• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #ifndef VIXL_POOL_MANAGER_IMPL_H_
28 #define VIXL_POOL_MANAGER_IMPL_H_
29 
30 #include "pool-manager.h"
31 
32 #include <algorithm>
33 #include "assembler-base-vixl.h"
34 
35 namespace vixl {
36 
37 
38 template <typename T>
Emit(MacroAssemblerInterface * masm,T pc,int num_bytes,ForwardReference<T> * new_reference,LocationBase<T> * new_object,EmitOption option)39 T PoolManager<T>::Emit(MacroAssemblerInterface* masm,
40                        T pc,
41                        int num_bytes,
42                        ForwardReference<T>* new_reference,
43                        LocationBase<T>* new_object,
44                        EmitOption option) {
45   // Make sure that the buffer still has the alignment we think it does.
46   VIXL_ASSERT(IsAligned(masm->AsAssemblerBase()
47                             ->GetBuffer()
48                             ->GetStartAddress<uintptr_t>(),
49                         buffer_alignment_));
50 
51   // We should not call this method when the pools are blocked.
52   VIXL_ASSERT(!IsBlocked());
53   if (objects_.empty()) return pc;
54 
55   // Emit header.
56   if (option == kBranchRequired) {
57     masm->EmitPoolHeader();
58     // TODO: The pc at this point might not actually be aligned according to
59     // alignment_. This is to support the current AARCH32 MacroAssembler which
60     // does not have a fixed size instruction set. In practice, the pc will be
61     // aligned to the alignment instructions need for the current instruction
62     // set, so we do not need to align it here. All other calculations do take
63     // the alignment into account, which only makes the checkpoint calculations
64     // more conservative when we use T32. Uncomment the following assertion if
65     // the AARCH32 MacroAssembler is modified to only support one ISA at the
66     // time.
67     // VIXL_ASSERT(pc == AlignUp(pc, alignment_));
68     pc += header_size_;
69   } else {
70     // If the header is optional, we might need to add some extra padding to
71     // meet the minimum location of the first object.
72     if (pc < objects_[0].min_location_) {
73       int32_t padding = objects_[0].min_location_ - pc;
74       masm->EmitNopBytes(padding);
75       pc += padding;
76     }
77   }
78 
79   PoolObject<T>* existing_object = GetObjectIfTracked(new_object);
80 
81   // Go through all objects and emit one by one.
82   for (objects_iter iter = objects_.begin(); iter != objects_.end();) {
83     PoolObject<T>& current = *iter;
84     if (ShouldSkipObject(&current,
85                          pc,
86                          num_bytes,
87                          new_reference,
88                          new_object,
89                          existing_object)) {
90       ++iter;
91       continue;
92     }
93     LocationBase<T>* label_base = current.label_base_;
94     T aligned_pc = AlignUp(pc, current.alignment_);
95     masm->EmitPaddingBytes(aligned_pc - pc);
96     pc = aligned_pc;
97     VIXL_ASSERT(pc >= current.min_location_);
98     VIXL_ASSERT(pc <= current.max_location_);
99     // First call SetLocation, which will also resolve the references, and then
100     // call EmitPoolObject, which might add a new reference.
101     label_base->SetLocation(masm->AsAssemblerBase(), pc);
102     label_base->EmitPoolObject(masm);
103     int object_size = label_base->GetPoolObjectSizeInBytes();
104     if (label_base->ShouldDeletePoolObjectOnPlacement()) {
105       label_base->MarkBound();
106       iter = RemoveAndDelete(iter);
107     } else {
108       VIXL_ASSERT(!current.label_base_->ShouldDeletePoolObjectOnPlacement());
109       current.label_base_->UpdatePoolObject(&current);
110       VIXL_ASSERT(current.alignment_ >= label_base->GetPoolObjectAlignment());
111       ++iter;
112     }
113     pc += object_size;
114   }
115 
116   // Recalculate the checkpoint before emitting the footer. The footer might
117   // call Bind() which will check if we need to emit.
118   RecalculateCheckpoint();
119 
120   // Always emit footer - this might add some padding.
121   masm->EmitPoolFooter();
122   pc = AlignUp(pc, alignment_);
123 
124   return pc;
125 }
126 
127 template <typename T>
ShouldSkipObject(PoolObject<T> * pool_object,T pc,int num_bytes,ForwardReference<T> * new_reference,LocationBase<T> * new_object,PoolObject<T> * existing_object)128 bool PoolManager<T>::ShouldSkipObject(PoolObject<T>* pool_object,
129                                       T pc,
130                                       int num_bytes,
131                                       ForwardReference<T>* new_reference,
132                                       LocationBase<T>* new_object,
133                                       PoolObject<T>* existing_object) const {
134   // We assume that all objects before this have been skipped and all objects
135   // after this will be emitted, therefore we will emit the whole pool. Add
136   // the header size and alignment, as well as the number of bytes we are
137   // planning to emit.
138   T max_actual_location = pc + num_bytes + max_pool_size_;
139 
140   if (new_reference != NULL) {
141     // If we're adding a new object, also assume that it will have to be emitted
142     // before the object we are considering to skip.
143     VIXL_ASSERT(new_object != NULL);
144     T new_object_alignment = std::max(new_reference->object_alignment_,
145                                       new_object->GetPoolObjectAlignment());
146     if ((existing_object != NULL) &&
147         (existing_object->alignment_ > new_object_alignment)) {
148       new_object_alignment = existing_object->alignment_;
149     }
150     max_actual_location +=
151         (new_object->GetPoolObjectSizeInBytes() + new_object_alignment - 1);
152   }
153 
154   // Hard limit.
155   if (max_actual_location >= pool_object->max_location_) return false;
156 
157   // Use heuristic.
158   return (pc < pool_object->skip_until_location_hint_);
159 }
160 
161 template <typename T>
UpdateCheckpointForObject(T checkpoint,const PoolObject<T> * object)162 T PoolManager<T>::UpdateCheckpointForObject(T checkpoint,
163                                             const PoolObject<T>* object) {
164   checkpoint -= object->label_base_->GetPoolObjectSizeInBytes();
165   if (checkpoint > object->max_location_) checkpoint = object->max_location_;
166   checkpoint = AlignDown(checkpoint, object->alignment_);
167   return checkpoint;
168 }
169 
170 template <typename T>
MaxCheckpoint()171 static T MaxCheckpoint() {
172   return std::numeric_limits<T>::max();
173 }
174 
175 template <typename T>
CheckCurrentPC(T pc,T checkpoint)176 static inline bool CheckCurrentPC(T pc, T checkpoint) {
177   VIXL_ASSERT(pc <= checkpoint);
178   // We must emit the pools if we are at the checkpoint now.
179   return pc == checkpoint;
180 }
181 
182 template <typename T>
CheckFuturePC(T pc,T checkpoint)183 static inline bool CheckFuturePC(T pc, T checkpoint) {
184   // We do not need to emit the pools now if the projected future PC will be
185   // equal to the checkpoint (we will need to emit the pools then).
186   return pc > checkpoint;
187 }
188 
189 template <typename T>
MustEmit(T pc,int num_bytes,ForwardReference<T> * reference,LocationBase<T> * label_base)190 bool PoolManager<T>::MustEmit(T pc,
191                               int num_bytes,
192                               ForwardReference<T>* reference,
193                               LocationBase<T>* label_base) const {
194   // Check if we are at or past the checkpoint.
195   if (CheckCurrentPC(pc, checkpoint_)) return true;
196 
197   // Check if the future PC will be past the checkpoint.
198   pc += num_bytes;
199   if (CheckFuturePC(pc, checkpoint_)) return true;
200 
201   // No new reference - nothing to do.
202   if (reference == NULL) {
203     VIXL_ASSERT(label_base == NULL);
204     return false;
205   }
206 
207   if (objects_.empty()) {
208     // Basic assertions that restrictions on the new (and only) reference are
209     // possible to satisfy.
210     VIXL_ASSERT(AlignUp(pc + header_size_, alignment_) >=
211                 reference->min_object_location_);
212     VIXL_ASSERT(pc <= reference->max_object_location_);
213     return false;
214   }
215 
216   // Check if the object is already being tracked.
217   const PoolObject<T>* existing_object = GetObjectIfTracked(label_base);
218   if (existing_object != NULL) {
219     // If the existing_object is already in existing_objects_ and its new
220     // alignment and new location restrictions are not stricter, skip the more
221     // expensive check.
222     if ((reference->min_object_location_ <= existing_object->min_location_) &&
223         (reference->max_object_location_ >= existing_object->max_location_) &&
224         (reference->object_alignment_ <= existing_object->alignment_)) {
225       return false;
226     }
227   }
228 
229   // Create a temporary object.
230   PoolObject<T> temp(label_base);
231   temp.RestrictRange(reference->min_object_location_,
232                      reference->max_object_location_);
233   temp.RestrictAlignment(reference->object_alignment_);
234   if (existing_object != NULL) {
235     temp.RestrictRange(existing_object->min_location_,
236                        existing_object->max_location_);
237     temp.RestrictAlignment(existing_object->alignment_);
238   }
239 
240   // Check if the new reference can be added after the end of the current pool.
241   // If yes, we don't need to emit.
242   T last_reachable = AlignDown(temp.max_location_, temp.alignment_);
243   const PoolObject<T>& last = objects_.back();
244   T after_pool = AlignDown(last.max_location_, last.alignment_) +
245                  last.label_base_->GetPoolObjectSizeInBytes();
246   // The current object can be placed at the end of the pool, even if the last
247   // object is placed at the last possible location.
248   if (last_reachable >= after_pool) return false;
249   // The current object can be placed after the code we are about to emit and
250   // after the existing pool (with a pessimistic size estimate).
251   if (last_reachable >= pc + num_bytes + max_pool_size_) return false;
252 
253   // We're not in a trivial case, so we need to recalculate the checkpoint.
254 
255   // Check (conservatively) if we can fit it into the objects_ array, without
256   // breaking our assumptions. Here we want to recalculate the checkpoint as
257   // if the new reference was added to the PoolManager but without actually
258   // adding it (as removing it is non-trivial).
259 
260   T checkpoint = MaxCheckpoint<T>();
261   // Will temp be the last object in objects_?
262   if (PoolObjectLessThan(last, temp)) {
263     checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
264     if (checkpoint < temp.min_location_) return true;
265   }
266 
267   bool tempNotPlacedYet = true;
268   for (int i = static_cast<int>(objects_.size()) - 1; i >= 0; --i) {
269     const PoolObject<T>& current = objects_[i];
270     if (tempNotPlacedYet && PoolObjectLessThan(current, temp)) {
271       checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
272       if (checkpoint < temp.min_location_) return true;
273       if (CheckFuturePC(pc, checkpoint)) return true;
274       tempNotPlacedYet = false;
275     }
276     if (current.label_base_ == label_base) continue;
277     checkpoint = UpdateCheckpointForObject(checkpoint, &current);
278     if (checkpoint < current.min_location_) return true;
279     if (CheckFuturePC(pc, checkpoint)) return true;
280   }
281   // temp is the object with the smallest max_location_.
282   if (tempNotPlacedYet) {
283     checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
284     if (checkpoint < temp.min_location_) return true;
285   }
286 
287   // Take the header into account.
288   checkpoint -= header_size_;
289   checkpoint = AlignDown(checkpoint, alignment_);
290 
291   return CheckFuturePC(pc, checkpoint);
292 }
293 
294 template <typename T>
RecalculateCheckpoint(SortOption sort_option)295 void PoolManager<T>::RecalculateCheckpoint(SortOption sort_option) {
296   // TODO: Improve the max_pool_size_ estimate by starting from the
297   // min_location_ of the first object, calculating the end of the pool as if
298   // all objects were placed starting from there, and in the end adding the
299   // maximum object alignment found minus one (which is the maximum extra
300   // padding we would need if we were to relocate the pool to a different
301   // address).
302   max_pool_size_ = 0;
303 
304   if (objects_.empty()) {
305     checkpoint_ = MaxCheckpoint<T>();
306     return;
307   }
308 
309   // Sort objects by their max_location_.
310   if (sort_option == kSortRequired) {
311     std::sort(objects_.begin(), objects_.end(), PoolObjectLessThan);
312   }
313 
314   // Add the header size and header and footer max alignment to the maximum
315   // pool size.
316   max_pool_size_ += header_size_ + 2 * (alignment_ - 1);
317 
318   T checkpoint = MaxCheckpoint<T>();
319   int last_object_index = static_cast<int>(objects_.size()) - 1;
320   for (int i = last_object_index; i >= 0; --i) {
321     // Bring back the checkpoint by the size of the current object, unless
322     // we need to bring it back more, then align.
323     PoolObject<T>& current = objects_[i];
324     checkpoint = UpdateCheckpointForObject(checkpoint, &current);
325     VIXL_ASSERT(checkpoint >= current.min_location_);
326     max_pool_size_ += (current.alignment_ - 1 +
327                        current.label_base_->GetPoolObjectSizeInBytes());
328   }
329   // Take the header into account.
330   checkpoint -= header_size_;
331   checkpoint = AlignDown(checkpoint, alignment_);
332 
333   // Update the checkpoint of the pool manager.
334   checkpoint_ = checkpoint;
335 
336   // NOTE: To handle min_location_ in the generic case, we could make a second
337   // pass of the objects_ vector, increasing the checkpoint as needed, while
338   // maintaining the alignment requirements.
339   // It should not be possible to have any issues with min_location_ with actual
340   // code, since there should always be some kind of branch over the pool,
341   // whether introduced by the pool emission or by the user, which will make
342   // sure the min_location_ requirement is satisfied. It's possible that the
343   // user could emit code in the literal pool and intentionally load the first
344   // value and then fall-through into the pool, but that is not a supported use
345   // of VIXL and we will assert in that case.
346 }
347 
348 template <typename T>
PoolObjectLessThan(const PoolObject<T> & a,const PoolObject<T> & b)349 bool PoolManager<T>::PoolObjectLessThan(const PoolObject<T>& a,
350                                         const PoolObject<T>& b) {
351   if (a.max_location_ != b.max_location_)
352     return (a.max_location_ < b.max_location_);
353   int a_size = a.label_base_->GetPoolObjectSizeInBytes();
354   int b_size = b.label_base_->GetPoolObjectSizeInBytes();
355   if (a_size != b_size) return (a_size < b_size);
356   if (a.alignment_ != b.alignment_) return (a.alignment_ < b.alignment_);
357   if (a.min_location_ != b.min_location_)
358     return (a.min_location_ < b.min_location_);
359   return false;
360 }
361 
362 template <typename T>
AddObjectReference(const ForwardReference<T> * reference,LocationBase<T> * label_base)363 void PoolManager<T>::AddObjectReference(const ForwardReference<T>* reference,
364                                         LocationBase<T>* label_base) {
365   VIXL_ASSERT(reference->object_alignment_ <= buffer_alignment_);
366   VIXL_ASSERT(label_base->GetPoolObjectAlignment() <= buffer_alignment_);
367 
368   PoolObject<T>* object = GetObjectIfTracked(label_base);
369 
370   if (object == NULL) {
371     PoolObject<T> new_object(label_base);
372     new_object.RestrictRange(reference->min_object_location_,
373                              reference->max_object_location_);
374     new_object.RestrictAlignment(reference->object_alignment_);
375     Insert(new_object);
376   } else {
377     object->RestrictRange(reference->min_object_location_,
378                           reference->max_object_location_);
379     object->RestrictAlignment(reference->object_alignment_);
380 
381     // Move the object, if needed.
382     if (objects_.size() != 1) {
383       PoolObject<T> new_object(*object);
384       ptrdiff_t distance = std::distance(objects_.data(), object);
385       objects_.erase(objects_.begin() + distance);
386       Insert(new_object);
387     }
388   }
389   // No need to sort, we inserted the object in an already sorted array.
390   RecalculateCheckpoint(kNoSortRequired);
391 }
392 
393 template <typename T>
Insert(const PoolObject<T> & new_object)394 void PoolManager<T>::Insert(const PoolObject<T>& new_object) {
395   bool inserted = false;
396   // Place the object in the right position.
397   for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
398     PoolObject<T>& current = *iter;
399     if (!PoolObjectLessThan(current, new_object)) {
400       objects_.insert(iter, new_object);
401       inserted = true;
402       break;
403     }
404   }
405   if (!inserted) {
406     objects_.push_back(new_object);
407   }
408 }
409 
410 template <typename T>
RemoveAndDelete(PoolObject<T> * object)411 void PoolManager<T>::RemoveAndDelete(PoolObject<T>* object) {
412   for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
413     PoolObject<T>& current = *iter;
414     if (current.label_base_ == object->label_base_) {
415       (void)RemoveAndDelete(iter);
416       return;
417     }
418   }
419   VIXL_UNREACHABLE();
420 }
421 
422 template <typename T>
RemoveAndDelete(objects_iter iter)423 typename PoolManager<T>::objects_iter PoolManager<T>::RemoveAndDelete(
424     objects_iter iter) {
425   PoolObject<T>& object = *iter;
426   LocationBase<T>* label_base = object.label_base_;
427 
428   // Check if we also need to delete the LocationBase object.
429   if (label_base->ShouldBeDeletedOnPoolManagerDestruction()) {
430     delete_on_destruction_.push_back(label_base);
431   }
432   if (label_base->ShouldBeDeletedOnPlacementByPoolManager()) {
433     VIXL_ASSERT(!label_base->ShouldBeDeletedOnPoolManagerDestruction());
434     delete label_base;
435   }
436 
437   return objects_.erase(iter);
438 }
439 
440 template <typename T>
Bind(MacroAssemblerInterface * masm,LocationBase<T> * object,T location)441 T PoolManager<T>::Bind(MacroAssemblerInterface* masm,
442                        LocationBase<T>* object,
443                        T location) {
444   PoolObject<T>* existing_object = GetObjectIfTracked(object);
445   int alignment;
446   T min_location;
447   if (existing_object == NULL) {
448     alignment = object->GetMaxAlignment();
449     min_location = object->GetMinLocation();
450   } else {
451     alignment = existing_object->alignment_;
452     min_location = existing_object->min_location_;
453   }
454 
455   // Align if needed, and add necessary padding to reach the min_location_.
456   T aligned_location = AlignUp(location, alignment);
457   masm->EmitNopBytes(aligned_location - location);
458   location = aligned_location;
459   while (location < min_location) {
460     masm->EmitNopBytes(alignment);
461     location += alignment;
462   }
463 
464   object->SetLocation(masm->AsAssemblerBase(), location);
465   object->MarkBound();
466 
467   if (existing_object != NULL) {
468     RemoveAndDelete(existing_object);
469     // No need to sort, we removed the object from a sorted array.
470     RecalculateCheckpoint(kNoSortRequired);
471   }
472 
473   // We assume that the maximum padding we can possibly add here is less
474   // than the header alignment - hence that we're not going to go past our
475   // checkpoint.
476   VIXL_ASSERT(!CheckFuturePC(location, checkpoint_));
477   return location;
478 }
479 
480 template <typename T>
Release(T pc)481 void PoolManager<T>::Release(T pc) {
482   USE(pc);
483   if (--monitor_ == 0) {
484     // Ensure the pool has not been blocked for too long.
485     VIXL_ASSERT(pc <= checkpoint_);
486   }
487 }
488 
489 template <typename T>
490 PoolManager<T>::~PoolManager<T>() {
491 #ifdef VIXL_DEBUG
492   // Check for unbound objects.
493   for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
494     // There should not be any bound objects left in the pool. For unbound
495     // objects, we will check in the destructor of the object itself.
496     VIXL_ASSERT(!(*iter).label_base_->IsBound());
497   }
498 #endif
499   // Delete objects the pool manager owns.
500   for (typename std::vector<LocationBase<T> *>::iterator
501            iter = delete_on_destruction_.begin(),
502            end = delete_on_destruction_.end();
503        iter != end;
504        ++iter) {
505     delete *iter;
506   }
507 }
508 
509 template <typename T>
GetPoolSizeForTest()510 int PoolManager<T>::GetPoolSizeForTest() const {
511   // Iterate over objects and return their cumulative size. This does not take
512   // any padding into account, just the size of the objects themselves.
513   int size = 0;
514   for (const_objects_iter iter = objects_.begin(); iter != objects_.end();
515        ++iter) {
516     size += (*iter).label_base_->GetPoolObjectSizeInBytes();
517   }
518   return size;
519 }
520 }
521 
522 #endif  // VIXL_POOL_MANAGER_IMPL_H_
523