1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "nir.h"
26 #include "nir_builder.h"
27 #include "c99_math.h"
28
29 /*
30 * Lowers some unsupported double operations, using only:
31 *
32 * - pack/unpackDouble2x32
33 * - conversion to/from single-precision
34 * - double add, mul, and fma
35 * - conditional select
36 * - 32-bit integer and floating point arithmetic
37 */
38
39 /* Creates a double with the exponent bits set to a given integer value */
40 static nir_ssa_def *
set_exponent(nir_builder * b,nir_ssa_def * src,nir_ssa_def * exp)41 set_exponent(nir_builder *b, nir_ssa_def *src, nir_ssa_def *exp)
42 {
43 /* Split into bits 0-31 and 32-63 */
44 nir_ssa_def *lo = nir_unpack_64_2x32_split_x(b, src);
45 nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
46
47 /* The exponent is bits 52-62, or 20-30 of the high word, so set the exponent
48 * to 1023
49 */
50 nir_ssa_def *new_hi = nir_bfi(b, nir_imm_int(b, 0x7ff00000), exp, hi);
51 /* recombine */
52 return nir_pack_64_2x32_split(b, lo, new_hi);
53 }
54
55 static nir_ssa_def *
get_exponent(nir_builder * b,nir_ssa_def * src)56 get_exponent(nir_builder *b, nir_ssa_def *src)
57 {
58 /* get bits 32-63 */
59 nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
60
61 /* extract bits 20-30 of the high word */
62 return nir_ubitfield_extract(b, hi, nir_imm_int(b, 20), nir_imm_int(b, 11));
63 }
64
65 /* Return infinity with the sign of the given source which is +/-0 */
66
67 static nir_ssa_def *
get_signed_inf(nir_builder * b,nir_ssa_def * zero)68 get_signed_inf(nir_builder *b, nir_ssa_def *zero)
69 {
70 nir_ssa_def *zero_hi = nir_unpack_64_2x32_split_y(b, zero);
71
72 /* The bit pattern for infinity is 0x7ff0000000000000, where the sign bit
73 * is the highest bit. Only the sign bit can be non-zero in the passed in
74 * source. So we essentially need to OR the infinity and the zero, except
75 * the low 32 bits are always 0 so we can construct the correct high 32
76 * bits and then pack it together with zero low 32 bits.
77 */
78 nir_ssa_def *inf_hi = nir_ior(b, nir_imm_int(b, 0x7ff00000), zero_hi);
79 return nir_pack_64_2x32_split(b, nir_imm_int(b, 0), inf_hi);
80 }
81
82 /*
83 * Generates the correctly-signed infinity if the source was zero, and flushes
84 * the result to 0 if the source was infinity or the calculated exponent was
85 * too small to be representable.
86 */
87
88 static nir_ssa_def *
fix_inv_result(nir_builder * b,nir_ssa_def * res,nir_ssa_def * src,nir_ssa_def * exp)89 fix_inv_result(nir_builder *b, nir_ssa_def *res, nir_ssa_def *src,
90 nir_ssa_def *exp)
91 {
92 /* If the exponent is too small or the original input was infinity/NaN,
93 * force the result to 0 (flush denorms) to avoid the work of handling
94 * denorms properly. Note that this doesn't preserve positive/negative
95 * zeros, but GLSL doesn't require it.
96 */
97 res = nir_bcsel(b, nir_ior(b, nir_ige(b, nir_imm_int(b, 0), exp),
98 nir_feq(b, nir_fabs(b, src),
99 nir_imm_double(b, INFINITY))),
100 nir_imm_double(b, 0.0f), res);
101
102 /* If the original input was 0, generate the correctly-signed infinity */
103 res = nir_bcsel(b, nir_fne(b, src, nir_imm_double(b, 0.0f)),
104 res, get_signed_inf(b, src));
105
106 return res;
107
108 }
109
110 static nir_ssa_def *
lower_rcp(nir_builder * b,nir_ssa_def * src)111 lower_rcp(nir_builder *b, nir_ssa_def *src)
112 {
113 /* normalize the input to avoid range issues */
114 nir_ssa_def *src_norm = set_exponent(b, src, nir_imm_int(b, 1023));
115
116 /* cast to float, do an rcp, and then cast back to get an approximate
117 * result
118 */
119 nir_ssa_def *ra = nir_f2f64(b, nir_frcp(b, nir_f2f32(b, src_norm)));
120
121 /* Fixup the exponent of the result - note that we check if this is too
122 * small below.
123 */
124 nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra),
125 nir_isub(b, get_exponent(b, src),
126 nir_imm_int(b, 1023)));
127
128 ra = set_exponent(b, ra, new_exp);
129
130 /* Do a few Newton-Raphson steps to improve precision.
131 *
132 * Each step doubles the precision, and we started off with around 24 bits,
133 * so we only need to do 2 steps to get to full precision. The step is:
134 *
135 * x_new = x * (2 - x*src)
136 *
137 * But we can re-arrange this to improve precision by using another fused
138 * multiply-add:
139 *
140 * x_new = x + x * (1 - x*src)
141 *
142 * See https://en.wikipedia.org/wiki/Division_algorithm for more details.
143 */
144
145 ra = nir_ffma(b, ra, nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
146 ra = nir_ffma(b, ra, nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
147
148 return fix_inv_result(b, ra, src, new_exp);
149 }
150
151 static nir_ssa_def *
lower_sqrt_rsq(nir_builder * b,nir_ssa_def * src,bool sqrt)152 lower_sqrt_rsq(nir_builder *b, nir_ssa_def *src, bool sqrt)
153 {
154 /* We want to compute:
155 *
156 * 1/sqrt(m * 2^e)
157 *
158 * When the exponent is even, this is equivalent to:
159 *
160 * 1/sqrt(m) * 2^(-e/2)
161 *
162 * and then the exponent is odd, this is equal to:
163 *
164 * 1/sqrt(m * 2) * 2^(-(e - 1)/2)
165 *
166 * where the m * 2 is absorbed into the exponent. So we want the exponent
167 * inside the square root to be 1 if e is odd and 0 if e is even, and we
168 * want to subtract off e/2 from the final exponent, rounded to negative
169 * infinity. We can do the former by first computing the unbiased exponent,
170 * and then AND'ing it with 1 to get 0 or 1, and we can do the latter by
171 * shifting right by 1.
172 */
173
174 nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
175 nir_imm_int(b, 1023));
176 nir_ssa_def *even = nir_iand(b, unbiased_exp, nir_imm_int(b, 1));
177 nir_ssa_def *half = nir_ishr(b, unbiased_exp, nir_imm_int(b, 1));
178
179 nir_ssa_def *src_norm = set_exponent(b, src,
180 nir_iadd(b, nir_imm_int(b, 1023),
181 even));
182
183 nir_ssa_def *ra = nir_f2f64(b, nir_frsq(b, nir_f2f32(b, src_norm)));
184 nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), half);
185 ra = set_exponent(b, ra, new_exp);
186
187 /*
188 * The following implements an iterative algorithm that's very similar
189 * between sqrt and rsqrt. We start with an iteration of Goldschmit's
190 * algorithm, which looks like:
191 *
192 * a = the source
193 * y_0 = initial (single-precision) rsqrt estimate
194 *
195 * h_0 = .5 * y_0
196 * g_0 = a * y_0
197 * r_0 = .5 - h_0 * g_0
198 * g_1 = g_0 * r_0 + g_0
199 * h_1 = h_0 * r_0 + h_0
200 *
201 * Now g_1 ~= sqrt(a), and h_1 ~= 1/(2 * sqrt(a)). We could continue
202 * applying another round of Goldschmit, but since we would never refer
203 * back to a (the original source), we would add too much rounding error.
204 * So instead, we do one last round of Newton-Raphson, which has better
205 * rounding characteristics, to get the final rounding correct. This is
206 * split into two cases:
207 *
208 * 1. sqrt
209 *
210 * Normally, doing a round of Newton-Raphson for sqrt involves taking a
211 * reciprocal of the original estimate, which is slow since it isn't
212 * supported in HW. But we can take advantage of the fact that we already
213 * computed a good estimate of 1/(2 * g_1) by rearranging it like so:
214 *
215 * g_2 = .5 * (g_1 + a / g_1)
216 * = g_1 + .5 * (a / g_1 - g_1)
217 * = g_1 + (.5 / g_1) * (a - g_1^2)
218 * = g_1 + h_1 * (a - g_1^2)
219 *
220 * The second term represents the error, and by splitting it out we can get
221 * better precision by computing it as part of a fused multiply-add. Since
222 * both Newton-Raphson and Goldschmit approximately double the precision of
223 * the result, these two steps should be enough.
224 *
225 * 2. rsqrt
226 *
227 * First off, note that the first round of the Goldschmit algorithm is
228 * really just a Newton-Raphson step in disguise:
229 *
230 * h_1 = h_0 * (.5 - h_0 * g_0) + h_0
231 * = h_0 * (1.5 - h_0 * g_0)
232 * = h_0 * (1.5 - .5 * a * y_0^2)
233 * = (.5 * y_0) * (1.5 - .5 * a * y_0^2)
234 *
235 * which is the standard formula multiplied by .5. Unlike in the sqrt case,
236 * we don't need the inverse to do a Newton-Raphson step; we just need h_1,
237 * so we can skip the calculation of g_1. Instead, we simply do another
238 * Newton-Raphson step:
239 *
240 * y_1 = 2 * h_1
241 * r_1 = .5 - h_1 * y_1 * a
242 * y_2 = y_1 * r_1 + y_1
243 *
244 * Where the difference from Goldschmit is that we calculate y_1 * a
245 * instead of using g_1. Doing it this way should be as fast as computing
246 * y_1 up front instead of h_1, and it lets us share the code for the
247 * initial Goldschmit step with the sqrt case.
248 *
249 * Putting it together, the computations are:
250 *
251 * h_0 = .5 * y_0
252 * g_0 = a * y_0
253 * r_0 = .5 - h_0 * g_0
254 * h_1 = h_0 * r_0 + h_0
255 * if sqrt:
256 * g_1 = g_0 * r_0 + g_0
257 * r_1 = a - g_1 * g_1
258 * g_2 = h_1 * r_1 + g_1
259 * else:
260 * y_1 = 2 * h_1
261 * r_1 = .5 - y_1 * (h_1 * a)
262 * y_2 = y_1 * r_1 + y_1
263 *
264 * For more on the ideas behind this, see "Software Division and Square
265 * Root Using Goldschmit's Algorithms" by Markstein and the Wikipedia page
266 * on square roots
267 * (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots).
268 */
269
270 nir_ssa_def *one_half = nir_imm_double(b, 0.5);
271 nir_ssa_def *h_0 = nir_fmul(b, one_half, ra);
272 nir_ssa_def *g_0 = nir_fmul(b, src, ra);
273 nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half);
274 nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0);
275 nir_ssa_def *res;
276 if (sqrt) {
277 nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0);
278 nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src);
279 res = nir_ffma(b, h_1, r_1, g_1);
280 } else {
281 nir_ssa_def *y_1 = nir_fmul(b, nir_imm_double(b, 2.0), h_1);
282 nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src),
283 one_half);
284 res = nir_ffma(b, y_1, r_1, y_1);
285 }
286
287 if (sqrt) {
288 /* Here, the special cases we need to handle are
289 * 0 -> 0 and
290 * +inf -> +inf
291 */
292 res = nir_bcsel(b, nir_ior(b, nir_feq(b, src, nir_imm_double(b, 0.0)),
293 nir_feq(b, src, nir_imm_double(b, INFINITY))),
294 src, res);
295 } else {
296 res = fix_inv_result(b, res, src, new_exp);
297 }
298
299 return res;
300 }
301
302 static nir_ssa_def *
lower_trunc(nir_builder * b,nir_ssa_def * src)303 lower_trunc(nir_builder *b, nir_ssa_def *src)
304 {
305 nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
306 nir_imm_int(b, 1023));
307
308 nir_ssa_def *frac_bits = nir_isub(b, nir_imm_int(b, 52), unbiased_exp);
309
310 /*
311 * Decide the operation to apply depending on the unbiased exponent:
312 *
313 * if (unbiased_exp < 0)
314 * return 0
315 * else if (unbiased_exp > 52)
316 * return src
317 * else
318 * return src & (~0 << frac_bits)
319 *
320 * Notice that the else branch is a 64-bit integer operation that we need
321 * to implement in terms of 32-bit integer arithmetics (at least until we
322 * support 64-bit integer arithmetics).
323 */
324
325 /* Compute "~0 << frac_bits" in terms of hi/lo 32-bit integer math */
326 nir_ssa_def *mask_lo =
327 nir_bcsel(b,
328 nir_ige(b, frac_bits, nir_imm_int(b, 32)),
329 nir_imm_int(b, 0),
330 nir_ishl(b, nir_imm_int(b, ~0), frac_bits));
331
332 nir_ssa_def *mask_hi =
333 nir_bcsel(b,
334 nir_ilt(b, frac_bits, nir_imm_int(b, 33)),
335 nir_imm_int(b, ~0),
336 nir_ishl(b,
337 nir_imm_int(b, ~0),
338 nir_isub(b, frac_bits, nir_imm_int(b, 32))));
339
340 nir_ssa_def *src_lo = nir_unpack_64_2x32_split_x(b, src);
341 nir_ssa_def *src_hi = nir_unpack_64_2x32_split_y(b, src);
342
343 return
344 nir_bcsel(b,
345 nir_ilt(b, unbiased_exp, nir_imm_int(b, 0)),
346 nir_imm_double(b, 0.0),
347 nir_bcsel(b, nir_ige(b, unbiased_exp, nir_imm_int(b, 53)),
348 src,
349 nir_pack_64_2x32_split(b,
350 nir_iand(b, mask_lo, src_lo),
351 nir_iand(b, mask_hi, src_hi))));
352 }
353
354 static nir_ssa_def *
lower_floor(nir_builder * b,nir_ssa_def * src)355 lower_floor(nir_builder *b, nir_ssa_def *src)
356 {
357 /*
358 * For x >= 0, floor(x) = trunc(x)
359 * For x < 0,
360 * - if x is integer, floor(x) = x
361 * - otherwise, floor(x) = trunc(x) - 1
362 */
363 nir_ssa_def *tr = nir_ftrunc(b, src);
364 nir_ssa_def *positive = nir_fge(b, src, nir_imm_double(b, 0.0));
365 return nir_bcsel(b,
366 nir_ior(b, positive, nir_feq(b, src, tr)),
367 tr,
368 nir_fsub(b, tr, nir_imm_double(b, 1.0)));
369 }
370
371 static nir_ssa_def *
lower_ceil(nir_builder * b,nir_ssa_def * src)372 lower_ceil(nir_builder *b, nir_ssa_def *src)
373 {
374 /* if x < 0, ceil(x) = trunc(x)
375 * else if (x - trunc(x) == 0), ceil(x) = x
376 * else, ceil(x) = trunc(x) + 1
377 */
378 nir_ssa_def *tr = nir_ftrunc(b, src);
379 nir_ssa_def *negative = nir_flt(b, src, nir_imm_double(b, 0.0));
380 return nir_bcsel(b,
381 nir_ior(b, negative, nir_feq(b, src, tr)),
382 tr,
383 nir_fadd(b, tr, nir_imm_double(b, 1.0)));
384 }
385
386 static nir_ssa_def *
lower_fract(nir_builder * b,nir_ssa_def * src)387 lower_fract(nir_builder *b, nir_ssa_def *src)
388 {
389 return nir_fsub(b, src, nir_ffloor(b, src));
390 }
391
392 static nir_ssa_def *
lower_round_even(nir_builder * b,nir_ssa_def * src)393 lower_round_even(nir_builder *b, nir_ssa_def *src)
394 {
395 /* If fract(src) == 0.5, then we will have to decide the rounding direction.
396 * We will do this by computing the mod(abs(src), 2) and testing if it
397 * is < 1 or not.
398 *
399 * We compute mod(abs(src), 2) as:
400 * abs(src) - 2.0 * floor(abs(src) / 2.0)
401 */
402 nir_ssa_def *two = nir_imm_double(b, 2.0);
403 nir_ssa_def *abs_src = nir_fabs(b, src);
404 nir_ssa_def *mod =
405 nir_fsub(b,
406 abs_src,
407 nir_fmul(b,
408 two,
409 nir_ffloor(b,
410 nir_fmul(b,
411 abs_src,
412 nir_imm_double(b, 0.5)))));
413
414 /*
415 * If fract(src) != 0.5, then we round as floor(src + 0.5)
416 *
417 * If fract(src) == 0.5, then we have to check the modulo:
418 *
419 * if it is < 1 we need a trunc operation so we get:
420 * 0.5 -> 0, -0.5 -> -0
421 * 2.5 -> 2, -2.5 -> -2
422 *
423 * otherwise we need to check if src >= 0, in which case we need to round
424 * upwards, or not, in which case we need to round downwards so we get:
425 * 1.5 -> 2, -1.5 -> -2
426 * 3.5 -> 4, -3.5 -> -4
427 */
428 nir_ssa_def *fract = nir_ffract(b, src);
429 return nir_bcsel(b,
430 nir_fne(b, fract, nir_imm_double(b, 0.5)),
431 nir_ffloor(b, nir_fadd(b, src, nir_imm_double(b, 0.5))),
432 nir_bcsel(b,
433 nir_flt(b, mod, nir_imm_double(b, 1.0)),
434 nir_ftrunc(b, src),
435 nir_bcsel(b,
436 nir_fge(b, src, nir_imm_double(b, 0.0)),
437 nir_fadd(b, src, nir_imm_double(b, 0.5)),
438 nir_fsub(b, src, nir_imm_double(b, 0.5)))));
439 }
440
441 static nir_ssa_def *
lower_mod(nir_builder * b,nir_ssa_def * src0,nir_ssa_def * src1)442 lower_mod(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1)
443 {
444 /* mod(x,y) = x - y * floor(x/y)
445 *
446 * If the division is lowered, it could add some rounding errors that make
447 * floor() to return the quotient minus one when x = N * y. If this is the
448 * case, we return zero because mod(x, y) output value is [0, y).
449 */
450 nir_ssa_def *floor = nir_ffloor(b, nir_fdiv(b, src0, src1));
451 nir_ssa_def *mod = nir_fsub(b, src0, nir_fmul(b, src1, floor));
452
453 return nir_bcsel(b,
454 nir_fne(b, mod, src1),
455 mod,
456 nir_imm_double(b, 0.0));
457 }
458
459 static bool
lower_doubles_instr(nir_alu_instr * instr,nir_lower_doubles_options options)460 lower_doubles_instr(nir_alu_instr *instr, nir_lower_doubles_options options)
461 {
462 assert(instr->dest.dest.is_ssa);
463 if (instr->dest.dest.ssa.bit_size != 64)
464 return false;
465
466 switch (instr->op) {
467 case nir_op_frcp:
468 if (!(options & nir_lower_drcp))
469 return false;
470 break;
471
472 case nir_op_fsqrt:
473 if (!(options & nir_lower_dsqrt))
474 return false;
475 break;
476
477 case nir_op_frsq:
478 if (!(options & nir_lower_drsq))
479 return false;
480 break;
481
482 case nir_op_ftrunc:
483 if (!(options & nir_lower_dtrunc))
484 return false;
485 break;
486
487 case nir_op_ffloor:
488 if (!(options & nir_lower_dfloor))
489 return false;
490 break;
491
492 case nir_op_fceil:
493 if (!(options & nir_lower_dceil))
494 return false;
495 break;
496
497 case nir_op_ffract:
498 if (!(options & nir_lower_dfract))
499 return false;
500 break;
501
502 case nir_op_fround_even:
503 if (!(options & nir_lower_dround_even))
504 return false;
505 break;
506
507 case nir_op_fmod:
508 if (!(options & nir_lower_dmod))
509 return false;
510 break;
511
512 default:
513 return false;
514 }
515
516 nir_builder bld;
517 nir_builder_init(&bld, nir_cf_node_get_function(&instr->instr.block->cf_node));
518 bld.cursor = nir_before_instr(&instr->instr);
519
520 nir_ssa_def *src = nir_fmov_alu(&bld, instr->src[0],
521 instr->dest.dest.ssa.num_components);
522
523 nir_ssa_def *result;
524
525 switch (instr->op) {
526 case nir_op_frcp:
527 result = lower_rcp(&bld, src);
528 break;
529 case nir_op_fsqrt:
530 result = lower_sqrt_rsq(&bld, src, true);
531 break;
532 case nir_op_frsq:
533 result = lower_sqrt_rsq(&bld, src, false);
534 break;
535 case nir_op_ftrunc:
536 result = lower_trunc(&bld, src);
537 break;
538 case nir_op_ffloor:
539 result = lower_floor(&bld, src);
540 break;
541 case nir_op_fceil:
542 result = lower_ceil(&bld, src);
543 break;
544 case nir_op_ffract:
545 result = lower_fract(&bld, src);
546 break;
547 case nir_op_fround_even:
548 result = lower_round_even(&bld, src);
549 break;
550
551 case nir_op_fmod: {
552 nir_ssa_def *src1 = nir_fmov_alu(&bld, instr->src[1],
553 instr->dest.dest.ssa.num_components);
554 result = lower_mod(&bld, src, src1);
555 }
556 break;
557 default:
558 unreachable("unhandled opcode");
559 }
560
561 nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_src_for_ssa(result));
562 nir_instr_remove(&instr->instr);
563 return true;
564 }
565
566 static bool
nir_lower_doubles_impl(nir_function_impl * impl,nir_lower_doubles_options options)567 nir_lower_doubles_impl(nir_function_impl *impl,
568 nir_lower_doubles_options options)
569 {
570 bool progress = false;
571
572 nir_foreach_block(block, impl) {
573 nir_foreach_instr_safe(instr, block) {
574 if (instr->type == nir_instr_type_alu)
575 progress |= lower_doubles_instr(nir_instr_as_alu(instr),
576 options);
577 }
578 }
579
580 if (progress)
581 nir_metadata_preserve(impl, nir_metadata_block_index |
582 nir_metadata_dominance);
583
584 return progress;
585 }
586
587 bool
nir_lower_doubles(nir_shader * shader,nir_lower_doubles_options options)588 nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options)
589 {
590 bool progress = false;
591
592 nir_foreach_function(function, shader) {
593 if (function->impl) {
594 progress |= nir_lower_doubles_impl(function->impl, options);
595 }
596 }
597
598 return progress;
599 }
600