 /// Used by MemorySSA to change the block of a MemoryAccess when it is 209 /// moved. setBlock(BasicBlock * BB)210 void setBlock(BasicBlock *BB) { Block = BB; } 211 212 /// Used for debugging and tracking things about MemoryAccesses. 213 /// Guaranteed unique among MemoryAccesses, no guarantees otherwise. 214 inline unsigned getID() const; 215 MemoryAccess(LLVMContext & C,unsigned Vty,DeleteValueTy DeleteValue,BasicBlock * BB,unsigned NumOperands)216 MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue, 217 BasicBlock *BB, unsigned NumOperands) 218 : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue), 219 Block(BB) {} 220 221 // Use deleteValue() to delete a generic MemoryAccess. 222 ~MemoryAccess() = default; 223 224 private: 225 BasicBlock *Block; 226 }; 227 228 template <> 229 struct ilist_alloc_traits<MemoryAccess> { 230 static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); } 231 }; 232 233 inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) { 234 MA.print(OS); 235 return OS; 236 } 237 238 /// Class that has the common methods + fields of memory uses/defs. It's 239 /// a little awkward to have, but there are many cases where we want either a 240 /// use or def, and there are many cases where uses are needed (defs aren't 241 /// acceptable), and vice-versa. 242 /// 243 /// This class should never be instantiated directly; make a MemoryUse or 244 /// MemoryDef instead. 245 class MemoryUseOrDef : public MemoryAccess { 246 public: 247 void *operator new(size_t) = delete; 248 249 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); 250 251 /// Get the instruction that this MemoryUse represents. 252 Instruction *getMemoryInst() const { return MemoryInstruction; } 253 254 /// Get the access that produces the memory state used by this Use. 255 MemoryAccess *getDefiningAccess() const { return getOperand(0); } 256 257 static bool classof(const Value *MA) { 258 return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal; 259 } 260 261 // Sadly, these have to be public because they are needed in some of the 262 // iterators. 263 inline bool isOptimized() const; 264 inline MemoryAccess *getOptimized() const; 265 inline void setOptimized(MemoryAccess *); 266 267 // Retrieve AliasResult type of the optimized access. Ideally this would be 268 // returned by the caching walker and may go away in the future. 269 Optional<AliasResult> getOptimizedAccessType() const { 270 return OptimizedAccessAlias; 271 } 272 273 /// Reset the ID of what this MemoryUse was optimized to, causing it to 274 /// be rewalked by the walker if necessary. 275 /// This really should only be called by tests. 276 inline void resetOptimized(); 277 278 protected: 279 friend class MemorySSA; 280 friend class MemorySSAUpdater; 281 282 MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty, 283 DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB) 284 : MemoryAccess(C, Vty, DeleteValue, BB, 1), MemoryInstruction(MI), 285 OptimizedAccessAlias(MayAlias) { 286 setDefiningAccess(DMA); 287 } 288 289 // Use deleteValue() to delete a generic MemoryUseOrDef. 290 ~MemoryUseOrDef() = default; 291 292 void setOptimizedAccessType(Optional<AliasResult> AR) { 293 OptimizedAccessAlias = AR; 294 } 295 296 void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false, 297 Optional<AliasResult> AR = MayAlias) { 298 if (!Optimized) { 299 setOperand(0, DMA); 300 return; 301 } 302 setOptimized(DMA); 303 setOptimizedAccessType(AR); 304 } 305 306 private: 307 Instruction *MemoryInstruction; 308 Optional<AliasResult> OptimizedAccessAlias; 309 }; 310 311 template <> 312 struct OperandTraits<MemoryUseOrDef> 313 : public FixedNumOperandTraits<MemoryUseOrDef, 1> {}; 314 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess) 315 316 /// Represents read-only accesses to memory 317 /// 318 /// In particular, the set of Instructions that will be represented by 319 /// MemoryUse's is exactly the set of Instructions for which 320 /// AliasAnalysis::getModRefInfo returns "Ref". 321 class MemoryUse final : public MemoryUseOrDef { 322 public: 323 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); 324 325 MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB) 326 : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB) {} 327 328 // allocate space for exactly one operand 329 void *operator new(size_t s) { return User::operator new(s, 1); } 330 331 static bool classof(const Value *MA) { 332 return MA->getValueID() == MemoryUseVal; 333 } 334 335 void print(raw_ostream &OS) const; 336 337 void setOptimized(MemoryAccess *DMA) { 338 OptimizedID = DMA->getID(); 339 setOperand(0, DMA); 340 } 341 342 bool isOptimized() const { 343 return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID(); 344 } 345 346 MemoryAccess *getOptimized() const { 347 return getDefiningAccess(); 348 } 349 350 void resetOptimized() { 351 OptimizedID = INVALID_MEMORYACCESS_ID; 352 } 353 354 protected: 355 friend class MemorySSA; 356 357 private: 358 static void deleteMe(DerivedUser *Self); 359 360 unsigned OptimizedID = INVALID_MEMORYACCESS_ID; 361 }; 362 363 template <> 364 struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {}; 365 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess) 366 367 /// Represents a read-write access to memory, whether it is a must-alias, 368 /// or a may-alias. 369 /// 370 /// In particular, the set of Instructions that will be represented by 371 /// MemoryDef's is exactly the set of Instructions for which 372 /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef". 373 /// Note that, in order to provide def-def chains, all defs also have a use 374 /// associated with them. This use points to the nearest reaching 375 /// MemoryDef/MemoryPhi. 376 class MemoryDef final : public MemoryUseOrDef { 377 public: 378 friend class MemorySSA; 379 380 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); 381 382 MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB, 383 unsigned Ver) 384 : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB), ID(Ver) {} 385 386 // allocate space for exactly one operand 387 void *operator new(size_t s) { return User::operator new(s, 1); } 388 389 static bool classof(const Value *MA) { 390 return MA->getValueID() == MemoryDefVal; 391 } 392 393 void setOptimized(MemoryAccess *MA) { 394 Optimized = MA; 395 OptimizedID = getDefiningAccess()->getID(); 396 } 397 398 MemoryAccess *getOptimized() const { 399 return cast_or_null<MemoryAccess>(Optimized); 400 } 401 402 bool isOptimized() const { 403 return getOptimized() && getDefiningAccess() && 404 OptimizedID == getDefiningAccess()->getID(); 405 } 406 407 void resetOptimized() { 408 OptimizedID = INVALID_MEMORYACCESS_ID; 409 } 410 411 void print(raw_ostream &OS) const; 412 413 unsigned getID() const { return ID; } 414 415 private: 416 static void deleteMe(DerivedUser *Self); 417 418 const unsigned ID; 419 unsigned OptimizedID = INVALID_MEMORYACCESS_ID; 420 WeakVH Optimized; 421 }; 422 423 template <> 424 struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {}; 425 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess) 426 427 /// Represents phi nodes for memory accesses. 428 /// 429 /// These have the same semantic as regular phi nodes, with the exception that 430 /// only one phi will ever exist in a given basic block. 431 /// Guaranteeing one phi per block means guaranteeing there is only ever one 432 /// valid reaching MemoryDef/MemoryPHI along each path to the phi node. 433 /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or 434 /// a MemoryPhi's operands. 435 /// That is, given 436 /// if (a) { 437 /// store %a 438 /// store %b 439 /// } 440 /// it *must* be transformed into 441 /// if (a) { 442 /// 1 = MemoryDef(liveOnEntry) 443 /// store %a 444 /// 2 = MemoryDef(1) 445 /// store %b 446 /// } 447 /// and *not* 448 /// if (a) { 449 /// 1 = MemoryDef(liveOnEntry) 450 /// store %a 451 /// 2 = MemoryDef(liveOnEntry) 452 /// store %b 453 /// } 454 /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the 455 /// end of the branch, and if there are not two phi nodes, one will be 456 /// disconnected completely from the SSA graph below that point. 457 /// Because MemoryUse's do not generate new definitions, they do not have this 458 /// issue. 459 class MemoryPhi final : public MemoryAccess { 460 // allocate space for exactly zero operands 461 void *operator new(size_t s) { return User::operator new(s); } 462 463 public: 464 /// Provide fast operand accessors 465 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); 466 467 MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0) 468 : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver), 469 ReservedSpace(NumPreds) { 470 allocHungoffUses(ReservedSpace); 471 } 472 473 // Block iterator interface. This provides access to the list of incoming 474 // basic blocks, which parallels the list of incoming values. 475 using block_iterator = BasicBlock **; 476 using const_block_iterator = BasicBlock *const *; 477 478 block_iterator block_begin() { 479 auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace); 480 return reinterpret_cast<block_iterator>(Ref + 1); 481 } 482 483 const_block_iterator block_begin() const { 484 const auto *Ref = 485 reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace); 486 return reinterpret_cast<const_block_iterator>(Ref + 1); 487 } 488 489 block_iterator block_end() { return block_begin() + getNumOperands(); } 490 491 const_block_iterator block_end() const { 492 return block_begin() + getNumOperands(); 493 } 494 495 iterator_range<block_iterator> blocks() { 496 return make_range(block_begin(), block_end()); 497 } 498 499 iterator_range<const_block_iterator> blocks() const { 500 return make_range(block_begin(), block_end()); 501 } 502 503 op_range incoming_values() { return operands(); } 504 505 const_op_range incoming_values() const { return operands(); } 506 507 /// Return the number of incoming edges 508 unsigned getNumIncomingValues() const { return getNumOperands(); } 509 510 /// Return incoming value number x 511 MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); } 512 void setIncomingValue(unsigned I, MemoryAccess *V) { 513 assert(V && "PHI node got a null value!"); 514 setOperand(I, V); 515 } 516 517 static unsigned getOperandNumForIncomingValue(unsigned I) { return I; } 518 static unsigned getIncomingValueNumForOperand(unsigned I) { return I; } 519 520 /// Return incoming basic block number @p i. 521 BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; } 522 523 /// Return incoming basic block corresponding 524 /// to an operand of the PHI. 525 BasicBlock *getIncomingBlock(const Use &U) const { 526 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); 527 return getIncomingBlock(unsigned(&U - op_begin())); 528 } 529 530 /// Return incoming basic block corresponding 531 /// to value use iterator. 532 BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const { 533 return getIncomingBlock(I.getUse()); 534 } 535 536 void setIncomingBlock(unsigned I, BasicBlock *BB) { 537 assert(BB && "PHI node got a null basic block!"); 538 block_begin()[I] = BB; 539 } 540 541 /// Add an incoming value to the end of the PHI list 542 void addIncoming(MemoryAccess *V, BasicBlock *BB) { 543 if (getNumOperands() == ReservedSpace) 544 growOperands(); // Get more space! 545 // Initialize some new operands. 546 setNumHungOffUseOperands(getNumOperands() + 1); 547 setIncomingValue(getNumOperands() - 1, V); 548 setIncomingBlock(getNumOperands() - 1, BB); 549 } 550 551 /// Return the first index of the specified basic 552 /// block in the value list for this PHI. Returns -1 if no instance. 553 int getBasicBlockIndex(const BasicBlock *BB) const { 554 for (unsigned I = 0, E = getNumOperands(); I != E; ++I) 555 if (block_begin()[I] == BB) 556 return I; 557 return -1; 558 } 559 560 MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const { 561 int Idx = getBasicBlockIndex(BB); 562 assert(Idx >= 0 && "Invalid basic block argument!"); 563 return getIncomingValue(Idx); 564 } 565 566 // After deleting incoming position I, the order of incoming may be changed. 567 void unorderedDeleteIncoming(unsigned I) { 568 unsigned E = getNumOperands(); 569 assert(I < E && "Cannot remove out of bounds Phi entry."); 570 // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi 571 // itself should be deleted. 572 assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with " 573 "at least 2 values."); 574 setIncomingValue(I, getIncomingValue(E - 1)); 575 setIncomingBlock(I, block_begin()[E - 1]); 576 setOperand(E - 1, nullptr); 577 block_begin()[E - 1] = nullptr; 578 setNumHungOffUseOperands(getNumOperands() - 1); 579 } 580 581 // After deleting entries that satisfy Pred, remaining entries may have 582 // changed order. 583 template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) { 584 for (unsigned I = 0, E = getNumOperands(); I != E; ++I) 585 if (Pred(getIncomingValue(I), getIncomingBlock(I))) { 586 unorderedDeleteIncoming(I); 587 E = getNumOperands(); 588 --I; 589 } 590 assert(getNumOperands() >= 1 && 591 "Cannot remove all incoming blocks in a MemoryPhi."); 592 } 593 594 // After deleting incoming block BB, the incoming blocks order may be changed. 595 void unorderedDeleteIncomingBlock(const BasicBlock *BB) { 596 unorderedDeleteIncomingIf( 597 [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; }); 598 } 599 600 // After deleting incoming memory access MA, the incoming accesses order may 601 // be changed. 602 void unorderedDeleteIncomingValue(const MemoryAccess *MA) { 603 unorderedDeleteIncomingIf( 604 [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; }); 605 } 606 607 static bool classof(const Value *V) { 608 return V->getValueID() == MemoryPhiVal; 609 } 610 611 void print(raw_ostream &OS) const; 612 613 unsigned getID() const { return ID; } 614 615 protected: 616 friend class MemorySSA; 617 618 /// this is more complicated than the generic 619 /// User::allocHungoffUses, because we have to allocate Uses for the incoming 620 /// values and pointers to the incoming blocks, all in one allocation. 621 void allocHungoffUses(unsigned N) { 622 User::allocHungoffUses(N, /* IsPhi */ true); 623 } 624 625 private: 626 // For debugging only 627 const unsigned ID; 628 unsigned ReservedSpace; 629 630 /// This grows the operand list in response to a push_back style of 631 /// operation. This grows the number of ops by 1.5 times. 632 void growOperands() { 633 unsigned E = getNumOperands(); 634 // 2 op PHI nodes are VERY common, so reserve at least enough for that. 635 ReservedSpace = std::max(E + E / 2, 2u); 636 growHungoffUses(ReservedSpace, /* IsPhi */ true); 637 } 638 639 static void deleteMe(DerivedUser *Self); 640 }; 641 642 inline unsigned MemoryAccess::getID() const { 643 assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) && 644 "only memory defs and phis have ids"); 645 if (const auto *MD = dyn_cast<MemoryDef>(this)) 646 return MD->getID(); 647 return cast<MemoryPhi>(this)->getID(); 648 } 649 650 inline bool MemoryUseOrDef::isOptimized() const { 651 if (const auto *MD = dyn_cast<MemoryDef>(this)) 652 return MD->isOptimized(); 653 return cast<MemoryUse>(this)->isOptimized(); 654 } 655 656 inline MemoryAccess *MemoryUseOrDef::getOptimized() const { 657 if (const auto *MD = dyn_cast<MemoryDef>(this)) 658 return MD->getOptimized(); 659 return cast<MemoryUse>(this)->getOptimized(); 660 } 661 662 inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) { 663 if (auto *MD = dyn_cast<MemoryDef>(this)) 664 MD->setOptimized(MA); 665 else 666 cast<MemoryUse>(this)->setOptimized(MA); 667 } 668 669 inline void MemoryUseOrDef::resetOptimized() { 670 if (auto *MD = dyn_cast<MemoryDef>(this)) 671 MD->resetOptimized(); 672 else 673 cast<MemoryUse>(this)->resetOptimized(); 674 } 675 676 template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {}; 677 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess) 678 679 /// Encapsulates MemorySSA, including all data associated with memory 680 /// accesses. 681 class MemorySSA { 682 public: 683 MemorySSA(Function &, AliasAnalysis *, DominatorTree *); 684 ~MemorySSA(); 685 686 MemorySSAWalker *getWalker(); 687 688 /// Given a memory Mod/Ref'ing instruction, get the MemorySSA 689 /// access associated with it. If passed a basic block gets the memory phi 690 /// node that exists for that block, if there is one. Otherwise, this will get 691 /// a MemoryUseOrDef. 692 MemoryUseOrDef *getMemoryAccess(const Instruction *) const; 693 MemoryPhi *getMemoryAccess(const BasicBlock *BB) const; 694 695 void dump() const; 696 void print(raw_ostream &) const; 697 698 /// Return true if \p MA represents the live on entry value 699 /// 700 /// Loads and stores from pointer arguments and other global values may be 701 /// defined by memory operations that do not occur in the current function, so 702 /// they may be live on entry to the function. MemorySSA represents such 703 /// memory state by the live on entry definition, which is guaranteed to occur 704 /// before any other memory access in the function. 705 inline bool isLiveOnEntryDef(const MemoryAccess *MA) const { 706 return MA == LiveOnEntryDef.get(); 707 } 708 709 inline MemoryAccess *getLiveOnEntryDef() const { 710 return LiveOnEntryDef.get(); 711 } 712 713 // Sadly, iplists, by default, owns and deletes pointers added to the 714 // list. It's not currently possible to have two iplists for the same type, 715 // where one owns the pointers, and one does not. This is because the traits 716 // are per-type, not per-tag. If this ever changes, we should make the 717 // DefList an iplist. 718 using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>; 719 using DefsList = 720 simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>; 721 722 /// Return the list of MemoryAccess's for a given basic block. 723 /// 724 /// This list is not modifiable by the user. 725 const AccessList *getBlockAccesses(const BasicBlock *BB) const { 726 return getWritableBlockAccesses(BB); 727 } 728 729 /// Return the list of MemoryDef's and MemoryPhi's for a given basic 730 /// block. 731 /// 732 /// This list is not modifiable by the user. 733 const DefsList *getBlockDefs(const BasicBlock *BB) const { 734 return getWritableBlockDefs(BB); 735 } 736 737 /// Given two memory accesses in the same basic block, determine 738 /// whether MemoryAccess \p A dominates MemoryAccess \p B. 739 bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const; 740 741 /// Given two memory accesses in potentially different blocks, 742 /// determine whether MemoryAccess \p A dominates MemoryAccess \p B. 743 bool dominates(const MemoryAccess *A, const MemoryAccess *B) const; 744 745 /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A 746 /// dominates Use \p B. 747 bool dominates(const MemoryAccess *A, const Use &B) const; 748 749 /// Verify that MemorySSA is self consistent (IE definitions dominate 750 /// all uses, uses appear in the right places). This is used by unit tests. 751 void verifyMemorySSA() const; 752 753 /// Used in various insertion functions to specify whether we are talking 754 /// about the beginning or end of a block. 755 enum InsertionPlace { Beginning, End }; 756 757 protected: 758 // Used by Memory SSA annotater, dumpers, and wrapper pass 759 friend class MemorySSAAnnotatedWriter; 760 friend class MemorySSAPrinterLegacyPass; 761 friend class MemorySSAUpdater; 762 763 void verifyDefUses(Function &F) const; 764 void verifyDomination(Function &F) const; 765 void verifyOrdering(Function &F) const; 766 void verifyDominationNumbers(const Function &F) const; 767 768 // This is used by the use optimizer and updater. 769 AccessList *getWritableBlockAccesses(const BasicBlock *BB) const { 770 auto It = PerBlockAccesses.find(BB); 771 return It == PerBlockAccesses.end() ? nullptr : It->second.get(); 772 } 773 774 // This is used by the use optimizer and updater. 775 DefsList *getWritableBlockDefs(const BasicBlock *BB) const { 776 auto It = PerBlockDefs.find(BB); 777 return It == PerBlockDefs.end() ? nullptr : It->second.get(); 778 } 779 780 // These is used by the updater to perform various internal MemorySSA 781 // machinsations. They do not always leave the IR in a correct state, and 782 // relies on the updater to fixup what it breaks, so it is not public. 783 784 void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where); 785 void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point); 786 787 // Rename the dominator tree branch rooted at BB. 788 void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal, 789 SmallPtrSetImpl<BasicBlock *> &Visited) { 790 renamePass(DT->getNode(BB), IncomingVal, Visited, true, true); 791 } 792 793 void removeFromLookups(MemoryAccess *); 794 void removeFromLists(MemoryAccess *, bool ShouldDelete = true); 795 void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *, 796 InsertionPlace); 797 void insertIntoListsBefore(MemoryAccess *, const BasicBlock *, 798 AccessList::iterator); 799 MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *); 800 801 private: 802 class CachingWalker; 803 class OptimizeUses; 804 805 CachingWalker *getWalkerImpl(); 806 void buildMemorySSA(); 807 void optimizeUses(); 808 809 void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const; 810 811 using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>; 812 using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>; 813 814 void 815 determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks); 816 void markUnreachableAsLiveOnEntry(BasicBlock *BB); 817 bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const; 818 MemoryPhi *createMemoryPhi(BasicBlock *BB); 819 MemoryUseOrDef *createNewAccess(Instruction *); 820 MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace); 821 void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &); 822 MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool); 823 void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool); 824 void renamePass(DomTreeNode *, MemoryAccess *IncomingVal, 825 SmallPtrSetImpl<BasicBlock *> &Visited, 826 bool SkipVisited = false, bool RenameAllUses = false); 827 AccessList *getOrCreateAccessList(const BasicBlock *); 828 DefsList *getOrCreateDefsList(const BasicBlock *); 829 void renumberBlock(const BasicBlock *) const; 830 AliasAnalysis *AA; 831 DominatorTree *DT; 832 Function &F; 833 834 // Memory SSA mappings 835 DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess; 836 837 // These two mappings contain the main block to access/def mappings for 838 // MemorySSA. The list contained in PerBlockAccesses really owns all the 839 // MemoryAccesses. 840 // Both maps maintain the invariant that if a block is found in them, the 841 // corresponding list is not empty, and if a block is not found in them, the 842 // corresponding list is empty. 843 AccessMap PerBlockAccesses; 844 DefsMap PerBlockDefs; 845 std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef; 846 847 // Domination mappings 848 // Note that the numbering is local to a block, even though the map is 849 // global. 850 mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid; 851 mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering; 852 853 // Memory SSA building info 854 std::unique_ptr<CachingWalker> Walker; 855 unsigned NextID; 856 }; 857 858 // Internal MemorySSA utils, for use by MemorySSA classes and walkers 859 class MemorySSAUtil { 860 protected: 861 friend class GVNHoist; 862 friend class MemorySSAWalker; 863 864 // This function should not be used by new passes. 865 static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 866 AliasAnalysis &AA); 867 }; 868 869 // This pass does eager building and then printing of MemorySSA. It is used by 870 // the tests to be able to build, dump, and verify Memory SSA. 871 class MemorySSAPrinterLegacyPass : public FunctionPass { 872 public: 873 MemorySSAPrinterLegacyPass(); 874 875 bool runOnFunction(Function &) override; 876 void getAnalysisUsage(AnalysisUsage &AU) const override; 877 878 static char ID; 879 }; 880 881 /// An analysis that produces \c MemorySSA for a function. 882 /// 883 class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> { 884 friend AnalysisInfoMixin<MemorySSAAnalysis>; 885 886 static AnalysisKey Key; 887 888 public: 889 // Wrap MemorySSA result to ensure address stability of internal MemorySSA 890 // pointers after construction. Use a wrapper class instead of plain 891 // unique_ptr<MemorySSA> to avoid build breakage on MSVC. 892 struct Result { 893 Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {} 894 895 MemorySSA &getMSSA() { return *MSSA.get(); } 896 897 std::unique_ptr<MemorySSA> MSSA; 898 }; 899 900 Result run(Function &F, FunctionAnalysisManager &AM); 901 }; 902 903 /// Printer pass for \c MemorySSA. 904 class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> { 905 raw_ostream &OS; 906 907 public: 908 explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {} 909 910 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 911 }; 912 913 /// Verifier pass for \c MemorySSA. 914 struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> { 915 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 916 }; 917 918 /// Legacy analysis pass which computes \c MemorySSA. 919 class MemorySSAWrapperPass : public FunctionPass { 920 public: 921 MemorySSAWrapperPass(); 922 923 static char ID; 924 925 bool runOnFunction(Function &) override; 926 void releaseMemory() override; 927 MemorySSA &getMSSA() { return *MSSA; } 928 const MemorySSA &getMSSA() const { return *MSSA; } 929 930 void getAnalysisUsage(AnalysisUsage &AU) const override; 931 932 void verifyAnalysis() const override; 933 void print(raw_ostream &OS, const Module *M = nullptr) const override; 934 935 private: 936 std::unique_ptr<MemorySSA> MSSA; 937 }; 938 939 /// This is the generic walker interface for walkers of MemorySSA. 940 /// Walkers are used to be able to further disambiguate the def-use chains 941 /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives 942 /// you. 943 /// In particular, while the def-use chains provide basic information, and are 944 /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a 945 /// MemoryUse as AliasAnalysis considers it, a user mant want better or other 946 /// information. In particular, they may want to use SCEV info to further 947 /// disambiguate memory accesses, or they may want the nearest dominating 948 /// may-aliasing MemoryDef for a call or a store. This API enables a 949 /// standardized interface to getting and using that info. 950 class MemorySSAWalker { 951 public: 952 MemorySSAWalker(MemorySSA *); 953 virtual ~MemorySSAWalker() = default; 954 955 using MemoryAccessSet = SmallVector<MemoryAccess *, 8>; 956 957 /// Given a memory Mod/Ref/ModRef'ing instruction, calling this 958 /// will give you the nearest dominating MemoryAccess that Mod's the location 959 /// the instruction accesses (by skipping any def which AA can prove does not 960 /// alias the location(s) accessed by the instruction given). 961 /// 962 /// Note that this will return a single access, and it must dominate the 963 /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction, 964 /// this will return the MemoryPhi, not the operand. This means that 965 /// given: 966 /// if (a) { 967 /// 1 = MemoryDef(liveOnEntry) 968 /// store %a 969 /// } else { 970 /// 2 = MemoryDef(liveOnEntry) 971 /// store %b 972 /// } 973 /// 3 = MemoryPhi(2, 1) 974 /// MemoryUse(3) 975 /// load %a 976 /// 977 /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef 978 /// in the if (a) branch. 979 MemoryAccess *getClobberingMemoryAccess(const Instruction *I) { 980 MemoryAccess *MA = MSSA->getMemoryAccess(I); 981 assert(MA && "Handed an instruction that MemorySSA doesn't recognize?"); 982 return getClobberingMemoryAccess(MA); 983 } 984 985 /// Does the same thing as getClobberingMemoryAccess(const Instruction *I), 986 /// but takes a MemoryAccess instead of an Instruction. 987 virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0; 988 989 /// Given a potentially clobbering memory access and a new location, 990 /// calling this will give you the nearest dominating clobbering MemoryAccess 991 /// (by skipping non-aliasing def links). 992 /// 993 /// This version of the function is mainly used to disambiguate phi translated 994 /// pointers, where the value of a pointer may have changed from the initial 995 /// memory access. Note that this expects to be handed either a MemoryUse, 996 /// or an already potentially clobbering access. Unlike the above API, if 997 /// given a MemoryDef that clobbers the pointer as the starting access, it 998 /// will return that MemoryDef, whereas the above would return the clobber 999 /// starting from the use side of the memory def. 1000 virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 1001 const MemoryLocation &) = 0; 1002 1003 /// Given a memory access, invalidate anything this walker knows about 1004 /// that access. 1005 /// This API is used by walkers that store information to perform basic cache 1006 /// invalidation. This will be called by MemorySSA at appropriate times for 1007 /// the walker it uses or returns. 1008 virtual void invalidateInfo(MemoryAccess *) {} 1009 1010 virtual void verify(const MemorySSA *MSSA) { assert(MSSA == this->MSSA); } 1011 1012 protected: 1013 friend class MemorySSA; // For updating MSSA pointer in MemorySSA move 1014 // constructor. 1015 MemorySSA *MSSA; 1016 }; 1017 1018 /// A MemorySSAWalker that does no alias queries, or anything else. It 1019 /// simply returns the links as they were constructed by the builder. 1020 class DoNothingMemorySSAWalker final : public MemorySSAWalker { 1021 public: 1022 // Keep the overrides below from hiding the Instruction overload of 1023 // getClobberingMemoryAccess. 1024 using MemorySSAWalker::getClobberingMemoryAccess; 1025 1026 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; 1027 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, 1028 const MemoryLocation &) override; 1029 }; 1030 1031 using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>; 1032 using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>; 1033 1034 /// Iterator base class used to implement const and non-const iterators 1035 /// over the defining accesses of a MemoryAccess. 1036 template <class T> 1037 class memoryaccess_def_iterator_base 1038 : public iterator_facade_base<memoryaccess_def_iterator_base<T>, 1039 std::forward_iterator_tag, T, ptrdiff_t, T *, 1040 T *> { 1041 using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base; 1042 1043 public: 1044 memoryaccess_def_iterator_base(T *Start) : Access(Start) {} 1045 memoryaccess_def_iterator_base() = default; 1046 1047 bool operator==(const memoryaccess_def_iterator_base &Other) const { 1048 return Access == Other.Access && (!Access || ArgNo == Other.ArgNo); 1049 } 1050 1051 // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the 1052 // block from the operand in constant time (In a PHINode, the uselist has 1053 // both, so it's just subtraction). We provide it as part of the 1054 // iterator to avoid callers having to linear walk to get the block. 1055 // If the operation becomes constant time on MemoryPHI's, this bit of 1056 // abstraction breaking should be removed. 1057 BasicBlock *getPhiArgBlock() const { 1058 MemoryPhi *MP = dyn_cast<MemoryPhi>(Access); 1059 assert(MP && "Tried to get phi arg block when not iterating over a PHI"); 1060 return MP->getIncomingBlock(ArgNo); 1061 } 1062 1063 typename BaseT::iterator::pointer operator*() const { 1064 assert(Access && "Tried to access past the end of our iterator"); 1065 // Go to the first argument for phis, and the defining access for everything 1066 // else. 1067 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) 1068 return MP->getIncomingValue(ArgNo); 1069 return cast<MemoryUseOrDef>(Access)->getDefiningAccess(); 1070 } 1071 1072 using BaseT::operator++; 1073 memoryaccess_def_iterator &operator++() { 1074 assert(Access && "Hit end of iterator"); 1075 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) { 1076 if (++ArgNo >= MP->getNumIncomingValues()) { 1077 ArgNo = 0; 1078 Access = nullptr; 1079 } 1080 } else { 1081 Access = nullptr; 1082 } 1083 return *this; 1084 } 1085 1086 private: 1087 T *Access = nullptr; 1088 unsigned ArgNo = 0; 1089 }; 1090 1091 inline memoryaccess_def_iterator MemoryAccess::defs_begin() { 1092 return memoryaccess_def_iterator(this); 1093 } 1094 1095 inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const { 1096 return const_memoryaccess_def_iterator(this); 1097 } 1098 1099 inline memoryaccess_def_iterator MemoryAccess::defs_end() { 1100 return memoryaccess_def_iterator(); 1101 } 1102 1103 inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const { 1104 return const_memoryaccess_def_iterator(); 1105 } 1106 1107 /// GraphTraits for a MemoryAccess, which walks defs in the normal case, 1108 /// and uses in the inverse case. 1109 template <> struct GraphTraits<MemoryAccess *> { 1110 using NodeRef = MemoryAccess *; 1111 using ChildIteratorType = memoryaccess_def_iterator; 1112 1113 static NodeRef getEntryNode(NodeRef N) { return N; } 1114 static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); } 1115 static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); } 1116 }; 1117 1118 template <> struct GraphTraits<Inverse<MemoryAccess *>> { 1119 using NodeRef = MemoryAccess *; 1120 using ChildIteratorType = MemoryAccess::iterator; 1121 1122 static NodeRef getEntryNode(NodeRef N) { return N; } 1123 static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); } 1124 static ChildIteratorType child_end(NodeRef N) { return N->user_end(); } 1125 }; 1126 1127 /// Provide an iterator that walks defs, giving both the memory access, 1128 /// and the current pointer location, updating the pointer location as it 1129 /// changes due to phi node translation. 1130 /// 1131 /// This iterator, while somewhat specialized, is what most clients actually 1132 /// want when walking upwards through MemorySSA def chains. It takes a pair of 1133 /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the 1134 /// memory location through phi nodes for the user. 1135 class upward_defs_iterator 1136 : public iterator_facade_base<upward_defs_iterator, 1137 std::forward_iterator_tag, 1138 const MemoryAccessPair> { 1139 using BaseT = upward_defs_iterator::iterator_facade_base; 1140 1141 public: 1142 upward_defs_iterator(const MemoryAccessPair &Info) 1143 : DefIterator(Info.first), Location(Info.second), 1144 OriginalAccess(Info.first) { 1145 CurrentPair.first = nullptr; 1146 1147 WalkingPhi = Info.first && isa<MemoryPhi>(Info.first); 1148 fillInCurrentPair(); 1149 } 1150 1151 upward_defs_iterator() { CurrentPair.first = nullptr; } 1152 1153 bool operator==(const upward_defs_iterator &Other) const { 1154 return DefIterator == Other.DefIterator; 1155 } 1156 1157 BaseT::iterator::reference operator*() const { 1158 assert(DefIterator != OriginalAccess->defs_end() && 1159 "Tried to access past the end of our iterator"); 1160 return CurrentPair; 1161 } 1162 1163 using BaseT::operator++; 1164 upward_defs_iterator &operator++() { 1165 assert(DefIterator != OriginalAccess->defs_end() && 1166 "Tried to access past the end of the iterator"); 1167 ++DefIterator; 1168 if (DefIterator != OriginalAccess->defs_end()) 1169 fillInCurrentPair(); 1170 return *this; 1171 } 1172 1173 BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); } 1174 1175 private: 1176 void fillInCurrentPair() { 1177 CurrentPair.first = *DefIterator; 1178 if (WalkingPhi && Location.Ptr) { 1179 PHITransAddr Translator( 1180 const_cast<Value *>(Location.Ptr), 1181 OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr); 1182 if (!Translator.PHITranslateValue(OriginalAccess->getBlock(), 1183 DefIterator.getPhiArgBlock(), nullptr, 1184 false)) 1185 if (Translator.getAddr() != Location.Ptr) { 1186 CurrentPair.second = Location.getWithNewPtr(Translator.getAddr()); 1187 return; 1188 } 1189 } 1190 CurrentPair.second = Location; 1191 } 1192 1193 MemoryAccessPair CurrentPair; 1194 memoryaccess_def_iterator DefIterator; 1195 MemoryLocation Location; 1196 MemoryAccess *OriginalAccess = nullptr; 1197 bool WalkingPhi = false; 1198 }; 1199 1200 inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) { 1201 return upward_defs_iterator(Pair); 1202 } 1203 1204 inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); } 1205 1206 inline iterator_range<upward_defs_iterator> 1207 upward_defs(const MemoryAccessPair &Pair) { 1208 return make_range(upward_defs_begin(Pair), upward_defs_end()); 1209 } 1210 1211 /// Walks the defining accesses of MemoryDefs. Stops after we hit something that 1212 /// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when 1213 /// comparing against a null def_chain_iterator, this will compare equal only 1214 /// after walking said Phi/liveOnEntry. 1215 /// 1216 /// The UseOptimizedChain flag specifies whether to walk the clobbering 1217 /// access chain, or all the accesses. 1218 /// 1219 /// Normally, MemoryDef are all just def/use linked together, so a def_chain on 1220 /// a MemoryDef will walk all MemoryDefs above it in the program until it hits 1221 /// a phi node. The optimized chain walks the clobbering access of a store. 1222 /// So if you are just trying to find, given a store, what the next 1223 /// thing that would clobber the same memory is, you want the optimized chain. 1224 template <class T, bool UseOptimizedChain = false> 1225 struct def_chain_iterator 1226 : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>, 1227 std::forward_iterator_tag, MemoryAccess *> { 1228 def_chain_iterator() : MA(nullptr) {} 1229 def_chain_iterator(T MA) : MA(MA) {} 1230 1231 T operator*() const { return MA; } 1232 1233 def_chain_iterator &operator++() { 1234 // N.B. liveOnEntry has a null defining access. 1235 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) { 1236 if (UseOptimizedChain && MUD->isOptimized()) 1237 MA = MUD->getOptimized(); 1238 else 1239 MA = MUD->getDefiningAccess(); 1240 } else { 1241 MA = nullptr; 1242 } 1243 1244 return *this; 1245 } 1246 1247 bool operator==(const def_chain_iterator &O) const { return MA == O.MA; } 1248 1249 private: 1250 T MA; 1251 }; 1252 1253 template <class T> 1254 inline iterator_range<def_chain_iterator<T>> 1255 def_chain(T MA, MemoryAccess *UpTo = nullptr) { 1256 #ifdef EXPENSIVE_CHECKS 1257 assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) && 1258 "UpTo isn't in the def chain!"); 1259 #endif 1260 return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo)); 1261 } 1262 1263 template <class T> 1264 inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) { 1265 return make_range(def_chain_iterator<T, true>(MA), 1266 def_chain_iterator<T, true>(nullptr)); 1267 } 1268 1269 } // end namespace llvm 1270 1271 #endif // LLVM_ANALYSIS_MEMORYSSA_H 1272