1 // Copyright 2017, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 #ifndef VIXL_POOL_MANAGER_IMPL_H_
28 #define VIXL_POOL_MANAGER_IMPL_H_
29
30 #include "pool-manager.h"
31
32 #include <algorithm>
33 #include "assembler-base-vixl.h"
34
35 namespace vixl {
36
37
38 template <typename T>
Emit(MacroAssemblerInterface * masm,T pc,int num_bytes,ForwardReference<T> * new_reference,LocationBase<T> * new_object,EmitOption option)39 T PoolManager<T>::Emit(MacroAssemblerInterface* masm,
40 T pc,
41 int num_bytes,
42 ForwardReference<T>* new_reference,
43 LocationBase<T>* new_object,
44 EmitOption option) {
45 // Make sure that the buffer still has the alignment we think it does.
46 VIXL_ASSERT(IsAligned(masm->AsAssemblerBase()
47 ->GetBuffer()
48 ->GetStartAddress<uintptr_t>(),
49 buffer_alignment_));
50
51 // We should not call this method when the pools are blocked.
52 VIXL_ASSERT(!IsBlocked());
53 if (objects_.empty()) return pc;
54
55 // Emit header.
56 if (option == kBranchRequired) {
57 masm->EmitPoolHeader();
58 // TODO: The pc at this point might not actually be aligned according to
59 // alignment_. This is to support the current AARCH32 MacroAssembler which
60 // does not have a fixed size instruction set. In practice, the pc will be
61 // aligned to the alignment instructions need for the current instruction
62 // set, so we do not need to align it here. All other calculations do take
63 // the alignment into account, which only makes the checkpoint calculations
64 // more conservative when we use T32. Uncomment the following assertion if
65 // the AARCH32 MacroAssembler is modified to only support one ISA at the
66 // time.
67 // VIXL_ASSERT(pc == AlignUp(pc, alignment_));
68 pc += header_size_;
69 } else {
70 // If the header is optional, we might need to add some extra padding to
71 // meet the minimum location of the first object.
72 if (pc < objects_[0].min_location_) {
73 int32_t padding = objects_[0].min_location_ - pc;
74 masm->EmitNopBytes(padding);
75 pc += padding;
76 }
77 }
78
79 PoolObject<T>* existing_object = GetObjectIfTracked(new_object);
80
81 // Go through all objects and emit one by one.
82 for (objects_iter iter = objects_.begin(); iter != objects_.end();) {
83 PoolObject<T>& current = *iter;
84 if (ShouldSkipObject(¤t,
85 pc,
86 num_bytes,
87 new_reference,
88 new_object,
89 existing_object)) {
90 ++iter;
91 continue;
92 }
93 LocationBase<T>* label_base = current.label_base_;
94 T aligned_pc = AlignUp(pc, current.alignment_);
95 masm->EmitPaddingBytes(aligned_pc - pc);
96 pc = aligned_pc;
97 VIXL_ASSERT(pc >= current.min_location_);
98 VIXL_ASSERT(pc <= current.max_location_);
99 // First call SetLocation, which will also resolve the references, and then
100 // call EmitPoolObject, which might add a new reference.
101 label_base->SetLocation(masm->AsAssemblerBase(), pc);
102 label_base->EmitPoolObject(masm);
103 int object_size = label_base->GetPoolObjectSizeInBytes();
104 if (label_base->ShouldDeletePoolObjectOnPlacement()) {
105 label_base->MarkBound();
106 iter = RemoveAndDelete(iter);
107 } else {
108 VIXL_ASSERT(!current.label_base_->ShouldDeletePoolObjectOnPlacement());
109 current.label_base_->UpdatePoolObject(¤t);
110 VIXL_ASSERT(current.alignment_ >= label_base->GetPoolObjectAlignment());
111 ++iter;
112 }
113 pc += object_size;
114 }
115
116 // Recalculate the checkpoint before emitting the footer. The footer might
117 // call Bind() which will check if we need to emit.
118 RecalculateCheckpoint();
119
120 // Always emit footer - this might add some padding.
121 masm->EmitPoolFooter();
122 pc = AlignUp(pc, alignment_);
123
124 return pc;
125 }
126
127 template <typename T>
ShouldSkipObject(PoolObject<T> * pool_object,T pc,int num_bytes,ForwardReference<T> * new_reference,LocationBase<T> * new_object,PoolObject<T> * existing_object)128 bool PoolManager<T>::ShouldSkipObject(PoolObject<T>* pool_object,
129 T pc,
130 int num_bytes,
131 ForwardReference<T>* new_reference,
132 LocationBase<T>* new_object,
133 PoolObject<T>* existing_object) const {
134 // We assume that all objects before this have been skipped and all objects
135 // after this will be emitted, therefore we will emit the whole pool. Add
136 // the header size and alignment, as well as the number of bytes we are
137 // planning to emit.
138 T max_actual_location = pc + num_bytes + max_pool_size_;
139
140 if (new_reference != NULL) {
141 // If we're adding a new object, also assume that it will have to be emitted
142 // before the object we are considering to skip.
143 VIXL_ASSERT(new_object != NULL);
144 T new_object_alignment = std::max(new_reference->object_alignment_,
145 new_object->GetPoolObjectAlignment());
146 if ((existing_object != NULL) &&
147 (existing_object->alignment_ > new_object_alignment)) {
148 new_object_alignment = existing_object->alignment_;
149 }
150 max_actual_location +=
151 (new_object->GetPoolObjectSizeInBytes() + new_object_alignment - 1);
152 }
153
154 // Hard limit.
155 if (max_actual_location >= pool_object->max_location_) return false;
156
157 // Use heuristic.
158 return (pc < pool_object->skip_until_location_hint_);
159 }
160
161 template <typename T>
UpdateCheckpointForObject(T checkpoint,const PoolObject<T> * object)162 T PoolManager<T>::UpdateCheckpointForObject(T checkpoint,
163 const PoolObject<T>* object) {
164 checkpoint -= object->label_base_->GetPoolObjectSizeInBytes();
165 if (checkpoint > object->max_location_) checkpoint = object->max_location_;
166 checkpoint = AlignDown(checkpoint, object->alignment_);
167 return checkpoint;
168 }
169
170 template <typename T>
MaxCheckpoint()171 static T MaxCheckpoint() {
172 return std::numeric_limits<T>::max();
173 }
174
175 template <typename T>
CheckCurrentPC(T pc,T checkpoint)176 static inline bool CheckCurrentPC(T pc, T checkpoint) {
177 VIXL_ASSERT(pc <= checkpoint);
178 // We must emit the pools if we are at the checkpoint now.
179 return pc == checkpoint;
180 }
181
182 template <typename T>
CheckFuturePC(T pc,T checkpoint)183 static inline bool CheckFuturePC(T pc, T checkpoint) {
184 // We do not need to emit the pools now if the projected future PC will be
185 // equal to the checkpoint (we will need to emit the pools then).
186 return pc > checkpoint;
187 }
188
189 template <typename T>
MustEmit(T pc,int num_bytes,ForwardReference<T> * reference,LocationBase<T> * label_base)190 bool PoolManager<T>::MustEmit(T pc,
191 int num_bytes,
192 ForwardReference<T>* reference,
193 LocationBase<T>* label_base) const {
194 // Check if we are at or past the checkpoint.
195 if (CheckCurrentPC(pc, checkpoint_)) return true;
196
197 // Check if the future PC will be past the checkpoint.
198 pc += num_bytes;
199 if (CheckFuturePC(pc, checkpoint_)) return true;
200
201 // No new reference - nothing to do.
202 if (reference == NULL) {
203 VIXL_ASSERT(label_base == NULL);
204 return false;
205 }
206
207 if (objects_.empty()) {
208 // Basic assertions that restrictions on the new (and only) reference are
209 // possible to satisfy.
210 VIXL_ASSERT(AlignUp(pc + header_size_, alignment_) >=
211 reference->min_object_location_);
212 VIXL_ASSERT(pc <= reference->max_object_location_);
213 return false;
214 }
215
216 // Check if the object is already being tracked.
217 const PoolObject<T>* existing_object = GetObjectIfTracked(label_base);
218 if (existing_object != NULL) {
219 // If the existing_object is already in existing_objects_ and its new
220 // alignment and new location restrictions are not stricter, skip the more
221 // expensive check.
222 if ((reference->min_object_location_ <= existing_object->min_location_) &&
223 (reference->max_object_location_ >= existing_object->max_location_) &&
224 (reference->object_alignment_ <= existing_object->alignment_)) {
225 return false;
226 }
227 }
228
229 // Create a temporary object.
230 PoolObject<T> temp(label_base);
231 temp.RestrictRange(reference->min_object_location_,
232 reference->max_object_location_);
233 temp.RestrictAlignment(reference->object_alignment_);
234 if (existing_object != NULL) {
235 temp.RestrictRange(existing_object->min_location_,
236 existing_object->max_location_);
237 temp.RestrictAlignment(existing_object->alignment_);
238 }
239
240 // Check if the new reference can be added after the end of the current pool.
241 // If yes, we don't need to emit.
242 T last_reachable = AlignDown(temp.max_location_, temp.alignment_);
243 const PoolObject<T>& last = objects_.back();
244 T after_pool = AlignDown(last.max_location_, last.alignment_) +
245 last.label_base_->GetPoolObjectSizeInBytes();
246 // The current object can be placed at the end of the pool, even if the last
247 // object is placed at the last possible location.
248 if (last_reachable >= after_pool) return false;
249 // The current object can be placed after the code we are about to emit and
250 // after the existing pool (with a pessimistic size estimate).
251 if (last_reachable >= pc + num_bytes + max_pool_size_) return false;
252
253 // We're not in a trivial case, so we need to recalculate the checkpoint.
254
255 // Check (conservatively) if we can fit it into the objects_ array, without
256 // breaking our assumptions. Here we want to recalculate the checkpoint as
257 // if the new reference was added to the PoolManager but without actually
258 // adding it (as removing it is non-trivial).
259
260 T checkpoint = MaxCheckpoint<T>();
261 // Will temp be the last object in objects_?
262 if (PoolObjectLessThan(last, temp)) {
263 checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
264 if (checkpoint < temp.min_location_) return true;
265 }
266
267 bool tempNotPlacedYet = true;
268 for (int i = static_cast<int>(objects_.size()) - 1; i >= 0; --i) {
269 const PoolObject<T>& current = objects_[i];
270 if (tempNotPlacedYet && PoolObjectLessThan(current, temp)) {
271 checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
272 if (checkpoint < temp.min_location_) return true;
273 if (CheckFuturePC(pc, checkpoint)) return true;
274 tempNotPlacedYet = false;
275 }
276 if (current.label_base_ == label_base) continue;
277 checkpoint = UpdateCheckpointForObject(checkpoint, ¤t);
278 if (checkpoint < current.min_location_) return true;
279 if (CheckFuturePC(pc, checkpoint)) return true;
280 }
281 // temp is the object with the smallest max_location_.
282 if (tempNotPlacedYet) {
283 checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
284 if (checkpoint < temp.min_location_) return true;
285 }
286
287 // Take the header into account.
288 checkpoint -= header_size_;
289 checkpoint = AlignDown(checkpoint, alignment_);
290
291 return CheckFuturePC(pc, checkpoint);
292 }
293
294 template <typename T>
RecalculateCheckpoint(SortOption sort_option)295 void PoolManager<T>::RecalculateCheckpoint(SortOption sort_option) {
296 // TODO: Improve the max_pool_size_ estimate by starting from the
297 // min_location_ of the first object, calculating the end of the pool as if
298 // all objects were placed starting from there, and in the end adding the
299 // maximum object alignment found minus one (which is the maximum extra
300 // padding we would need if we were to relocate the pool to a different
301 // address).
302 max_pool_size_ = 0;
303
304 if (objects_.empty()) {
305 checkpoint_ = MaxCheckpoint<T>();
306 return;
307 }
308
309 // Sort objects by their max_location_.
310 if (sort_option == kSortRequired) {
311 std::sort(objects_.begin(), objects_.end(), PoolObjectLessThan);
312 }
313
314 // Add the header size and header and footer max alignment to the maximum
315 // pool size.
316 max_pool_size_ += header_size_ + 2 * (alignment_ - 1);
317
318 T checkpoint = MaxCheckpoint<T>();
319 int last_object_index = static_cast<int>(objects_.size()) - 1;
320 for (int i = last_object_index; i >= 0; --i) {
321 // Bring back the checkpoint by the size of the current object, unless
322 // we need to bring it back more, then align.
323 PoolObject<T>& current = objects_[i];
324 checkpoint = UpdateCheckpointForObject(checkpoint, ¤t);
325 VIXL_ASSERT(checkpoint >= current.min_location_);
326 max_pool_size_ += (current.alignment_ - 1 +
327 current.label_base_->GetPoolObjectSizeInBytes());
328 }
329 // Take the header into account.
330 checkpoint -= header_size_;
331 checkpoint = AlignDown(checkpoint, alignment_);
332
333 // Update the checkpoint of the pool manager.
334 checkpoint_ = checkpoint;
335
336 // NOTE: To handle min_location_ in the generic case, we could make a second
337 // pass of the objects_ vector, increasing the checkpoint as needed, while
338 // maintaining the alignment requirements.
339 // It should not be possible to have any issues with min_location_ with actual
340 // code, since there should always be some kind of branch over the pool,
341 // whether introduced by the pool emission or by the user, which will make
342 // sure the min_location_ requirement is satisfied. It's possible that the
343 // user could emit code in the literal pool and intentionally load the first
344 // value and then fall-through into the pool, but that is not a supported use
345 // of VIXL and we will assert in that case.
346 }
347
348 template <typename T>
PoolObjectLessThan(const PoolObject<T> & a,const PoolObject<T> & b)349 bool PoolManager<T>::PoolObjectLessThan(const PoolObject<T>& a,
350 const PoolObject<T>& b) {
351 if (a.max_location_ != b.max_location_)
352 return (a.max_location_ < b.max_location_);
353 int a_size = a.label_base_->GetPoolObjectSizeInBytes();
354 int b_size = b.label_base_->GetPoolObjectSizeInBytes();
355 if (a_size != b_size) return (a_size < b_size);
356 if (a.alignment_ != b.alignment_) return (a.alignment_ < b.alignment_);
357 if (a.min_location_ != b.min_location_)
358 return (a.min_location_ < b.min_location_);
359 return false;
360 }
361
362 template <typename T>
AddObjectReference(const ForwardReference<T> * reference,LocationBase<T> * label_base)363 void PoolManager<T>::AddObjectReference(const ForwardReference<T>* reference,
364 LocationBase<T>* label_base) {
365 VIXL_ASSERT(reference->object_alignment_ <= buffer_alignment_);
366 VIXL_ASSERT(label_base->GetPoolObjectAlignment() <= buffer_alignment_);
367
368 PoolObject<T>* object = GetObjectIfTracked(label_base);
369
370 if (object == NULL) {
371 PoolObject<T> new_object(label_base);
372 new_object.RestrictRange(reference->min_object_location_,
373 reference->max_object_location_);
374 new_object.RestrictAlignment(reference->object_alignment_);
375 Insert(new_object);
376 } else {
377 object->RestrictRange(reference->min_object_location_,
378 reference->max_object_location_);
379 object->RestrictAlignment(reference->object_alignment_);
380
381 // Move the object, if needed.
382 if (objects_.size() != 1) {
383 PoolObject<T> new_object(*object);
384 ptrdiff_t distance = std::distance(objects_.data(), object);
385 objects_.erase(objects_.begin() + distance);
386 Insert(new_object);
387 }
388 }
389 // No need to sort, we inserted the object in an already sorted array.
390 RecalculateCheckpoint(kNoSortRequired);
391 }
392
393 template <typename T>
Insert(const PoolObject<T> & new_object)394 void PoolManager<T>::Insert(const PoolObject<T>& new_object) {
395 bool inserted = false;
396 // Place the object in the right position.
397 for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
398 PoolObject<T>& current = *iter;
399 if (!PoolObjectLessThan(current, new_object)) {
400 objects_.insert(iter, new_object);
401 inserted = true;
402 break;
403 }
404 }
405 if (!inserted) {
406 objects_.push_back(new_object);
407 }
408 }
409
410 template <typename T>
RemoveAndDelete(PoolObject<T> * object)411 void PoolManager<T>::RemoveAndDelete(PoolObject<T>* object) {
412 for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
413 PoolObject<T>& current = *iter;
414 if (current.label_base_ == object->label_base_) {
415 (void)RemoveAndDelete(iter);
416 return;
417 }
418 }
419 VIXL_UNREACHABLE();
420 }
421
422 template <typename T>
RemoveAndDelete(objects_iter iter)423 typename PoolManager<T>::objects_iter PoolManager<T>::RemoveAndDelete(
424 objects_iter iter) {
425 PoolObject<T>& object = *iter;
426 LocationBase<T>* label_base = object.label_base_;
427
428 // Check if we also need to delete the LocationBase object.
429 if (label_base->ShouldBeDeletedOnPoolManagerDestruction()) {
430 delete_on_destruction_.push_back(label_base);
431 }
432 if (label_base->ShouldBeDeletedOnPlacementByPoolManager()) {
433 VIXL_ASSERT(!label_base->ShouldBeDeletedOnPoolManagerDestruction());
434 delete label_base;
435 }
436
437 return objects_.erase(iter);
438 }
439
440 template <typename T>
Bind(MacroAssemblerInterface * masm,LocationBase<T> * object,T location)441 T PoolManager<T>::Bind(MacroAssemblerInterface* masm,
442 LocationBase<T>* object,
443 T location) {
444 PoolObject<T>* existing_object = GetObjectIfTracked(object);
445 int alignment;
446 T min_location;
447 if (existing_object == NULL) {
448 alignment = object->GetMaxAlignment();
449 min_location = object->GetMinLocation();
450 } else {
451 alignment = existing_object->alignment_;
452 min_location = existing_object->min_location_;
453 }
454
455 // Align if needed, and add necessary padding to reach the min_location_.
456 T aligned_location = AlignUp(location, alignment);
457 masm->EmitNopBytes(aligned_location - location);
458 location = aligned_location;
459 while (location < min_location) {
460 masm->EmitNopBytes(alignment);
461 location += alignment;
462 }
463
464 object->SetLocation(masm->AsAssemblerBase(), location);
465 object->MarkBound();
466
467 if (existing_object != NULL) {
468 RemoveAndDelete(existing_object);
469 // No need to sort, we removed the object from a sorted array.
470 RecalculateCheckpoint(kNoSortRequired);
471 }
472
473 // We assume that the maximum padding we can possibly add here is less
474 // than the header alignment - hence that we're not going to go past our
475 // checkpoint.
476 VIXL_ASSERT(!CheckFuturePC(location, checkpoint_));
477 return location;
478 }
479
480 template <typename T>
Release(T pc)481 void PoolManager<T>::Release(T pc) {
482 USE(pc);
483 if (--monitor_ == 0) {
484 // Ensure the pool has not been blocked for too long.
485 VIXL_ASSERT(pc <= checkpoint_);
486 }
487 }
488
489 template <typename T>
490 PoolManager<T>::~PoolManager<T>() {
491 #ifdef VIXL_DEBUG
492 // Check for unbound objects.
493 for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
494 // There should not be any bound objects left in the pool. For unbound
495 // objects, we will check in the destructor of the object itself.
496 VIXL_ASSERT(!(*iter).label_base_->IsBound());
497 }
498 #endif
499 // Delete objects the pool manager owns.
500 for (typename std::vector<LocationBase<T> *>::iterator
501 iter = delete_on_destruction_.begin(),
502 end = delete_on_destruction_.end();
503 iter != end;
504 ++iter) {
505 delete *iter;
506 }
507 }
508
509 template <typename T>
GetPoolSizeForTest()510 int PoolManager<T>::GetPoolSizeForTest() const {
511 // Iterate over objects and return their cumulative size. This does not take
512 // any padding into account, just the size of the objects themselves.
513 int size = 0;
514 for (const_objects_iter iter = objects_.begin(); iter != objects_.end();
515 ++iter) {
516 size += (*iter).label_base_->GetPoolObjectSizeInBytes();
517 }
518 return size;
519 }
520 }
521
522 #endif // VIXL_POOL_MANAGER_IMPL_H_
523