• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Double-precision log(x) function.
3  *
4  * Copyright (c) 2018, Arm Limited.
5  * SPDX-License-Identifier: MIT
6  */
7 
8 #include <math.h>
9 #include <stdint.h>
10 #include "math_config.h"
11 
12 #define T __log_data.tab
13 #define T2 __log_data.tab2
14 #define B __log_data.poly1
15 #define A __log_data.poly
16 #define Ln2hi __log_data.ln2hi
17 #define Ln2lo __log_data.ln2lo
18 #define N (1 << LOG_TABLE_BITS)
19 #define OFF 0x3fe6000000000000
20 
21 /* Top 16 bits of a double.  */
22 static inline uint32_t
top16(double x)23 top16 (double x)
24 {
25   return asuint64 (x) >> 48;
26 }
27 
28 double
log(double x)29 log (double x)
30 {
31   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
32   double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
33   uint64_t ix, iz, tmp;
34   uint32_t top;
35   int k, i;
36 
37   ix = asuint64 (x);
38   top = top16 (x);
39 
40 #if LOG_POLY1_ORDER == 10 || LOG_POLY1_ORDER == 11
41 # define LO asuint64 (1.0 - 0x1p-5)
42 # define HI asuint64 (1.0 + 0x1.1p-5)
43 #elif LOG_POLY1_ORDER == 12
44 # define LO asuint64 (1.0 - 0x1p-4)
45 # define HI asuint64 (1.0 + 0x1.09p-4)
46 #endif
47   if (unlikely (ix - LO < HI - LO))
48     {
49       /* Handle close to 1.0 inputs separately.  */
50       /* Fix sign of zero with downward rounding when x==1.  */
51       if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0)))
52 	return 0;
53       r = x - 1.0;
54       r2 = r * r;
55       r3 = r * r2;
56 #if LOG_POLY1_ORDER == 10
57       /* Worst-case error is around 0.516 ULP.  */
58       y = r3 * (B[1] + r * B[2] + r2 * B[3]
59 		+ r3 * (B[4] + r * B[5] + r2 * B[6] + r3 * (B[7] + r * B[8])));
60       w = B[0] * r2; /* B[0] == -0.5.  */
61       hi = r + w;
62       y += r - hi + w;
63       y += hi;
64 #elif LOG_POLY1_ORDER == 11
65       /* Worst-case error is around 0.516 ULP.  */
66       y = r3 * (B[1] + r * B[2]
67 		+ r2 * (B[3] + r * B[4] + r2 * B[5]
68 			+ r3 * (B[6] + r * B[7] + r2 * B[8] + r3 * B[9])));
69       w = B[0] * r2; /* B[0] == -0.5.  */
70       hi = r + w;
71       y += r - hi + w;
72       y += hi;
73 #elif LOG_POLY1_ORDER == 12
74       y = r3 * (B[1] + r * B[2] + r2 * B[3]
75 		+ r3 * (B[4] + r * B[5] + r2 * B[6]
76 			+ r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
77 # if N <= 64
78       /* Worst-case error is around 0.532 ULP.  */
79       w = B[0] * r2; /* B[0] == -0.5.  */
80       hi = r + w;
81       y += r - hi + w;
82       y += hi;
83 # else
84       /* Worst-case error is around 0.507 ULP.  */
85       w = r * 0x1p27;
86       double_t rhi = r + w - w;
87       double_t rlo = r - rhi;
88       w = rhi * rhi * B[0]; /* B[0] == -0.5.  */
89       hi = r + w;
90       lo = r - hi + w;
91       lo += B[0] * rlo * (rhi + r);
92       y += lo;
93       y += hi;
94 # endif
95 #endif
96       return eval_as_double (y);
97     }
98   if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
99     {
100       /* x < 0x1p-1022 or inf or nan.  */
101       if (ix * 2 == 0)
102 	return __math_divzero (1);
103       if (ix == asuint64 (INFINITY)) /* log(inf) == inf.  */
104 	return x;
105       if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
106 	return __math_invalid (x);
107       /* x is subnormal, normalize it.  */
108       ix = asuint64 (x * 0x1p52);
109       ix -= 52ULL << 52;
110     }
111 
112   /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
113      The range is split into N subintervals.
114      The ith subinterval contains z and c is near its center.  */
115   tmp = ix - OFF;
116   i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
117   k = (int64_t) tmp >> 52; /* arithmetic shift */
118   iz = ix - (tmp & 0xfffULL << 52);
119   invc = T[i].invc;
120   logc = T[i].logc;
121   z = asdouble (iz);
122 
123   /* log(x) = log1p(z/c-1) + log(c) + k*Ln2.  */
124   /* r ~= z/c - 1, |r| < 1/(2*N).  */
125 #if HAVE_FAST_FMA
126   /* rounding error: 0x1p-55/N.  */
127   r = fma (z, invc, -1.0);
128 #else
129   /* rounding error: 0x1p-55/N + 0x1p-66.  */
130   r = (z - T2[i].chi - T2[i].clo) * invc;
131 #endif
132   kd = (double_t) k;
133 
134   /* hi + lo = r + log(c) + k*Ln2.  */
135   w = kd * Ln2hi + logc;
136   hi = w + r;
137   lo = w - hi + r + kd * Ln2lo;
138 
139   /* log(x) = lo + (log1p(r) - r) + hi.  */
140   r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
141   /* Worst case error if |y| > 0x1p-5:
142      0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
143      Worst case error if |y| > 0x1p-4:
144      0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma).  */
145 #if LOG_POLY_ORDER == 6
146   y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
147 #elif LOG_POLY_ORDER == 7
148   y = lo
149       + r2 * (A[0] + r * A[1] + r2 * (A[2] + r * A[3])
150 	      + r2 * r2 * (A[4] + r * A[5]))
151       + hi;
152 #endif
153   return eval_as_double (y);
154 }
155 #if USE_GLIBC_ABI
156 strong_alias (log, __log_finite)
157 hidden_alias (log, __ieee754_log)
158 #endif
159