1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29 #include "nir_builder.h"
30 #include "nir_vla.h"
31
32 /*
33 * This file implements an out-of-SSA pass as described in "Revisiting
34 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
35 * Boissinot et al.
36 */
37
38 struct from_ssa_state {
39 nir_builder builder;
40 void *dead_ctx;
41 bool phi_webs_only;
42 struct hash_table *merge_node_table;
43 nir_instr *instr;
44 bool progress;
45 };
46
47 /* Returns true if a dominates b */
48 static bool
ssa_def_dominates(nir_ssa_def * a,nir_ssa_def * b)49 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
50 {
51 if (a->live_index == 0) {
52 /* SSA undefs always dominate */
53 return true;
54 } else if (b->live_index < a->live_index) {
55 return false;
56 } else if (a->parent_instr->block == b->parent_instr->block) {
57 return a->live_index <= b->live_index;
58 } else {
59 return nir_block_dominates(a->parent_instr->block,
60 b->parent_instr->block);
61 }
62 }
63
64
65 /* The following data structure, which I have named merge_set is a way of
66 * representing a set registers of non-interfering registers. This is
67 * based on the concept of a "dominance forest" presented in "Fast Copy
68 * Coalescing and Live-Range Identification" by Budimlic et al. but the
69 * implementation concept is taken from "Revisiting Out-of-SSA Translation
70 * for Correctness, Code Quality, and Efficiency" by Boissinot et al.
71 *
72 * Each SSA definition is associated with a merge_node and the association
73 * is represented by a combination of a hash table and the "def" parameter
74 * in the merge_node structure. The merge_set stores a linked list of
75 * merge_nodes in dominance order of the ssa definitions. (Since the
76 * liveness analysis pass indexes the SSA values in dominance order for us,
77 * this is an easy thing to keep up.) It is assumed that no pair of the
78 * nodes in a given set interfere. Merging two sets or checking for
79 * interference can be done in a single linear-time merge-sort walk of the
80 * two lists of nodes.
81 */
82 struct merge_set;
83
84 typedef struct {
85 struct exec_node node;
86 struct merge_set *set;
87 nir_ssa_def *def;
88 } merge_node;
89
90 typedef struct merge_set {
91 struct exec_list nodes;
92 unsigned size;
93 nir_register *reg;
94 } merge_set;
95
96 #if 0
97 static void
98 merge_set_dump(merge_set *set, FILE *fp)
99 {
100 nir_ssa_def *dom[set->size];
101 int dom_idx = -1;
102
103 foreach_list_typed(merge_node, node, node, &set->nodes) {
104 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
105 dom_idx--;
106
107 for (int i = 0; i <= dom_idx; i++)
108 fprintf(fp, " ");
109
110 if (node->def->name)
111 fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
112 else
113 fprintf(fp, "ssa_%d\n", node->def->index);
114
115 dom[++dom_idx] = node->def;
116 }
117 }
118 #endif
119
120 static merge_node *
get_merge_node(nir_ssa_def * def,struct from_ssa_state * state)121 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
122 {
123 struct hash_entry *entry =
124 _mesa_hash_table_search(state->merge_node_table, def);
125 if (entry)
126 return entry->data;
127
128 merge_set *set = ralloc(state->dead_ctx, merge_set);
129 exec_list_make_empty(&set->nodes);
130 set->size = 1;
131 set->reg = NULL;
132
133 merge_node *node = ralloc(state->dead_ctx, merge_node);
134 node->set = set;
135 node->def = def;
136 exec_list_push_head(&set->nodes, &node->node);
137
138 _mesa_hash_table_insert(state->merge_node_table, def, node);
139
140 return node;
141 }
142
143 static bool
merge_nodes_interfere(merge_node * a,merge_node * b)144 merge_nodes_interfere(merge_node *a, merge_node *b)
145 {
146 return nir_ssa_defs_interfere(a->def, b->def);
147 }
148
149 /* Merges b into a */
150 static merge_set *
merge_merge_sets(merge_set * a,merge_set * b)151 merge_merge_sets(merge_set *a, merge_set *b)
152 {
153 struct exec_node *an = exec_list_get_head(&a->nodes);
154 struct exec_node *bn = exec_list_get_head(&b->nodes);
155 while (!exec_node_is_tail_sentinel(bn)) {
156 merge_node *a_node = exec_node_data(merge_node, an, node);
157 merge_node *b_node = exec_node_data(merge_node, bn, node);
158
159 if (exec_node_is_tail_sentinel(an) ||
160 a_node->def->live_index > b_node->def->live_index) {
161 struct exec_node *next = bn->next;
162 exec_node_remove(bn);
163 exec_node_insert_node_before(an, bn);
164 exec_node_data(merge_node, bn, node)->set = a;
165 bn = next;
166 } else {
167 an = an->next;
168 }
169 }
170
171 a->size += b->size;
172 b->size = 0;
173
174 return a;
175 }
176
177 /* Checks for any interference between two merge sets
178 *
179 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
180 * Translation for Correctness, Code Quality, and Efficiency" by
181 * Boissinot et al.
182 */
183 static bool
merge_sets_interfere(merge_set * a,merge_set * b)184 merge_sets_interfere(merge_set *a, merge_set *b)
185 {
186 NIR_VLA(merge_node *, dom, a->size + b->size);
187 int dom_idx = -1;
188
189 struct exec_node *an = exec_list_get_head(&a->nodes);
190 struct exec_node *bn = exec_list_get_head(&b->nodes);
191 while (!exec_node_is_tail_sentinel(an) ||
192 !exec_node_is_tail_sentinel(bn)) {
193
194 merge_node *current;
195 if (exec_node_is_tail_sentinel(an)) {
196 current = exec_node_data(merge_node, bn, node);
197 bn = bn->next;
198 } else if (exec_node_is_tail_sentinel(bn)) {
199 current = exec_node_data(merge_node, an, node);
200 an = an->next;
201 } else {
202 merge_node *a_node = exec_node_data(merge_node, an, node);
203 merge_node *b_node = exec_node_data(merge_node, bn, node);
204
205 if (a_node->def->live_index <= b_node->def->live_index) {
206 current = a_node;
207 an = an->next;
208 } else {
209 current = b_node;
210 bn = bn->next;
211 }
212 }
213
214 while (dom_idx >= 0 &&
215 !ssa_def_dominates(dom[dom_idx]->def, current->def))
216 dom_idx--;
217
218 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
219 return true;
220
221 dom[++dom_idx] = current;
222 }
223
224 return false;
225 }
226
227 static bool
add_parallel_copy_to_end_of_block(nir_block * block,void * dead_ctx)228 add_parallel_copy_to_end_of_block(nir_block *block, void *dead_ctx)
229 {
230
231 bool need_end_copy = false;
232 if (block->successors[0]) {
233 nir_instr *instr = nir_block_first_instr(block->successors[0]);
234 if (instr && instr->type == nir_instr_type_phi)
235 need_end_copy = true;
236 }
237
238 if (block->successors[1]) {
239 nir_instr *instr = nir_block_first_instr(block->successors[1]);
240 if (instr && instr->type == nir_instr_type_phi)
241 need_end_copy = true;
242 }
243
244 if (need_end_copy) {
245 /* If one of our successors has at least one phi node, we need to
246 * create a parallel copy at the end of the block but before the jump
247 * (if there is one).
248 */
249 nir_parallel_copy_instr *pcopy =
250 nir_parallel_copy_instr_create(dead_ctx);
251
252 nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
253 }
254
255 return true;
256 }
257
258 static nir_parallel_copy_instr *
get_parallel_copy_at_end_of_block(nir_block * block)259 get_parallel_copy_at_end_of_block(nir_block *block)
260 {
261 nir_instr *last_instr = nir_block_last_instr(block);
262 if (last_instr == NULL)
263 return NULL;
264
265 /* The last instruction may be a jump in which case the parallel copy is
266 * right before it.
267 */
268 if (last_instr->type == nir_instr_type_jump)
269 last_instr = nir_instr_prev(last_instr);
270
271 if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
272 return nir_instr_as_parallel_copy(last_instr);
273 else
274 return NULL;
275 }
276
277 /** Isolate phi nodes with parallel copies
278 *
279 * In order to solve the dependency problems with the sources and
280 * destinations of phi nodes, we first isolate them by adding parallel
281 * copies to the beginnings and ends of basic blocks. For every block with
282 * phi nodes, we add a parallel copy immediately following the last phi
283 * node that copies the destinations of all of the phi nodes to new SSA
284 * values. We also add a parallel copy to the end of every block that has
285 * a successor with phi nodes that, for each phi node in each successor,
286 * copies the corresponding sorce of the phi node and adjust the phi to
287 * used the destination of the parallel copy.
288 *
289 * In SSA form, each value has exactly one definition. What this does is
290 * ensure that each value used in a phi also has exactly one use. The
291 * destinations of phis are only used by the parallel copy immediately
292 * following the phi nodes and. Thanks to the parallel copy at the end of
293 * the predecessor block, the sources of phi nodes are are the only use of
294 * that value. This allows us to immediately assign all the sources and
295 * destinations of any given phi node to the same register without worrying
296 * about interference at all. We do coalescing to get rid of the parallel
297 * copies where possible.
298 *
299 * Before this pass can be run, we have to iterate over the blocks with
300 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
301 * the ends of blocks exist. We can create the ones at the beginnings as
302 * we go, but the ones at the ends of blocks need to be created ahead of
303 * time because of potential back-edges in the CFG.
304 */
305 static bool
isolate_phi_nodes_block(nir_block * block,void * dead_ctx)306 isolate_phi_nodes_block(nir_block *block, void *dead_ctx)
307 {
308 nir_instr *last_phi_instr = NULL;
309 nir_foreach_instr(instr, block) {
310 /* Phi nodes only ever come at the start of a block */
311 if (instr->type != nir_instr_type_phi)
312 break;
313
314 last_phi_instr = instr;
315 }
316
317 /* If we don't have any phis, then there's nothing for us to do. */
318 if (last_phi_instr == NULL)
319 return true;
320
321 /* If we have phi nodes, we need to create a parallel copy at the
322 * start of this block but after the phi nodes.
323 */
324 nir_parallel_copy_instr *block_pcopy =
325 nir_parallel_copy_instr_create(dead_ctx);
326 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
327
328 nir_foreach_instr(instr, block) {
329 /* Phi nodes only ever come at the start of a block */
330 if (instr->type != nir_instr_type_phi)
331 break;
332
333 nir_phi_instr *phi = nir_instr_as_phi(instr);
334 assert(phi->dest.is_ssa);
335 nir_foreach_phi_src(src, phi) {
336 nir_parallel_copy_instr *pcopy =
337 get_parallel_copy_at_end_of_block(src->pred);
338 assert(pcopy);
339
340 nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
341 nir_parallel_copy_entry);
342 nir_ssa_dest_init(&pcopy->instr, &entry->dest,
343 phi->dest.ssa.num_components,
344 phi->dest.ssa.bit_size, src->src.ssa->name);
345 exec_list_push_tail(&pcopy->entries, &entry->node);
346
347 assert(src->src.is_ssa);
348 nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
349
350 nir_instr_rewrite_src(&phi->instr, &src->src,
351 nir_src_for_ssa(&entry->dest.ssa));
352 }
353
354 nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
355 nir_parallel_copy_entry);
356 nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
357 phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
358 phi->dest.ssa.name);
359 exec_list_push_tail(&block_pcopy->entries, &entry->node);
360
361 nir_ssa_def_rewrite_uses(&phi->dest.ssa,
362 nir_src_for_ssa(&entry->dest.ssa));
363
364 nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
365 nir_src_for_ssa(&phi->dest.ssa));
366 }
367
368 return true;
369 }
370
371 static bool
coalesce_phi_nodes_block(nir_block * block,struct from_ssa_state * state)372 coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
373 {
374 nir_foreach_instr(instr, block) {
375 /* Phi nodes only ever come at the start of a block */
376 if (instr->type != nir_instr_type_phi)
377 break;
378
379 nir_phi_instr *phi = nir_instr_as_phi(instr);
380
381 assert(phi->dest.is_ssa);
382 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
383
384 nir_foreach_phi_src(src, phi) {
385 assert(src->src.is_ssa);
386 merge_node *src_node = get_merge_node(src->src.ssa, state);
387 if (src_node->set != dest_node->set)
388 merge_merge_sets(dest_node->set, src_node->set);
389 }
390 }
391
392 return true;
393 }
394
395 static void
aggressive_coalesce_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)396 aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
397 struct from_ssa_state *state)
398 {
399 nir_foreach_parallel_copy_entry(entry, pcopy) {
400 if (!entry->src.is_ssa)
401 continue;
402
403 /* Since load_const instructions are SSA only, we can't replace their
404 * destinations with registers and, therefore, can't coalesce them.
405 */
406 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
407 continue;
408
409 /* Don't try and coalesce these */
410 if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
411 continue;
412
413 merge_node *src_node = get_merge_node(entry->src.ssa, state);
414 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
415
416 if (src_node->set == dest_node->set)
417 continue;
418
419 if (!merge_sets_interfere(src_node->set, dest_node->set))
420 merge_merge_sets(src_node->set, dest_node->set);
421 }
422 }
423
424 static bool
aggressive_coalesce_block(nir_block * block,struct from_ssa_state * state)425 aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
426 {
427 nir_parallel_copy_instr *start_pcopy = NULL;
428 nir_foreach_instr(instr, block) {
429 /* Phi nodes only ever come at the start of a block */
430 if (instr->type != nir_instr_type_phi) {
431 if (instr->type != nir_instr_type_parallel_copy)
432 break; /* The parallel copy must be right after the phis */
433
434 start_pcopy = nir_instr_as_parallel_copy(instr);
435
436 aggressive_coalesce_parallel_copy(start_pcopy, state);
437
438 break;
439 }
440 }
441
442 nir_parallel_copy_instr *end_pcopy =
443 get_parallel_copy_at_end_of_block(block);
444
445 if (end_pcopy && end_pcopy != start_pcopy)
446 aggressive_coalesce_parallel_copy(end_pcopy, state);
447
448 return true;
449 }
450
451 static nir_register *
create_reg_for_ssa_def(nir_ssa_def * def,nir_function_impl * impl)452 create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl)
453 {
454 nir_register *reg = nir_local_reg_create(impl);
455
456 reg->name = def->name;
457 reg->num_components = def->num_components;
458 reg->bit_size = def->bit_size;
459 reg->num_array_elems = 0;
460
461 return reg;
462 }
463
464 static bool
rewrite_ssa_def(nir_ssa_def * def,void * void_state)465 rewrite_ssa_def(nir_ssa_def *def, void *void_state)
466 {
467 struct from_ssa_state *state = void_state;
468 nir_register *reg;
469
470 struct hash_entry *entry =
471 _mesa_hash_table_search(state->merge_node_table, def);
472 if (entry) {
473 /* In this case, we're part of a phi web. Use the web's register. */
474 merge_node *node = (merge_node *)entry->data;
475
476 /* If it doesn't have a register yet, create one. Note that all of
477 * the things in the merge set should be the same so it doesn't
478 * matter which node's definition we use.
479 */
480 if (node->set->reg == NULL)
481 node->set->reg = create_reg_for_ssa_def(def, state->builder.impl);
482
483 reg = node->set->reg;
484 } else {
485 if (state->phi_webs_only)
486 return true;
487
488 /* We leave load_const SSA values alone. They act as immediates to
489 * the backend. If it got coalesced into a phi, that's ok.
490 */
491 if (def->parent_instr->type == nir_instr_type_load_const)
492 return true;
493
494 reg = create_reg_for_ssa_def(def, state->builder.impl);
495 }
496
497 nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg));
498 assert(list_empty(&def->uses) && list_empty(&def->if_uses));
499
500 if (def->parent_instr->type == nir_instr_type_ssa_undef) {
501 /* If it's an ssa_undef instruction, remove it since we know we just got
502 * rid of all its uses.
503 */
504 nir_instr *parent_instr = def->parent_instr;
505 nir_instr_remove(parent_instr);
506 ralloc_steal(state->dead_ctx, parent_instr);
507 state->progress = true;
508 return true;
509 }
510
511 assert(def->parent_instr->type != nir_instr_type_load_const);
512
513 /* At this point we know a priori that this SSA def is part of a
514 * nir_dest. We can use exec_node_data to get the dest pointer.
515 */
516 nir_dest *dest = exec_node_data(nir_dest, def, ssa);
517
518 nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));
519 state->progress = true;
520 return true;
521 }
522
523 /* Resolves ssa definitions to registers. While we're at it, we also
524 * remove phi nodes.
525 */
526 static void
resolve_registers_block(nir_block * block,struct from_ssa_state * state)527 resolve_registers_block(nir_block *block, struct from_ssa_state *state)
528 {
529 nir_foreach_instr_safe(instr, block) {
530 state->instr = instr;
531 nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
532
533 if (instr->type == nir_instr_type_phi) {
534 nir_instr_remove(instr);
535 ralloc_steal(state->dead_ctx, instr);
536 state->progress = true;
537 }
538 }
539 state->instr = NULL;
540 }
541
542 static void
emit_copy(nir_builder * b,nir_src src,nir_src dest_src)543 emit_copy(nir_builder *b, nir_src src, nir_src dest_src)
544 {
545 assert(!dest_src.is_ssa &&
546 dest_src.reg.indirect == NULL &&
547 dest_src.reg.base_offset == 0);
548
549 if (src.is_ssa)
550 assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
551 else
552 assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
553
554 nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_imov);
555 nir_src_copy(&mov->src[0].src, &src, mov);
556 mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
557 mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
558
559 nir_builder_instr_insert(b, &mov->instr);
560 }
561
562 /* Resolves a single parallel copy operation into a sequence of movs
563 *
564 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
565 * Correctness, Code Quality, and Efficiency" by Boissinot et al.
566 * However, I never got the algorithm to work as written, so this version
567 * is slightly modified.
568 *
569 * The algorithm works by playing this little shell game with the values.
570 * We start by recording where every source value is and which source value
571 * each destination value should receive. We then grab any copy whose
572 * destination is "empty", i.e. not used as a source, and do the following:
573 * - Find where its source value currently lives
574 * - Emit the move instruction
575 * - Set the location of the source value to the destination
576 * - Mark the location containing the source value
577 * - Mark the destination as no longer needing to be copied
578 *
579 * When we run out of "empty" destinations, we have a cycle and so we
580 * create a temporary register, copy to that register, and mark the value
581 * we copied as living in that temporary. Now, the cycle is broken, so we
582 * can continue with the above steps.
583 */
584 static void
resolve_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)585 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
586 struct from_ssa_state *state)
587 {
588 unsigned num_copies = 0;
589 nir_foreach_parallel_copy_entry(entry, pcopy) {
590 /* Sources may be SSA */
591 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
592 continue;
593
594 num_copies++;
595 }
596
597 if (num_copies == 0) {
598 /* Hooray, we don't need any copies! */
599 nir_instr_remove(&pcopy->instr);
600 return;
601 }
602
603 /* The register/source corresponding to the given index */
604 NIR_VLA_ZERO(nir_src, values, num_copies * 2);
605
606 /* The current location of a given piece of data. We will use -1 for "null" */
607 NIR_VLA_FILL(int, loc, num_copies * 2, -1);
608
609 /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */
610 NIR_VLA_FILL(int, pred, num_copies * 2, -1);
611
612 /* The destinations we have yet to properly fill */
613 NIR_VLA(int, to_do, num_copies * 2);
614 int to_do_idx = -1;
615
616 state->builder.cursor = nir_before_instr(&pcopy->instr);
617
618 /* Now we set everything up:
619 * - All values get assigned a temporary index
620 * - Current locations are set from sources
621 * - Predicessors are recorded from sources and destinations
622 */
623 int num_vals = 0;
624 nir_foreach_parallel_copy_entry(entry, pcopy) {
625 /* Sources may be SSA */
626 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
627 continue;
628
629 int src_idx = -1;
630 for (int i = 0; i < num_vals; ++i) {
631 if (nir_srcs_equal(values[i], entry->src))
632 src_idx = i;
633 }
634 if (src_idx < 0) {
635 src_idx = num_vals++;
636 values[src_idx] = entry->src;
637 }
638
639 nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
640
641 int dest_idx = -1;
642 for (int i = 0; i < num_vals; ++i) {
643 if (nir_srcs_equal(values[i], dest_src)) {
644 /* Each destination of a parallel copy instruction should be
645 * unique. A destination may get used as a source, so we still
646 * have to walk the list. However, the predecessor should not,
647 * at this point, be set yet, so we should have -1 here.
648 */
649 assert(pred[i] == -1);
650 dest_idx = i;
651 }
652 }
653 if (dest_idx < 0) {
654 dest_idx = num_vals++;
655 values[dest_idx] = dest_src;
656 }
657
658 loc[src_idx] = src_idx;
659 pred[dest_idx] = src_idx;
660
661 to_do[++to_do_idx] = dest_idx;
662 }
663
664 /* Currently empty destinations we can go ahead and fill */
665 NIR_VLA(int, ready, num_copies * 2);
666 int ready_idx = -1;
667
668 /* Mark the ones that are ready for copying. We know an index is a
669 * destination if it has a predecessor and it's ready for copying if
670 * it's not marked as containing data.
671 */
672 for (int i = 0; i < num_vals; i++) {
673 if (pred[i] != -1 && loc[i] == -1)
674 ready[++ready_idx] = i;
675 }
676
677 while (to_do_idx >= 0) {
678 while (ready_idx >= 0) {
679 int b = ready[ready_idx--];
680 int a = pred[b];
681 emit_copy(&state->builder, values[loc[a]], values[b]);
682
683 /* If any other copies want a they can find it at b */
684 loc[a] = b;
685
686 /* b has been filled, mark it as not needing to be copied */
687 pred[b] = -1;
688
689 /* If a needs to be filled, it's ready for copying now */
690 if (pred[a] != -1)
691 ready[++ready_idx] = a;
692 }
693 int b = to_do[to_do_idx--];
694 if (pred[b] == -1)
695 continue;
696
697 /* If we got here, then we don't have any more trivial copies that we
698 * can do. We have to break a cycle, so we create a new temporary
699 * register for that purpose. Normally, if going out of SSA after
700 * register allocation, you would want to avoid creating temporary
701 * registers. However, we are going out of SSA before register
702 * allocation, so we would rather not create extra register
703 * dependencies for the backend to deal with. If it wants, the
704 * backend can coalesce the (possibly multiple) temporaries.
705 */
706 assert(num_vals < num_copies * 2);
707 nir_register *reg = nir_local_reg_create(state->builder.impl);
708 reg->name = "copy_temp";
709 reg->num_array_elems = 0;
710 if (values[b].is_ssa)
711 reg->num_components = values[b].ssa->num_components;
712 else
713 reg->num_components = values[b].reg.reg->num_components;
714 values[num_vals].is_ssa = false;
715 values[num_vals].reg.reg = reg;
716
717 emit_copy(&state->builder, values[b], values[num_vals]);
718 loc[b] = num_vals;
719 ready[++ready_idx] = b;
720 num_vals++;
721 }
722
723 nir_instr_remove(&pcopy->instr);
724 }
725
726 /* Resolves the parallel copies in a block. Each block can have at most
727 * two: One at the beginning, right after all the phi noces, and one at
728 * the end (or right before the final jump if it exists).
729 */
730 static bool
resolve_parallel_copies_block(nir_block * block,struct from_ssa_state * state)731 resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
732 {
733 /* At this point, we have removed all of the phi nodes. If a parallel
734 * copy existed right after the phi nodes in this block, it is now the
735 * first instruction.
736 */
737 nir_instr *first_instr = nir_block_first_instr(block);
738 if (first_instr == NULL)
739 return true; /* Empty, nothing to do. */
740
741 if (first_instr->type == nir_instr_type_parallel_copy) {
742 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
743
744 resolve_parallel_copy(pcopy, state);
745 }
746
747 /* It's possible that the above code already cleaned up the end parallel
748 * copy. However, doing so removed it form the instructions list so we
749 * won't find it here. Therefore, it's safe to go ahead and just look
750 * for one and clean it up if it exists.
751 */
752 nir_parallel_copy_instr *end_pcopy =
753 get_parallel_copy_at_end_of_block(block);
754 if (end_pcopy)
755 resolve_parallel_copy(end_pcopy, state);
756
757 return true;
758 }
759
760 static bool
nir_convert_from_ssa_impl(nir_function_impl * impl,bool phi_webs_only)761 nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
762 {
763 struct from_ssa_state state;
764
765 nir_builder_init(&state.builder, impl);
766 state.dead_ctx = ralloc_context(NULL);
767 state.phi_webs_only = phi_webs_only;
768 state.merge_node_table = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
769 _mesa_key_pointer_equal);
770 state.progress = false;
771
772 nir_foreach_block(block, impl) {
773 add_parallel_copy_to_end_of_block(block, state.dead_ctx);
774 }
775
776 nir_foreach_block(block, impl) {
777 isolate_phi_nodes_block(block, state.dead_ctx);
778 }
779
780 /* Mark metadata as dirty before we ask for liveness analysis */
781 nir_metadata_preserve(impl, nir_metadata_block_index |
782 nir_metadata_dominance);
783
784 nir_metadata_require(impl, nir_metadata_live_ssa_defs |
785 nir_metadata_dominance);
786
787 nir_foreach_block(block, impl) {
788 coalesce_phi_nodes_block(block, &state);
789 }
790
791 nir_foreach_block(block, impl) {
792 aggressive_coalesce_block(block, &state);
793 }
794
795 nir_foreach_block(block, impl) {
796 resolve_registers_block(block, &state);
797 }
798
799 nir_foreach_block(block, impl) {
800 resolve_parallel_copies_block(block, &state);
801 }
802
803 nir_metadata_preserve(impl, nir_metadata_block_index |
804 nir_metadata_dominance);
805
806 /* Clean up dead instructions and the hash tables */
807 _mesa_hash_table_destroy(state.merge_node_table, NULL);
808 ralloc_free(state.dead_ctx);
809 return state.progress;
810 }
811
812 bool
nir_convert_from_ssa(nir_shader * shader,bool phi_webs_only)813 nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
814 {
815 bool progress = false;
816
817 nir_foreach_function(function, shader) {
818 if (function->impl)
819 progress |= nir_convert_from_ssa_impl(function->impl, phi_webs_only);
820 }
821
822 return progress;
823 }
824
825
826 static void
place_phi_read(nir_shader * shader,nir_register * reg,nir_ssa_def * def,nir_block * block)827 place_phi_read(nir_shader *shader, nir_register *reg,
828 nir_ssa_def *def, nir_block *block)
829 {
830 if (block != def->parent_instr->block) {
831 /* Try to go up the single-successor tree */
832 bool all_single_successors = true;
833 struct set_entry *entry;
834 set_foreach(block->predecessors, entry) {
835 nir_block *pred = (nir_block *)entry->key;
836 if (pred->successors[0] && pred->successors[1]) {
837 all_single_successors = false;
838 break;
839 }
840 }
841
842 if (all_single_successors) {
843 /* All predecessors of this block have exactly one successor and it
844 * is this block so they must eventually lead here without
845 * intersecting each other. Place the reads in the predecessors
846 * instead of this block.
847 */
848 set_foreach(block->predecessors, entry)
849 place_phi_read(shader, reg, def, (nir_block *)entry->key);
850 return;
851 }
852 }
853
854 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
855 mov->src[0].src = nir_src_for_ssa(def);
856 mov->dest.dest = nir_dest_for_reg(reg);
857 mov->dest.write_mask = (1 << reg->num_components) - 1;
858 nir_instr_insert(nir_after_block_before_jump(block), &mov->instr);
859 }
860
861 /** Lower all of the phi nodes in a block to imovs to and from a register
862 *
863 * This provides a very quick-and-dirty out-of-SSA pass that you can run on a
864 * single block to convert all of its phis to a register and some imovs.
865 * The code that is generated, while not optimal for actual codegen in a
866 * back-end, is easy to generate, correct, and will turn into the same set of
867 * phis after you call regs_to_ssa and do some copy propagation.
868 *
869 * The one intelligent thing this pass does is that it places the moves from
870 * the phi sources as high up the predecessor tree as possible instead of in
871 * the exact predecessor. This means that, in particular, it will crawl into
872 * the deepest nesting of any if-ladders. In order to ensure that doing so is
873 * safe, it stops as soon as one of the predecessors has multiple successors.
874 */
875 bool
nir_lower_phis_to_regs_block(nir_block * block)876 nir_lower_phis_to_regs_block(nir_block *block)
877 {
878 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
879 nir_shader *shader = impl->function->shader;
880
881 bool progress = false;
882 nir_foreach_instr_safe(instr, block) {
883 if (instr->type != nir_instr_type_phi)
884 break;
885
886 nir_phi_instr *phi = nir_instr_as_phi(instr);
887 assert(phi->dest.is_ssa);
888
889 nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, impl);
890
891 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
892 mov->src[0].src = nir_src_for_reg(reg);
893 mov->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1;
894 nir_ssa_dest_init(&mov->instr, &mov->dest.dest,
895 phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
896 phi->dest.ssa.name);
897 nir_instr_insert(nir_after_instr(&phi->instr), &mov->instr);
898
899 nir_ssa_def_rewrite_uses(&phi->dest.ssa,
900 nir_src_for_ssa(&mov->dest.dest.ssa));
901
902 nir_foreach_phi_src(src, phi) {
903 assert(src->src.is_ssa);
904 place_phi_read(shader, reg, src->src.ssa, src->pred);
905 }
906
907 nir_instr_remove(&phi->instr);
908
909 progress = true;
910 }
911
912 return progress;
913 }
914
915 struct ssa_def_to_reg_state {
916 nir_function_impl *impl;
917 bool progress;
918 };
919
920 static bool
dest_replace_ssa_with_reg(nir_dest * dest,void * void_state)921 dest_replace_ssa_with_reg(nir_dest *dest, void *void_state)
922 {
923 struct ssa_def_to_reg_state *state = void_state;
924
925 if (!dest->is_ssa)
926 return true;
927
928 nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl);
929
930 nir_ssa_def_rewrite_uses(&dest->ssa, nir_src_for_reg(reg));
931
932 nir_instr *instr = dest->ssa.parent_instr;
933 *dest = nir_dest_for_reg(reg);
934 dest->reg.parent_instr = instr;
935 list_addtail(&dest->reg.def_link, ®->defs);
936
937 state->progress = true;
938
939 return true;
940 }
941
942 /** Lower all of the SSA defs in a block to registers
943 *
944 * This performs the very simple operation of blindly replacing all of the SSA
945 * defs in the given block with registers. If not used carefully, this may
946 * result in phi nodes with register sources which is technically invalid.
947 * Fortunately, the register-based into-SSA pass handles them anyway.
948 */
949 bool
nir_lower_ssa_defs_to_regs_block(nir_block * block)950 nir_lower_ssa_defs_to_regs_block(nir_block *block)
951 {
952 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
953 nir_shader *shader = impl->function->shader;
954
955 struct ssa_def_to_reg_state state = {
956 .impl = impl,
957 .progress = false,
958 };
959
960 nir_foreach_instr(instr, block) {
961 if (instr->type == nir_instr_type_ssa_undef) {
962 /* Undefs are just a read of something never written. */
963 nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr);
964 nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl);
965 nir_ssa_def_rewrite_uses(&undef->def, nir_src_for_reg(reg));
966 } else if (instr->type == nir_instr_type_load_const) {
967 /* Constant loads are SSA-only, we need to insert a move */
968 nir_load_const_instr *load = nir_instr_as_load_const(instr);
969 nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl);
970 nir_ssa_def_rewrite_uses(&load->def, nir_src_for_reg(reg));
971
972 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov);
973 mov->src[0].src = nir_src_for_ssa(&load->def);
974 mov->dest.dest = nir_dest_for_reg(reg);
975 mov->dest.write_mask = (1 << reg->num_components) - 1;
976 nir_instr_insert(nir_after_instr(&load->instr), &mov->instr);
977 } else {
978 nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state);
979 }
980 }
981
982 return state.progress;
983 }
984