• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===-- llvm/Support/TargetOpcodes.def - Target Indep Opcodes ---*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target independent instruction opcodes.
11//
12//===----------------------------------------------------------------------===//
13
14// NOTE: NO INCLUDE GUARD DESIRED!
15
16/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
17///
18#ifndef HANDLE_TARGET_OPCODE
19#define HANDLE_TARGET_OPCODE(OPC, NUM)
20#endif
21
22/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
23///
24#ifndef HANDLE_TARGET_OPCODE_MARKER
25#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
26#endif
27
28/// Every instruction defined here must also appear in Target.td.
29///
30HANDLE_TARGET_OPCODE(PHI)
31HANDLE_TARGET_OPCODE(INLINEASM)
32HANDLE_TARGET_OPCODE(CFI_INSTRUCTION)
33HANDLE_TARGET_OPCODE(EH_LABEL)
34HANDLE_TARGET_OPCODE(GC_LABEL)
35HANDLE_TARGET_OPCODE(ANNOTATION_LABEL)
36
37/// KILL - This instruction is a noop that is used only to adjust the
38/// liveness of registers. This can be useful when dealing with
39/// sub-registers.
40HANDLE_TARGET_OPCODE(KILL)
41
42/// EXTRACT_SUBREG - This instruction takes two operands: a register
43/// that has subregisters, and a subregister index. It returns the
44/// extracted subregister value. This is commonly used to implement
45/// truncation operations on target architectures which support it.
46HANDLE_TARGET_OPCODE(EXTRACT_SUBREG)
47
48/// INSERT_SUBREG - This instruction takes three operands: a register that
49/// has subregisters, a register providing an insert value, and a
50/// subregister index. It returns the value of the first register with the
51/// value of the second register inserted. The first register is often
52/// defined by an IMPLICIT_DEF, because it is commonly used to implement
53/// anyext operations on target architectures which support it.
54HANDLE_TARGET_OPCODE(INSERT_SUBREG)
55
56/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
57HANDLE_TARGET_OPCODE(IMPLICIT_DEF)
58
59/// SUBREG_TO_REG - Assert the value of bits in a super register.
60/// The result of this instruction is the value of the second operand inserted
61/// into the subregister specified by the third operand. All other bits are
62/// assumed to be equal to the bits in the immediate integer constant in the
63/// first operand. This instruction just communicates information; No code
64/// should be generated.
65/// This is typically used after an instruction where the write to a subregister
66/// implicitly cleared the bits in the super registers.
67HANDLE_TARGET_OPCODE(SUBREG_TO_REG)
68
69/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
70/// register-to-register copy into a specific register class. This is only
71/// used between instruction selection and MachineInstr creation, before
72/// virtual registers have been created for all the instructions, and it's
73/// only needed in cases where the register classes implied by the
74/// instructions are insufficient. It is emitted as a COPY MachineInstr.
75  HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS)
76
77/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
78HANDLE_TARGET_OPCODE(DBG_VALUE)
79
80/// DBG_LABEL - a mapping of the llvm.dbg.label intrinsic
81HANDLE_TARGET_OPCODE(DBG_LABEL)
82
83/// REG_SEQUENCE - This variadic instruction is used to form a register that
84/// represents a consecutive sequence of sub-registers. It's used as a
85/// register coalescing / allocation aid and must be eliminated before code
86/// emission.
87// In SDNode form, the first operand encodes the register class created by
88// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
89// pair.  Once it has been lowered to a MachineInstr, the regclass operand
90// is no longer present.
91/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
92/// After register coalescing references of v1024 should be replace with
93/// v1027:3, v1025 with v1027:4, etc.
94  HANDLE_TARGET_OPCODE(REG_SEQUENCE)
95
96/// COPY - Target-independent register copy. This instruction can also be
97/// used to copy between subregisters of virtual registers.
98  HANDLE_TARGET_OPCODE(COPY)
99
100/// BUNDLE - This instruction represents an instruction bundle. Instructions
101/// which immediately follow a BUNDLE instruction which are marked with
102/// 'InsideBundle' flag are inside the bundle.
103HANDLE_TARGET_OPCODE(BUNDLE)
104
105/// Lifetime markers.
106HANDLE_TARGET_OPCODE(LIFETIME_START)
107HANDLE_TARGET_OPCODE(LIFETIME_END)
108
109/// A Stackmap instruction captures the location of live variables at its
110/// position in the instruction stream. It is followed by a shadow of bytes
111/// that must lie within the function and not contain another stackmap.
112HANDLE_TARGET_OPCODE(STACKMAP)
113
114/// FEntry all - This is a marker instruction which gets translated into a raw fentry call.
115HANDLE_TARGET_OPCODE(FENTRY_CALL)
116
117/// Patchable call instruction - this instruction represents a call to a
118/// constant address, followed by a series of NOPs. It is intended to
119/// support optimizations for dynamic languages (such as javascript) that
120/// rewrite calls to runtimes with more efficient code sequences.
121/// This also implies a stack map.
122HANDLE_TARGET_OPCODE(PATCHPOINT)
123
124/// This pseudo-instruction loads the stack guard value. Targets which need
125/// to prevent the stack guard value or address from being spilled to the
126/// stack should override TargetLowering::emitLoadStackGuardNode and
127/// additionally expand this pseudo after register allocation.
128HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD)
129
130/// Call instruction with associated vm state for deoptimization and list
131/// of live pointers for relocation by the garbage collector.  It is
132/// intended to support garbage collection with fully precise relocating
133/// collectors and deoptimizations in either the callee or caller.
134HANDLE_TARGET_OPCODE(STATEPOINT)
135
136/// Instruction that records the offset of a local stack allocation passed to
137/// llvm.localescape. It has two arguments: the symbol for the label and the
138/// frame index of the local stack allocation.
139HANDLE_TARGET_OPCODE(LOCAL_ESCAPE)
140
141/// Wraps a machine instruction which can fault, bundled with associated
142/// information on how to handle such a fault.
143/// For example loading instruction that may page fault, bundled with associated
144/// information on how to handle such a page fault.  It is intended to support
145/// "zero cost" null checks in managed languages by allowing LLVM to fold
146/// comparisons into existing memory operations.
147HANDLE_TARGET_OPCODE(FAULTING_OP)
148
149/// Wraps a machine instruction to add patchability constraints.  An
150/// instruction wrapped in PATCHABLE_OP has to either have a minimum
151/// size or be preceded with a nop of that size.  The first operand is
152/// an immediate denoting the minimum size of the instruction, the
153/// second operand is an immediate denoting the opcode of the original
154/// instruction.  The rest of the operands are the operands of the
155/// original instruction.
156HANDLE_TARGET_OPCODE(PATCHABLE_OP)
157
158/// This is a marker instruction which gets translated into a nop sled, useful
159/// for inserting instrumentation instructions at runtime.
160HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_ENTER)
161
162/// Wraps a return instruction and its operands to enable adding nop sleds
163/// either before or after the return. The nop sleds are useful for inserting
164/// instrumentation instructions at runtime.
165/// The patch here replaces the return instruction.
166HANDLE_TARGET_OPCODE(PATCHABLE_RET)
167
168/// This is a marker instruction which gets translated into a nop sled, useful
169/// for inserting instrumentation instructions at runtime.
170/// The patch here prepends the return instruction.
171/// The same thing as in x86_64 is not possible for ARM because it has multiple
172/// return instructions. Furthermore, CPU allows parametrized and even
173/// conditional return instructions. In the current ARM implementation we are
174/// making use of the fact that currently LLVM doesn't seem to generate
175/// conditional return instructions.
176/// On ARM, the same instruction can be used for popping multiple registers
177/// from the stack and returning (it just pops pc register too), and LLVM
178/// generates it sometimes. So we can't insert the sled between this stack
179/// adjustment and the return without splitting the original instruction into 2
180/// instructions. So on ARM, rather than jumping into the exit trampoline, we
181/// call it, it does the tracing, preserves the stack and returns.
182HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_EXIT)
183
184/// Wraps a tail call instruction and its operands to enable adding nop sleds
185/// either before or after the tail exit. We use this as a disambiguation from
186/// PATCHABLE_RET which specifically only works for return instructions.
187HANDLE_TARGET_OPCODE(PATCHABLE_TAIL_CALL)
188
189/// Wraps a logging call and its arguments with nop sleds. At runtime, this can
190/// be patched to insert instrumentation instructions.
191HANDLE_TARGET_OPCODE(PATCHABLE_EVENT_CALL)
192
193/// Wraps a typed logging call and its argument with nop sleds. At runtime, this
194/// can be patched to insert instrumentation instructions.
195HANDLE_TARGET_OPCODE(PATCHABLE_TYPED_EVENT_CALL)
196
197HANDLE_TARGET_OPCODE(ICALL_BRANCH_FUNNEL)
198
199/// The following generic opcodes are not supposed to appear after ISel.
200/// This is something we might want to relax, but for now, this is convenient
201/// to produce diagnostics.
202
203/// Generic ADD instruction. This is an integer add.
204HANDLE_TARGET_OPCODE(G_ADD)
205HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
206
207/// Generic SUB instruction. This is an integer sub.
208HANDLE_TARGET_OPCODE(G_SUB)
209
210// Generic multiply instruction.
211HANDLE_TARGET_OPCODE(G_MUL)
212
213// Generic signed division instruction.
214HANDLE_TARGET_OPCODE(G_SDIV)
215
216// Generic unsigned division instruction.
217HANDLE_TARGET_OPCODE(G_UDIV)
218
219// Generic signed remainder instruction.
220HANDLE_TARGET_OPCODE(G_SREM)
221
222// Generic unsigned remainder instruction.
223HANDLE_TARGET_OPCODE(G_UREM)
224
225/// Generic bitwise and instruction.
226HANDLE_TARGET_OPCODE(G_AND)
227
228/// Generic bitwise or instruction.
229HANDLE_TARGET_OPCODE(G_OR)
230
231/// Generic bitwise exclusive-or instruction.
232HANDLE_TARGET_OPCODE(G_XOR)
233
234
235HANDLE_TARGET_OPCODE(G_IMPLICIT_DEF)
236
237/// Generic PHI instruction with types.
238HANDLE_TARGET_OPCODE(G_PHI)
239
240/// Generic instruction to materialize the address of an alloca or other
241/// stack-based object.
242HANDLE_TARGET_OPCODE(G_FRAME_INDEX)
243
244/// Generic reference to global value.
245HANDLE_TARGET_OPCODE(G_GLOBAL_VALUE)
246
247/// Generic instruction to extract blocks of bits from the register given
248/// (typically a sub-register COPY after instruction selection).
249HANDLE_TARGET_OPCODE(G_EXTRACT)
250
251HANDLE_TARGET_OPCODE(G_UNMERGE_VALUES)
252
253/// Generic instruction to insert blocks of bits from the registers given into
254/// the source.
255HANDLE_TARGET_OPCODE(G_INSERT)
256
257/// Generic instruction to paste a variable number of components together into a
258/// larger register.
259HANDLE_TARGET_OPCODE(G_MERGE_VALUES)
260
261/// Generic pointer to int conversion.
262HANDLE_TARGET_OPCODE(G_PTRTOINT)
263
264/// Generic int to pointer conversion.
265HANDLE_TARGET_OPCODE(G_INTTOPTR)
266
267/// Generic bitcast. The source and destination types must be different, or a
268/// COPY is the relevant instruction.
269HANDLE_TARGET_OPCODE(G_BITCAST)
270
271/// Generic load (including anyext load)
272HANDLE_TARGET_OPCODE(G_LOAD)
273
274/// Generic signext load
275HANDLE_TARGET_OPCODE(G_SEXTLOAD)
276
277/// Generic zeroext load
278HANDLE_TARGET_OPCODE(G_ZEXTLOAD)
279
280/// Generic store.
281HANDLE_TARGET_OPCODE(G_STORE)
282
283/// Generic atomic cmpxchg with internal success check.
284HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
285
286/// Generic atomic cmpxchg.
287HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG)
288
289/// Generic atomicrmw.
290HANDLE_TARGET_OPCODE(G_ATOMICRMW_XCHG)
291HANDLE_TARGET_OPCODE(G_ATOMICRMW_ADD)
292HANDLE_TARGET_OPCODE(G_ATOMICRMW_SUB)
293HANDLE_TARGET_OPCODE(G_ATOMICRMW_AND)
294HANDLE_TARGET_OPCODE(G_ATOMICRMW_NAND)
295HANDLE_TARGET_OPCODE(G_ATOMICRMW_OR)
296HANDLE_TARGET_OPCODE(G_ATOMICRMW_XOR)
297HANDLE_TARGET_OPCODE(G_ATOMICRMW_MAX)
298HANDLE_TARGET_OPCODE(G_ATOMICRMW_MIN)
299HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMAX)
300HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMIN)
301
302/// Generic conditional branch instruction.
303HANDLE_TARGET_OPCODE(G_BRCOND)
304
305/// Generic indirect branch instruction.
306HANDLE_TARGET_OPCODE(G_BRINDIRECT)
307
308/// Generic intrinsic use (without side effects).
309HANDLE_TARGET_OPCODE(G_INTRINSIC)
310
311/// Generic intrinsic use (with side effects).
312HANDLE_TARGET_OPCODE(G_INTRINSIC_W_SIDE_EFFECTS)
313
314/// Generic extension allowing rubbish in high bits.
315HANDLE_TARGET_OPCODE(G_ANYEXT)
316
317/// Generic instruction to discard the high bits of a register. This differs
318/// from (G_EXTRACT val, 0) on its action on vectors: G_TRUNC will truncate
319/// each element individually, G_EXTRACT will typically discard the high
320/// elements of the vector.
321HANDLE_TARGET_OPCODE(G_TRUNC)
322
323/// Generic integer constant.
324HANDLE_TARGET_OPCODE(G_CONSTANT)
325
326/// Generic floating constant.
327HANDLE_TARGET_OPCODE(G_FCONSTANT)
328
329/// Generic va_start instruction. Stores to its one pointer operand.
330HANDLE_TARGET_OPCODE(G_VASTART)
331
332/// Generic va_start instruction. Stores to its one pointer operand.
333HANDLE_TARGET_OPCODE(G_VAARG)
334
335// Generic sign extend
336HANDLE_TARGET_OPCODE(G_SEXT)
337
338// Generic zero extend
339HANDLE_TARGET_OPCODE(G_ZEXT)
340
341// Generic left-shift
342HANDLE_TARGET_OPCODE(G_SHL)
343
344// Generic logical right-shift
345HANDLE_TARGET_OPCODE(G_LSHR)
346
347// Generic arithmetic right-shift
348HANDLE_TARGET_OPCODE(G_ASHR)
349
350/// Generic integer-base comparison, also applicable to vectors of integers.
351HANDLE_TARGET_OPCODE(G_ICMP)
352
353/// Generic floating-point comparison, also applicable to vectors.
354HANDLE_TARGET_OPCODE(G_FCMP)
355
356/// Generic select.
357HANDLE_TARGET_OPCODE(G_SELECT)
358
359/// Generic unsigned add instruction, consuming the normal operands plus a carry
360/// flag, and similarly producing the result and a carry flag.
361HANDLE_TARGET_OPCODE(G_UADDE)
362
363/// Generic unsigned subtract instruction, consuming the normal operands plus a
364/// carry flag, and similarly producing the result and a carry flag.
365HANDLE_TARGET_OPCODE(G_USUBE)
366
367/// Generic signed add instruction, producing the result and a signed overflow
368/// flag.
369HANDLE_TARGET_OPCODE(G_SADDO)
370
371/// Generic signed subtract instruction, producing the result and a signed
372/// overflow flag.
373HANDLE_TARGET_OPCODE(G_SSUBO)
374
375/// Generic unsigned multiply instruction, producing the result and a signed
376/// overflow flag.
377HANDLE_TARGET_OPCODE(G_UMULO)
378
379/// Generic signed multiply instruction, producing the result and a signed
380/// overflow flag.
381HANDLE_TARGET_OPCODE(G_SMULO)
382
383// Multiply two numbers at twice the incoming bit width (unsigned) and return
384// the high half of the result.
385HANDLE_TARGET_OPCODE(G_UMULH)
386
387// Multiply two numbers at twice the incoming bit width (signed) and return
388// the high half of the result.
389HANDLE_TARGET_OPCODE(G_SMULH)
390
391/// Generic FP addition.
392HANDLE_TARGET_OPCODE(G_FADD)
393
394/// Generic FP subtraction.
395HANDLE_TARGET_OPCODE(G_FSUB)
396
397/// Generic FP multiplication.
398HANDLE_TARGET_OPCODE(G_FMUL)
399
400/// Generic FMA multiplication. Behaves like llvm fma intrinsic
401HANDLE_TARGET_OPCODE(G_FMA)
402
403/// Generic FP division.
404HANDLE_TARGET_OPCODE(G_FDIV)
405
406/// Generic FP remainder.
407HANDLE_TARGET_OPCODE(G_FREM)
408
409/// Generic FP exponentiation.
410HANDLE_TARGET_OPCODE(G_FPOW)
411
412/// Generic base-e exponential of a value.
413HANDLE_TARGET_OPCODE(G_FEXP)
414
415/// Generic base-2 exponential of a value.
416HANDLE_TARGET_OPCODE(G_FEXP2)
417
418/// Floating point base-e logarithm of a value.
419HANDLE_TARGET_OPCODE(G_FLOG)
420
421/// Floating point base-2 logarithm of a value.
422HANDLE_TARGET_OPCODE(G_FLOG2)
423
424/// Generic FP negation.
425HANDLE_TARGET_OPCODE(G_FNEG)
426
427/// Generic FP extension.
428HANDLE_TARGET_OPCODE(G_FPEXT)
429
430/// Generic float to signed-int conversion
431HANDLE_TARGET_OPCODE(G_FPTRUNC)
432
433/// Generic float to signed-int conversion
434HANDLE_TARGET_OPCODE(G_FPTOSI)
435
436/// Generic float to unsigned-int conversion
437HANDLE_TARGET_OPCODE(G_FPTOUI)
438
439/// Generic signed-int to float conversion
440HANDLE_TARGET_OPCODE(G_SITOFP)
441
442/// Generic unsigned-int to float conversion
443HANDLE_TARGET_OPCODE(G_UITOFP)
444
445/// Generic FP absolute value.
446HANDLE_TARGET_OPCODE(G_FABS)
447
448/// Generic pointer offset
449HANDLE_TARGET_OPCODE(G_GEP)
450
451/// Clear the specified number of low bits in a pointer. This rounds the value
452/// *down* to the given alignment.
453HANDLE_TARGET_OPCODE(G_PTR_MASK)
454
455/// Generic BRANCH instruction. This is an unconditional branch.
456HANDLE_TARGET_OPCODE(G_BR)
457
458/// Generic insertelement.
459HANDLE_TARGET_OPCODE(G_INSERT_VECTOR_ELT)
460
461/// Generic extractelement.
462HANDLE_TARGET_OPCODE(G_EXTRACT_VECTOR_ELT)
463
464/// Generic shufflevector.
465HANDLE_TARGET_OPCODE(G_SHUFFLE_VECTOR)
466
467/// Generic byte swap.
468HANDLE_TARGET_OPCODE(G_BSWAP)
469
470/// Generic AddressSpaceCast.
471HANDLE_TARGET_OPCODE(G_ADDRSPACE_CAST)
472
473/// Generic block address
474HANDLE_TARGET_OPCODE(G_BLOCK_ADDR)
475
476// TODO: Add more generic opcodes as we move along.
477
478/// Marker for the end of the generic opcode.
479/// This is used to check if an opcode is in the range of the
480/// generic opcodes.
481HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_BLOCK_ADDR)
482
483/// BUILTIN_OP_END - This must be the last enum value in this list.
484/// The target-specific post-isel opcode values start here.
485HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)
486