• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 package org.apache.commons.math.special;
18 
19 import org.apache.commons.math.MathException;
20 import org.apache.commons.math.MaxIterationsExceededException;
21 import org.apache.commons.math.util.ContinuedFraction;
22 import org.apache.commons.math.util.FastMath;
23 
24 /**
25  * This is a utility class that provides computation methods related to the
26  * Gamma family of functions.
27  *
28  * @version $Revision: 1042510 $ $Date: 2010-12-06 02:54:18 +0100 (lun. 06 déc. 2010) $
29  */
30 public class Gamma {
31 
32     /**
33      * <a href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Euler-Mascheroni constant</a>
34      * @since 2.0
35      */
36     public static final double GAMMA = 0.577215664901532860606512090082;
37 
38     /** Maximum allowed numerical error. */
39     private static final double DEFAULT_EPSILON = 10e-15;
40 
41     /** Lanczos coefficients */
42     private static final double[] LANCZOS =
43     {
44         0.99999999999999709182,
45         57.156235665862923517,
46         -59.597960355475491248,
47         14.136097974741747174,
48         -0.49191381609762019978,
49         .33994649984811888699e-4,
50         .46523628927048575665e-4,
51         -.98374475304879564677e-4,
52         .15808870322491248884e-3,
53         -.21026444172410488319e-3,
54         .21743961811521264320e-3,
55         -.16431810653676389022e-3,
56         .84418223983852743293e-4,
57         -.26190838401581408670e-4,
58         .36899182659531622704e-5,
59     };
60 
61     /** Avoid repeated computation of log of 2 PI in logGamma */
62     private static final double HALF_LOG_2_PI = 0.5 * FastMath.log(2.0 * FastMath.PI);
63 
64     // limits for switching algorithm in digamma
65     /** C limit. */
66     private static final double C_LIMIT = 49;
67 
68     /** S limit. */
69     private static final double S_LIMIT = 1e-5;
70 
71     /**
72      * Default constructor.  Prohibit instantiation.
73      */
Gamma()74     private Gamma() {
75         super();
76     }
77 
78     /**
79      * Returns the natural logarithm of the gamma function &#915;(x).
80      *
81      * The implementation of this method is based on:
82      * <ul>
83      * <li><a href="http://mathworld.wolfram.com/GammaFunction.html">
84      * Gamma Function</a>, equation (28).</li>
85      * <li><a href="http://mathworld.wolfram.com/LanczosApproximation.html">
86      * Lanczos Approximation</a>, equations (1) through (5).</li>
87      * <li><a href="http://my.fit.edu/~gabdo/gamma.txt">Paul Godfrey, A note on
88      * the computation of the convergent Lanczos complex Gamma approximation
89      * </a></li>
90      * </ul>
91      *
92      * @param x the value.
93      * @return log(&#915;(x))
94      */
logGamma(double x)95     public static double logGamma(double x) {
96         double ret;
97 
98         if (Double.isNaN(x) || (x <= 0.0)) {
99             ret = Double.NaN;
100         } else {
101             double g = 607.0 / 128.0;
102 
103             double sum = 0.0;
104             for (int i = LANCZOS.length - 1; i > 0; --i) {
105                 sum = sum + (LANCZOS[i] / (x + i));
106             }
107             sum = sum + LANCZOS[0];
108 
109             double tmp = x + g + .5;
110             ret = ((x + .5) * FastMath.log(tmp)) - tmp +
111                 HALF_LOG_2_PI + FastMath.log(sum / x);
112         }
113 
114         return ret;
115     }
116 
117     /**
118      * Returns the regularized gamma function P(a, x).
119      *
120      * @param a the a parameter.
121      * @param x the value.
122      * @return the regularized gamma function P(a, x)
123      * @throws MathException if the algorithm fails to converge.
124      */
regularizedGammaP(double a, double x)125     public static double regularizedGammaP(double a, double x)
126         throws MathException
127     {
128         return regularizedGammaP(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
129     }
130 
131 
132     /**
133      * Returns the regularized gamma function P(a, x).
134      *
135      * The implementation of this method is based on:
136      * <ul>
137      * <li>
138      * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
139      * Regularized Gamma Function</a>, equation (1).</li>
140      * <li>
141      * <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html">
142      * Incomplete Gamma Function</a>, equation (4).</li>
143      * <li>
144      * <a href="http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html">
145      * Confluent Hypergeometric Function of the First Kind</a>, equation (1).
146      * </li>
147      * </ul>
148      *
149      * @param a the a parameter.
150      * @param x the value.
151      * @param epsilon When the absolute value of the nth item in the
152      *                series is less than epsilon the approximation ceases
153      *                to calculate further elements in the series.
154      * @param maxIterations Maximum number of "iterations" to complete.
155      * @return the regularized gamma function P(a, x)
156      * @throws MathException if the algorithm fails to converge.
157      */
regularizedGammaP(double a, double x, double epsilon, int maxIterations)158     public static double regularizedGammaP(double a,
159                                            double x,
160                                            double epsilon,
161                                            int maxIterations)
162         throws MathException
163     {
164         double ret;
165 
166         if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
167             ret = Double.NaN;
168         } else if (x == 0.0) {
169             ret = 0.0;
170         } else if (x >= a + 1) {
171             // use regularizedGammaQ because it should converge faster in this
172             // case.
173             ret = 1.0 - regularizedGammaQ(a, x, epsilon, maxIterations);
174         } else {
175             // calculate series
176             double n = 0.0; // current element index
177             double an = 1.0 / a; // n-th element in the series
178             double sum = an; // partial sum
179             while (FastMath.abs(an/sum) > epsilon && n < maxIterations && sum < Double.POSITIVE_INFINITY) {
180                 // compute next element in the series
181                 n = n + 1.0;
182                 an = an * (x / (a + n));
183 
184                 // update partial sum
185                 sum = sum + an;
186             }
187             if (n >= maxIterations) {
188                 throw new MaxIterationsExceededException(maxIterations);
189             } else if (Double.isInfinite(sum)) {
190                 ret = 1.0;
191             } else {
192                 ret = FastMath.exp(-x + (a * FastMath.log(x)) - logGamma(a)) * sum;
193             }
194         }
195 
196         return ret;
197     }
198 
199     /**
200      * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
201      *
202      * @param a the a parameter.
203      * @param x the value.
204      * @return the regularized gamma function Q(a, x)
205      * @throws MathException if the algorithm fails to converge.
206      */
regularizedGammaQ(double a, double x)207     public static double regularizedGammaQ(double a, double x)
208         throws MathException
209     {
210         return regularizedGammaQ(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
211     }
212 
213     /**
214      * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
215      *
216      * The implementation of this method is based on:
217      * <ul>
218      * <li>
219      * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
220      * Regularized Gamma Function</a>, equation (1).</li>
221      * <li>
222      * <a href="http://functions.wolfram.com/GammaBetaErf/GammaRegularized/10/0003/">
223      * Regularized incomplete gamma function: Continued fraction representations  (formula 06.08.10.0003)</a></li>
224      * </ul>
225      *
226      * @param a the a parameter.
227      * @param x the value.
228      * @param epsilon When the absolute value of the nth item in the
229      *                series is less than epsilon the approximation ceases
230      *                to calculate further elements in the series.
231      * @param maxIterations Maximum number of "iterations" to complete.
232      * @return the regularized gamma function P(a, x)
233      * @throws MathException if the algorithm fails to converge.
234      */
regularizedGammaQ(final double a, double x, double epsilon, int maxIterations)235     public static double regularizedGammaQ(final double a,
236                                            double x,
237                                            double epsilon,
238                                            int maxIterations)
239         throws MathException
240     {
241         double ret;
242 
243         if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
244             ret = Double.NaN;
245         } else if (x == 0.0) {
246             ret = 1.0;
247         } else if (x < a + 1.0) {
248             // use regularizedGammaP because it should converge faster in this
249             // case.
250             ret = 1.0 - regularizedGammaP(a, x, epsilon, maxIterations);
251         } else {
252             // create continued fraction
253             ContinuedFraction cf = new ContinuedFraction() {
254 
255                 @Override
256                 protected double getA(int n, double x) {
257                     return ((2.0 * n) + 1.0) - a + x;
258                 }
259 
260                 @Override
261                 protected double getB(int n, double x) {
262                     return n * (a - n);
263                 }
264             };
265 
266             ret = 1.0 / cf.evaluate(x, epsilon, maxIterations);
267             ret = FastMath.exp(-x + (a * FastMath.log(x)) - logGamma(a)) * ret;
268         }
269 
270         return ret;
271     }
272 
273 
274     /**
275      * <p>Computes the digamma function of x.</p>
276      *
277      * <p>This is an independently written implementation of the algorithm described in
278      * Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976.</p>
279      *
280      * <p>Some of the constants have been changed to increase accuracy at the moderate expense
281      * of run-time.  The result should be accurate to within 10^-8 absolute tolerance for
282      * x >= 10^-5 and within 10^-8 relative tolerance for x > 0.</p>
283      *
284      * <p>Performance for large negative values of x will be quite expensive (proportional to
285      * |x|).  Accuracy for negative values of x should be about 10^-8 absolute for results
286      * less than 10^5 and 10^-8 relative for results larger than that.</p>
287      *
288      * @param x  the argument
289      * @return   digamma(x) to within 10-8 relative or absolute error whichever is smaller
290      * @see <a href="http://en.wikipedia.org/wiki/Digamma_function"> Digamma at wikipedia </a>
291      * @see <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf"> Bernardo&apos;s original article </a>
292      * @since 2.0
293      */
digamma(double x)294     public static double digamma(double x) {
295         if (x > 0 && x <= S_LIMIT) {
296             // use method 5 from Bernardo AS103
297             // accurate to O(x)
298             return -GAMMA - 1 / x;
299         }
300 
301         if (x >= C_LIMIT) {
302             // use method 4 (accurate to O(1/x^8)
303             double inv = 1 / (x * x);
304             //            1       1        1         1
305             // log(x) -  --- - ------ + ------- - -------
306             //           2 x   12 x^2   120 x^4   252 x^6
307             return FastMath.log(x) - 0.5 / x - inv * ((1.0 / 12) + inv * (1.0 / 120 - inv / 252));
308         }
309 
310         return digamma(x + 1) - 1 / x;
311     }
312 
313     /**
314      * <p>Computes the trigamma function of x.  This function is derived by taking the derivative of
315      * the implementation of digamma.</p>
316      *
317      * @param x  the argument
318      * @return   trigamma(x) to within 10-8 relative or absolute error whichever is smaller
319      * @see <a href="http://en.wikipedia.org/wiki/Trigamma_function"> Trigamma at wikipedia </a>
320      * @see Gamma#digamma(double)
321      * @since 2.0
322      */
trigamma(double x)323     public static double trigamma(double x) {
324         if (x > 0 && x <= S_LIMIT) {
325             return 1 / (x * x);
326         }
327 
328         if (x >= C_LIMIT) {
329             double inv = 1 / (x * x);
330             //  1    1      1       1       1
331             //  - + ---- + ---- - ----- + -----
332             //  x      2      3       5       7
333             //      2 x    6 x    30 x    42 x
334             return 1 / x + inv / 2 + inv / x * (1.0 / 6 - inv * (1.0 / 30 + inv / 42));
335         }
336 
337         return trigamma(x + 1) + 1 / (x * x);
338     }
339 }
340