1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_varyings_to_packed.cpp
26 *
27 * This lowering pass generates GLSL code that manually packs varyings into
28 * vec4 slots, for the benefit of back-ends that don't support packed varyings
29 * natively.
30 *
31 * For example, the following shader:
32 *
33 * out mat3x2 foo; // location=4, location_frac=0
34 * out vec3 bar[2]; // location=5, location_frac=2
35 *
36 * main()
37 * {
38 * ...
39 * }
40 *
41 * Is rewritten to:
42 *
43 * mat3x2 foo;
44 * vec3 bar[2];
45 * out vec4 packed4; // location=4, location_frac=0
46 * out vec4 packed5; // location=5, location_frac=0
47 * out vec4 packed6; // location=6, location_frac=0
48 *
49 * main()
50 * {
51 * ...
52 * packed4.xy = foo[0];
53 * packed4.zw = foo[1];
54 * packed5.xy = foo[2];
55 * packed5.zw = bar[0].xy;
56 * packed6.x = bar[0].z;
57 * packed6.yzw = bar[1];
58 * }
59 *
60 * This lowering pass properly handles "double parking" of a varying vector
61 * across two varying slots. For example, in the code above, two of the
62 * components of bar[0] are stored in packed5, and the remaining component is
63 * stored in packed6.
64 *
65 * Note that in theory, the extra instructions may cause some loss of
66 * performance. However, hopefully in most cases the performance loss will
67 * either be absorbed by a later optimization pass, or it will be offset by
68 * memory bandwidth savings (because fewer varyings are used).
69 *
70 * This lowering pass also packs flat floats, ints, and uints together, by
71 * using ivec4 as the base type of flat "varyings", and using appropriate
72 * casts to convert floats and uints into ints.
73 *
74 * This lowering pass also handles varyings whose type is a struct or an array
75 * of struct. Structs are packed in order and with no gaps, so there may be a
76 * performance penalty due to structure elements being double-parked.
77 *
78 * Lowering of geometry shader inputs is slightly more complex, since geometry
79 * inputs are always arrays, so we need to lower arrays to arrays. For
80 * example, the following input:
81 *
82 * in struct Foo {
83 * float f;
84 * vec3 v;
85 * vec2 a[2];
86 * } arr[3]; // location=4, location_frac=0
87 *
88 * Would get lowered like this if it occurred in a fragment shader:
89 *
90 * struct Foo {
91 * float f;
92 * vec3 v;
93 * vec2 a[2];
94 * } arr[3];
95 * in vec4 packed4; // location=4, location_frac=0
96 * in vec4 packed5; // location=5, location_frac=0
97 * in vec4 packed6; // location=6, location_frac=0
98 * in vec4 packed7; // location=7, location_frac=0
99 * in vec4 packed8; // location=8, location_frac=0
100 * in vec4 packed9; // location=9, location_frac=0
101 *
102 * main()
103 * {
104 * arr[0].f = packed4.x;
105 * arr[0].v = packed4.yzw;
106 * arr[0].a[0] = packed5.xy;
107 * arr[0].a[1] = packed5.zw;
108 * arr[1].f = packed6.x;
109 * arr[1].v = packed6.yzw;
110 * arr[1].a[0] = packed7.xy;
111 * arr[1].a[1] = packed7.zw;
112 * arr[2].f = packed8.x;
113 * arr[2].v = packed8.yzw;
114 * arr[2].a[0] = packed9.xy;
115 * arr[2].a[1] = packed9.zw;
116 * ...
117 * }
118 *
119 * But it would get lowered like this if it occurred in a geometry shader:
120 *
121 * struct Foo {
122 * float f;
123 * vec3 v;
124 * vec2 a[2];
125 * } arr[3];
126 * in vec4 packed4[3]; // location=4, location_frac=0
127 * in vec4 packed5[3]; // location=5, location_frac=0
128 *
129 * main()
130 * {
131 * arr[0].f = packed4[0].x;
132 * arr[0].v = packed4[0].yzw;
133 * arr[0].a[0] = packed5[0].xy;
134 * arr[0].a[1] = packed5[0].zw;
135 * arr[1].f = packed4[1].x;
136 * arr[1].v = packed4[1].yzw;
137 * arr[1].a[0] = packed5[1].xy;
138 * arr[1].a[1] = packed5[1].zw;
139 * arr[2].f = packed4[2].x;
140 * arr[2].v = packed4[2].yzw;
141 * arr[2].a[0] = packed5[2].xy;
142 * arr[2].a[1] = packed5[2].zw;
143 * ...
144 * }
145 */
146
147 #include "glsl_symbol_table.h"
148 #include "ir.h"
149 #include "ir_builder.h"
150 #include "ir_optimization.h"
151 #include "program/prog_instruction.h"
152
153 using namespace ir_builder;
154
155 namespace {
156
157 /**
158 * Visitor that performs varying packing. For each varying declared in the
159 * shader, this visitor determines whether it needs to be packed. If so, it
160 * demotes it to an ordinary global, creates new packed varyings, and
161 * generates assignments to convert between the original varying and the
162 * packed varying.
163 */
164 class lower_packed_varyings_visitor
165 {
166 public:
167 lower_packed_varyings_visitor(void *mem_ctx,
168 unsigned locations_used,
169 const uint8_t *components,
170 ir_variable_mode mode,
171 unsigned gs_input_vertices,
172 exec_list *out_instructions,
173 exec_list *out_variables,
174 bool disable_varying_packing,
175 bool xfb_enabled);
176
177 void run(struct gl_linked_shader *shader);
178
179 private:
180 void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
181 void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
182 unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
183 ir_variable *unpacked_var, const char *name,
184 bool gs_input_toplevel, unsigned vertex_index);
185 unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
186 unsigned fine_location,
187 ir_variable *unpacked_var, const char *name,
188 bool gs_input_toplevel, unsigned vertex_index);
189 ir_dereference *get_packed_varying_deref(unsigned location,
190 ir_variable *unpacked_var,
191 const char *name,
192 unsigned vertex_index);
193 bool needs_lowering(ir_variable *var);
194
195 /**
196 * Memory context used to allocate new instructions for the shader.
197 */
198 void * const mem_ctx;
199
200 /**
201 * Number of generic varying slots which are used by this shader. This is
202 * used to allocate temporary intermediate data structures. If any varying
203 * used by this shader has a location greater than or equal to
204 * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
205 */
206 const unsigned locations_used;
207
208 const uint8_t* components;
209
210 /**
211 * Array of pointers to the packed varyings that have been created for each
212 * generic varying slot. NULL entries in this array indicate varying slots
213 * for which a packed varying has not been created yet.
214 */
215 ir_variable **packed_varyings;
216
217 /**
218 * Type of varying which is being lowered in this pass (either
219 * ir_var_shader_in or ir_var_shader_out).
220 */
221 const ir_variable_mode mode;
222
223 /**
224 * If we are currently lowering geometry shader inputs, the number of input
225 * vertices the geometry shader accepts. Otherwise zero.
226 */
227 const unsigned gs_input_vertices;
228
229 /**
230 * Exec list into which the visitor should insert the packing instructions.
231 * Caller provides this list; it should insert the instructions into the
232 * appropriate place in the shader once the visitor has finished running.
233 */
234 exec_list *out_instructions;
235
236 /**
237 * Exec list into which the visitor should insert any new variables.
238 */
239 exec_list *out_variables;
240
241 bool disable_varying_packing;
242 bool xfb_enabled;
243 };
244
245 } /* anonymous namespace */
246
lower_packed_varyings_visitor(void * mem_ctx,unsigned locations_used,const uint8_t * components,ir_variable_mode mode,unsigned gs_input_vertices,exec_list * out_instructions,exec_list * out_variables,bool disable_varying_packing,bool xfb_enabled)247 lower_packed_varyings_visitor::lower_packed_varyings_visitor(
248 void *mem_ctx, unsigned locations_used, const uint8_t *components,
249 ir_variable_mode mode,
250 unsigned gs_input_vertices, exec_list *out_instructions,
251 exec_list *out_variables, bool disable_varying_packing,
252 bool xfb_enabled)
253 : mem_ctx(mem_ctx),
254 locations_used(locations_used),
255 components(components),
256 packed_varyings((ir_variable **)
257 rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
258 locations_used)),
259 mode(mode),
260 gs_input_vertices(gs_input_vertices),
261 out_instructions(out_instructions),
262 out_variables(out_variables),
263 disable_varying_packing(disable_varying_packing),
264 xfb_enabled(xfb_enabled)
265 {
266 }
267
268 void
run(struct gl_linked_shader * shader)269 lower_packed_varyings_visitor::run(struct gl_linked_shader *shader)
270 {
271 foreach_in_list(ir_instruction, node, shader->ir) {
272 ir_variable *var = node->as_variable();
273 if (var == NULL)
274 continue;
275
276 if (var->data.mode != this->mode ||
277 var->data.location < VARYING_SLOT_VAR0 ||
278 !this->needs_lowering(var))
279 continue;
280
281 /* This lowering pass is only capable of packing floats and ints
282 * together when their interpolation mode is "flat". Treat integers as
283 * being flat when the interpolation mode is none.
284 */
285 assert(var->data.interpolation == INTERP_MODE_FLAT ||
286 var->data.interpolation == INTERP_MODE_NONE ||
287 !var->type->contains_integer());
288
289 /* Clone the variable for program resource list before
290 * it gets modified and lost.
291 */
292 if (!shader->packed_varyings)
293 shader->packed_varyings = new (shader) exec_list;
294
295 shader->packed_varyings->push_tail(var->clone(shader, NULL));
296
297 /* Change the old varying into an ordinary global. */
298 assert(var->data.mode != ir_var_temporary);
299 var->data.mode = ir_var_auto;
300
301 /* Create a reference to the old varying. */
302 ir_dereference_variable *deref
303 = new(this->mem_ctx) ir_dereference_variable(var);
304
305 /* Recursively pack or unpack it. */
306 this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
307 var->name, this->gs_input_vertices != 0, 0);
308 }
309 }
310
311 #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
312
313 /**
314 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
315 * bitcasts if necessary to match up types.
316 *
317 * This function is called when packing varyings.
318 */
319 void
bitwise_assign_pack(ir_rvalue * lhs,ir_rvalue * rhs)320 lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
321 ir_rvalue *rhs)
322 {
323 if (lhs->type->base_type != rhs->type->base_type) {
324 /* Since we only mix types in flat varyings, and we always store flat
325 * varyings as type ivec4, we need only produce conversions from (uint
326 * or float) to int.
327 */
328 assert(lhs->type->base_type == GLSL_TYPE_INT);
329 switch (rhs->type->base_type) {
330 case GLSL_TYPE_UINT:
331 rhs = new(this->mem_ctx)
332 ir_expression(ir_unop_u2i, lhs->type, rhs);
333 break;
334 case GLSL_TYPE_FLOAT:
335 rhs = new(this->mem_ctx)
336 ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
337 break;
338 case GLSL_TYPE_DOUBLE:
339 assert(rhs->type->vector_elements <= 2);
340 if (rhs->type->vector_elements == 2) {
341 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
342
343 assert(lhs->type->vector_elements == 4);
344 this->out_variables->push_tail(t);
345 this->out_instructions->push_tail(
346 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
347 this->out_instructions->push_tail(
348 assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
349 rhs = deref(t).val;
350 } else {
351 rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
352 }
353 break;
354 case GLSL_TYPE_INT64:
355 assert(rhs->type->vector_elements <= 2);
356 if (rhs->type->vector_elements == 2) {
357 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
358
359 assert(lhs->type->vector_elements == 4);
360 this->out_variables->push_tail(t);
361 this->out_instructions->push_tail(
362 assign(t, expr(ir_unop_unpack_int_2x32, swizzle_x(rhs->clone(mem_ctx, NULL))), 0x3));
363 this->out_instructions->push_tail(
364 assign(t, expr(ir_unop_unpack_int_2x32, swizzle_y(rhs)), 0xc));
365 rhs = deref(t).val;
366 } else {
367 rhs = expr(ir_unop_unpack_int_2x32, rhs);
368 }
369 break;
370 case GLSL_TYPE_UINT64:
371 assert(rhs->type->vector_elements <= 2);
372 if (rhs->type->vector_elements == 2) {
373 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
374
375 assert(lhs->type->vector_elements == 4);
376 this->out_variables->push_tail(t);
377 this->out_instructions->push_tail(
378 assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
379 this->out_instructions->push_tail(
380 assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_y(rhs))), 0xc));
381 rhs = deref(t).val;
382 } else {
383 rhs = u2i(expr(ir_unop_unpack_uint_2x32, rhs));
384 }
385 break;
386 case GLSL_TYPE_SAMPLER:
387 rhs = u2i(expr(ir_unop_unpack_sampler_2x32, rhs));
388 break;
389 case GLSL_TYPE_IMAGE:
390 rhs = u2i(expr(ir_unop_unpack_image_2x32, rhs));
391 break;
392 default:
393 assert(!"Unexpected type conversion while lowering varyings");
394 break;
395 }
396 }
397 this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
398 }
399
400
401 /**
402 * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
403 * bitcasts if necessary to match up types.
404 *
405 * This function is called when unpacking varyings.
406 */
407 void
bitwise_assign_unpack(ir_rvalue * lhs,ir_rvalue * rhs)408 lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
409 ir_rvalue *rhs)
410 {
411 if (lhs->type->base_type != rhs->type->base_type) {
412 /* Since we only mix types in flat varyings, and we always store flat
413 * varyings as type ivec4, we need only produce conversions from int to
414 * (uint or float).
415 */
416 assert(rhs->type->base_type == GLSL_TYPE_INT);
417 switch (lhs->type->base_type) {
418 case GLSL_TYPE_UINT:
419 rhs = new(this->mem_ctx)
420 ir_expression(ir_unop_i2u, lhs->type, rhs);
421 break;
422 case GLSL_TYPE_FLOAT:
423 rhs = new(this->mem_ctx)
424 ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
425 break;
426 case GLSL_TYPE_DOUBLE:
427 assert(lhs->type->vector_elements <= 2);
428 if (lhs->type->vector_elements == 2) {
429 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
430 assert(rhs->type->vector_elements == 4);
431 this->out_variables->push_tail(t);
432 this->out_instructions->push_tail(
433 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
434 this->out_instructions->push_tail(
435 assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
436 rhs = deref(t).val;
437 } else {
438 rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
439 }
440 break;
441 case GLSL_TYPE_INT64:
442 assert(lhs->type->vector_elements <= 2);
443 if (lhs->type->vector_elements == 2) {
444 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
445 assert(rhs->type->vector_elements == 4);
446 this->out_variables->push_tail(t);
447 this->out_instructions->push_tail(
448 assign(t, expr(ir_unop_pack_int_2x32, swizzle_xy(rhs->clone(mem_ctx, NULL))), 0x1));
449 this->out_instructions->push_tail(
450 assign(t, expr(ir_unop_pack_int_2x32, swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2)), 0x2));
451 rhs = deref(t).val;
452 } else {
453 rhs = expr(ir_unop_pack_int_2x32, rhs);
454 }
455 break;
456 case GLSL_TYPE_UINT64:
457 assert(lhs->type->vector_elements <= 2);
458 if (lhs->type->vector_elements == 2) {
459 ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
460 assert(rhs->type->vector_elements == 4);
461 this->out_variables->push_tail(t);
462 this->out_instructions->push_tail(
463 assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
464 this->out_instructions->push_tail(
465 assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
466 rhs = deref(t).val;
467 } else {
468 rhs = expr(ir_unop_pack_uint_2x32, i2u(rhs));
469 }
470 break;
471 case GLSL_TYPE_SAMPLER:
472 rhs = new(mem_ctx)
473 ir_expression(ir_unop_pack_sampler_2x32, lhs->type, i2u(rhs));
474 break;
475 case GLSL_TYPE_IMAGE:
476 rhs = new(mem_ctx)
477 ir_expression(ir_unop_pack_image_2x32, lhs->type, i2u(rhs));
478 break;
479 default:
480 assert(!"Unexpected type conversion while lowering varyings");
481 break;
482 }
483 }
484 this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
485 }
486
487
488 /**
489 * Recursively pack or unpack the given varying (or portion of a varying) by
490 * traversing all of its constituent vectors.
491 *
492 * \param fine_location is the location where the first constituent vector
493 * should be packed--the word "fine" indicates that this location is expressed
494 * in multiples of a float, rather than multiples of a vec4 as is used
495 * elsewhere in Mesa.
496 *
497 * \param gs_input_toplevel should be set to true if we are lowering geometry
498 * shader inputs, and we are currently lowering the whole input variable
499 * (i.e. we are lowering the array whose index selects the vertex).
500 *
501 * \param vertex_index: if we are lowering geometry shader inputs, and the
502 * level of the array that we are currently lowering is *not* the top level,
503 * then this indicates which vertex we are currently lowering. Otherwise it
504 * is ignored.
505 *
506 * \return the location where the next constituent vector (after this one)
507 * should be packed.
508 */
509 unsigned
lower_rvalue(ir_rvalue * rvalue,unsigned fine_location,ir_variable * unpacked_var,const char * name,bool gs_input_toplevel,unsigned vertex_index)510 lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
511 unsigned fine_location,
512 ir_variable *unpacked_var,
513 const char *name,
514 bool gs_input_toplevel,
515 unsigned vertex_index)
516 {
517 unsigned dmul = rvalue->type->is_64bit() ? 2 : 1;
518 /* When gs_input_toplevel is set, we should be looking at a geometry shader
519 * input array.
520 */
521 assert(!gs_input_toplevel || rvalue->type->is_array());
522
523 if (rvalue->type->is_record()) {
524 for (unsigned i = 0; i < rvalue->type->length; i++) {
525 if (i != 0)
526 rvalue = rvalue->clone(this->mem_ctx, NULL);
527 const char *field_name = rvalue->type->fields.structure[i].name;
528 ir_dereference_record *dereference_record = new(this->mem_ctx)
529 ir_dereference_record(rvalue, field_name);
530 char *deref_name
531 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
532 fine_location = this->lower_rvalue(dereference_record, fine_location,
533 unpacked_var, deref_name, false,
534 vertex_index);
535 }
536 return fine_location;
537 } else if (rvalue->type->is_array()) {
538 /* Arrays are packed/unpacked by considering each array element in
539 * sequence.
540 */
541 return this->lower_arraylike(rvalue, rvalue->type->array_size(),
542 fine_location, unpacked_var, name,
543 gs_input_toplevel, vertex_index);
544 } else if (rvalue->type->is_matrix()) {
545 /* Matrices are packed/unpacked by considering each column vector in
546 * sequence.
547 */
548 return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
549 fine_location, unpacked_var, name,
550 false, vertex_index);
551 } else if (rvalue->type->vector_elements * dmul +
552 fine_location % 4 > 4) {
553 /* This vector is going to be "double parked" across two varying slots,
554 * so handle it as two separate assignments. For doubles, a dvec3/dvec4
555 * can end up being spread over 3 slots. However the second splitting
556 * will happen later, here we just always want to split into 2.
557 */
558 unsigned left_components, right_components;
559 unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
560 unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
561 char left_swizzle_name[4] = { 0, 0, 0, 0 };
562 char right_swizzle_name[4] = { 0, 0, 0, 0 };
563
564 left_components = 4 - fine_location % 4;
565 if (rvalue->type->is_64bit()) {
566 /* We might actually end up with 0 left components! */
567 left_components /= 2;
568 }
569 right_components = rvalue->type->vector_elements - left_components;
570
571 for (unsigned i = 0; i < left_components; i++) {
572 left_swizzle_values[i] = i;
573 left_swizzle_name[i] = "xyzw"[i];
574 }
575 for (unsigned i = 0; i < right_components; i++) {
576 right_swizzle_values[i] = i + left_components;
577 right_swizzle_name[i] = "xyzw"[i + left_components];
578 }
579 ir_swizzle *left_swizzle = new(this->mem_ctx)
580 ir_swizzle(rvalue, left_swizzle_values, left_components);
581 ir_swizzle *right_swizzle = new(this->mem_ctx)
582 ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
583 right_components);
584 char *left_name
585 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
586 char *right_name
587 = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
588 if (left_components)
589 fine_location = this->lower_rvalue(left_swizzle, fine_location,
590 unpacked_var, left_name, false,
591 vertex_index);
592 else
593 /* Top up the fine location to the next slot */
594 fine_location++;
595 return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
596 right_name, false, vertex_index);
597 } else {
598 /* No special handling is necessary; pack the rvalue into the
599 * varying.
600 */
601 unsigned swizzle_values[4] = { 0, 0, 0, 0 };
602 unsigned components = rvalue->type->vector_elements * dmul;
603 unsigned location = fine_location / 4;
604 unsigned location_frac = fine_location % 4;
605 for (unsigned i = 0; i < components; ++i)
606 swizzle_values[i] = i + location_frac;
607 ir_dereference *packed_deref =
608 this->get_packed_varying_deref(location, unpacked_var, name,
609 vertex_index);
610 if (unpacked_var->data.stream != 0) {
611 assert(unpacked_var->data.stream < 4);
612 ir_variable *packed_var = packed_deref->variable_referenced();
613 for (unsigned i = 0; i < components; ++i) {
614 packed_var->data.stream |=
615 unpacked_var->data.stream << (2 * (location_frac + i));
616 }
617 }
618 ir_swizzle *swizzle = new(this->mem_ctx)
619 ir_swizzle(packed_deref, swizzle_values, components);
620 if (this->mode == ir_var_shader_out) {
621 this->bitwise_assign_pack(swizzle, rvalue);
622 } else {
623 this->bitwise_assign_unpack(rvalue, swizzle);
624 }
625 return fine_location + components;
626 }
627 }
628
629 /**
630 * Recursively pack or unpack a varying for which we need to iterate over its
631 * constituent elements, accessing each one using an ir_dereference_array.
632 * This takes care of both arrays and matrices, since ir_dereference_array
633 * treats a matrix like an array of its column vectors.
634 *
635 * \param gs_input_toplevel should be set to true if we are lowering geometry
636 * shader inputs, and we are currently lowering the whole input variable
637 * (i.e. we are lowering the array whose index selects the vertex).
638 *
639 * \param vertex_index: if we are lowering geometry shader inputs, and the
640 * level of the array that we are currently lowering is *not* the top level,
641 * then this indicates which vertex we are currently lowering. Otherwise it
642 * is ignored.
643 */
644 unsigned
lower_arraylike(ir_rvalue * rvalue,unsigned array_size,unsigned fine_location,ir_variable * unpacked_var,const char * name,bool gs_input_toplevel,unsigned vertex_index)645 lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
646 unsigned array_size,
647 unsigned fine_location,
648 ir_variable *unpacked_var,
649 const char *name,
650 bool gs_input_toplevel,
651 unsigned vertex_index)
652 {
653 for (unsigned i = 0; i < array_size; i++) {
654 if (i != 0)
655 rvalue = rvalue->clone(this->mem_ctx, NULL);
656 ir_constant *constant = new(this->mem_ctx) ir_constant(i);
657 ir_dereference_array *dereference_array = new(this->mem_ctx)
658 ir_dereference_array(rvalue, constant);
659 if (gs_input_toplevel) {
660 /* Geometry shader inputs are a special case. Instead of storing
661 * each element of the array at a different location, all elements
662 * are at the same location, but with a different vertex index.
663 */
664 (void) this->lower_rvalue(dereference_array, fine_location,
665 unpacked_var, name, false, i);
666 } else {
667 char *subscripted_name
668 = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
669 fine_location =
670 this->lower_rvalue(dereference_array, fine_location,
671 unpacked_var, subscripted_name,
672 false, vertex_index);
673 }
674 }
675 return fine_location;
676 }
677
678 /**
679 * Retrieve the packed varying corresponding to the given varying location.
680 * If no packed varying has been created for the given varying location yet,
681 * create it and add it to the shader before returning it.
682 *
683 * The newly created varying inherits its interpolation parameters from \c
684 * unpacked_var. Its base type is ivec4 if we are lowering a flat varying,
685 * vec4 otherwise.
686 *
687 * \param vertex_index: if we are lowering geometry shader inputs, then this
688 * indicates which vertex we are currently lowering. Otherwise it is ignored.
689 */
690 ir_dereference *
get_packed_varying_deref(unsigned location,ir_variable * unpacked_var,const char * name,unsigned vertex_index)691 lower_packed_varyings_visitor::get_packed_varying_deref(
692 unsigned location, ir_variable *unpacked_var, const char *name,
693 unsigned vertex_index)
694 {
695 unsigned slot = location - VARYING_SLOT_VAR0;
696 assert(slot < locations_used);
697 if (this->packed_varyings[slot] == NULL) {
698 char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
699 const glsl_type *packed_type;
700 assert(components[slot] != 0);
701 if (unpacked_var->is_interpolation_flat())
702 packed_type = glsl_type::get_instance(GLSL_TYPE_INT, components[slot], 1);
703 else
704 packed_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, components[slot], 1);
705 if (this->gs_input_vertices != 0) {
706 packed_type =
707 glsl_type::get_array_instance(packed_type,
708 this->gs_input_vertices);
709 }
710 ir_variable *packed_var = new(this->mem_ctx)
711 ir_variable(packed_type, packed_name, this->mode);
712 if (this->gs_input_vertices != 0) {
713 /* Prevent update_array_sizes() from messing with the size of the
714 * array.
715 */
716 packed_var->data.max_array_access = this->gs_input_vertices - 1;
717 }
718 packed_var->data.centroid = unpacked_var->data.centroid;
719 packed_var->data.sample = unpacked_var->data.sample;
720 packed_var->data.patch = unpacked_var->data.patch;
721 packed_var->data.interpolation =
722 packed_type->without_array() == glsl_type::ivec4_type
723 ? unsigned(INTERP_MODE_FLAT) : unpacked_var->data.interpolation;
724 packed_var->data.location = location;
725 packed_var->data.precision = unpacked_var->data.precision;
726 packed_var->data.always_active_io = unpacked_var->data.always_active_io;
727 packed_var->data.stream = 1u << 31;
728 unpacked_var->insert_before(packed_var);
729 this->packed_varyings[slot] = packed_var;
730 } else {
731 /* For geometry shader inputs, only update the packed variable name the
732 * first time we visit each component.
733 */
734 if (this->gs_input_vertices == 0 || vertex_index == 0) {
735 ir_variable *var = this->packed_varyings[slot];
736
737 if (var->is_name_ralloced())
738 ralloc_asprintf_append((char **) &var->name, ",%s", name);
739 else
740 var->name = ralloc_asprintf(var, "%s,%s", var->name, name);
741 }
742 }
743
744 ir_dereference *deref = new(this->mem_ctx)
745 ir_dereference_variable(this->packed_varyings[slot]);
746 if (this->gs_input_vertices != 0) {
747 /* When lowering GS inputs, the packed variable is an array, so we need
748 * to dereference it using vertex_index.
749 */
750 ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
751 deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
752 }
753 return deref;
754 }
755
756 bool
needs_lowering(ir_variable * var)757 lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
758 {
759 /* Things composed of vec4's, varyings with explicitly assigned
760 * locations or varyings marked as must_be_shader_input (which might be used
761 * by interpolateAt* functions) shouldn't be lowered. Everything else can be.
762 */
763 if (var->data.explicit_location || var->data.must_be_shader_input)
764 return false;
765
766 /* Override disable_varying_packing if the var is only used by transform
767 * feedback. Also override it if transform feedback is enabled and the
768 * variable is an array, struct or matrix as the elements of these types
769 * will always have the same interpolation and therefore are safe to pack.
770 */
771 const glsl_type *type = var->type;
772 if (disable_varying_packing && !var->data.is_xfb_only &&
773 !((type->is_array() || type->is_record() || type->is_matrix()) &&
774 xfb_enabled))
775 return false;
776
777 type = type->without_array();
778 if (type->vector_elements == 4 && !type->is_64bit())
779 return false;
780 return true;
781 }
782
783
784 /**
785 * Visitor that splices varying packing code before every use of EmitVertex()
786 * in a geometry shader.
787 */
788 class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
789 {
790 public:
791 explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
792 const exec_list *instructions);
793
794 virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
795
796 private:
797 /**
798 * Memory context used to allocate new instructions for the shader.
799 */
800 void * const mem_ctx;
801
802 /**
803 * Instructions that should be spliced into place before each EmitVertex()
804 * call.
805 */
806 const exec_list *instructions;
807 };
808
809
lower_packed_varyings_gs_splicer(void * mem_ctx,const exec_list * instructions)810 lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
811 void *mem_ctx, const exec_list *instructions)
812 : mem_ctx(mem_ctx), instructions(instructions)
813 {
814 }
815
816
817 ir_visitor_status
visit_leave(ir_emit_vertex * ev)818 lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
819 {
820 foreach_in_list(ir_instruction, ir, this->instructions) {
821 ev->insert_before(ir->clone(this->mem_ctx, NULL));
822 }
823 return visit_continue;
824 }
825
826 /**
827 * Visitor that splices varying packing code before every return.
828 */
829 class lower_packed_varyings_return_splicer : public ir_hierarchical_visitor
830 {
831 public:
832 explicit lower_packed_varyings_return_splicer(void *mem_ctx,
833 const exec_list *instructions);
834
835 virtual ir_visitor_status visit_leave(ir_return *ret);
836
837 private:
838 /**
839 * Memory context used to allocate new instructions for the shader.
840 */
841 void * const mem_ctx;
842
843 /**
844 * Instructions that should be spliced into place before each return.
845 */
846 const exec_list *instructions;
847 };
848
849
lower_packed_varyings_return_splicer(void * mem_ctx,const exec_list * instructions)850 lower_packed_varyings_return_splicer::lower_packed_varyings_return_splicer(
851 void *mem_ctx, const exec_list *instructions)
852 : mem_ctx(mem_ctx), instructions(instructions)
853 {
854 }
855
856
857 ir_visitor_status
visit_leave(ir_return * ret)858 lower_packed_varyings_return_splicer::visit_leave(ir_return *ret)
859 {
860 foreach_in_list(ir_instruction, ir, this->instructions) {
861 ret->insert_before(ir->clone(this->mem_ctx, NULL));
862 }
863 return visit_continue;
864 }
865
866 void
lower_packed_varyings(void * mem_ctx,unsigned locations_used,const uint8_t * components,ir_variable_mode mode,unsigned gs_input_vertices,gl_linked_shader * shader,bool disable_varying_packing,bool xfb_enabled)867 lower_packed_varyings(void *mem_ctx, unsigned locations_used,
868 const uint8_t *components,
869 ir_variable_mode mode, unsigned gs_input_vertices,
870 gl_linked_shader *shader, bool disable_varying_packing,
871 bool xfb_enabled)
872 {
873 exec_list *instructions = shader->ir;
874 ir_function *main_func = shader->symbols->get_function("main");
875 exec_list void_parameters;
876 ir_function_signature *main_func_sig
877 = main_func->matching_signature(NULL, &void_parameters, false);
878 exec_list new_instructions, new_variables;
879 lower_packed_varyings_visitor visitor(mem_ctx,
880 locations_used,
881 components,
882 mode,
883 gs_input_vertices,
884 &new_instructions,
885 &new_variables,
886 disable_varying_packing,
887 xfb_enabled);
888 visitor.run(shader);
889 if (mode == ir_var_shader_out) {
890 if (shader->Stage == MESA_SHADER_GEOMETRY) {
891 /* For geometry shaders, outputs need to be lowered before each call
892 * to EmitVertex()
893 */
894 lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
895
896 /* Add all the variables in first. */
897 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
898
899 /* Now update all the EmitVertex instances */
900 splicer.run(instructions);
901 } else {
902 /* For other shader types, outputs need to be lowered before each
903 * return statement and at the end of main()
904 */
905
906 lower_packed_varyings_return_splicer splicer(mem_ctx, &new_instructions);
907
908 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
909
910 splicer.run(instructions);
911
912 /* Lower outputs at the end of main() if the last instruction is not
913 * a return statement
914 */
915 if (((ir_instruction*)instructions->get_tail())->ir_type != ir_type_return) {
916 main_func_sig->body.append_list(&new_instructions);
917 }
918 }
919 } else {
920 /* Shader inputs need to be lowered at the beginning of main() */
921 main_func_sig->body.get_head_raw()->insert_before(&new_instructions);
922 main_func_sig->body.get_head_raw()->insert_before(&new_variables);
923 }
924 }
925