• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <gtest/gtest.h>
18 
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/mman.h>
27 #include <sys/prctl.h>
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <time.h>
31 #include <unistd.h>
32 #include <unwind.h>
33 
34 #include <atomic>
35 #include <future>
36 #include <vector>
37 
38 #include <android-base/macros.h>
39 #include <android-base/parseint.h>
40 #include <android-base/scopeguard.h>
41 #include <android-base/strings.h>
42 
43 #include "private/bionic_constants.h"
44 #include "BionicDeathTest.h"
45 #include "SignalUtils.h"
46 #include "utils.h"
47 
TEST(pthread,pthread_key_create)48 TEST(pthread, pthread_key_create) {
49   pthread_key_t key;
50   ASSERT_EQ(0, pthread_key_create(&key, nullptr));
51   ASSERT_EQ(0, pthread_key_delete(key));
52   // Can't delete a key that's already been deleted.
53   ASSERT_EQ(EINVAL, pthread_key_delete(key));
54 }
55 
TEST(pthread,pthread_keys_max)56 TEST(pthread, pthread_keys_max) {
57   // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
58   ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
59 }
60 
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)61 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
62   int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
63   ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
64 }
65 
TEST(pthread,pthread_key_many_distinct)66 TEST(pthread, pthread_key_many_distinct) {
67   // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
68   // pthread keys, but We should be able to allocate at least this many keys.
69   int nkeys = PTHREAD_KEYS_MAX / 2;
70   std::vector<pthread_key_t> keys;
71 
72   auto scope_guard = android::base::make_scope_guard([&keys] {
73     for (const auto& key : keys) {
74       EXPECT_EQ(0, pthread_key_delete(key));
75     }
76   });
77 
78   for (int i = 0; i < nkeys; ++i) {
79     pthread_key_t key;
80     // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
81     ASSERT_EQ(0, pthread_key_create(&key, nullptr)) << i << " of " << nkeys;
82     keys.push_back(key);
83     ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
84   }
85 
86   for (int i = keys.size() - 1; i >= 0; --i) {
87     ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
88     pthread_key_t key = keys.back();
89     keys.pop_back();
90     ASSERT_EQ(0, pthread_key_delete(key));
91   }
92 }
93 
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)94 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
95   std::vector<pthread_key_t> keys;
96   int rv = 0;
97 
98   // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
99   // be more than we are allowed to allocate now.
100   for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
101     pthread_key_t key;
102     rv = pthread_key_create(&key, nullptr);
103     if (rv == EAGAIN) {
104       break;
105     }
106     EXPECT_EQ(0, rv);
107     keys.push_back(key);
108   }
109 
110   // Don't leak keys.
111   for (const auto& key : keys) {
112     EXPECT_EQ(0, pthread_key_delete(key));
113   }
114   keys.clear();
115 
116   // We should have eventually reached the maximum number of keys and received
117   // EAGAIN.
118   ASSERT_EQ(EAGAIN, rv);
119 }
120 
TEST(pthread,pthread_key_delete)121 TEST(pthread, pthread_key_delete) {
122   void* expected = reinterpret_cast<void*>(1234);
123   pthread_key_t key;
124   ASSERT_EQ(0, pthread_key_create(&key, nullptr));
125   ASSERT_EQ(0, pthread_setspecific(key, expected));
126   ASSERT_EQ(expected, pthread_getspecific(key));
127   ASSERT_EQ(0, pthread_key_delete(key));
128   // After deletion, pthread_getspecific returns nullptr.
129   ASSERT_EQ(nullptr, pthread_getspecific(key));
130   // And you can't use pthread_setspecific with the deleted key.
131   ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
132 }
133 
TEST(pthread,pthread_key_fork)134 TEST(pthread, pthread_key_fork) {
135   void* expected = reinterpret_cast<void*>(1234);
136   pthread_key_t key;
137   ASSERT_EQ(0, pthread_key_create(&key, nullptr));
138   ASSERT_EQ(0, pthread_setspecific(key, expected));
139   ASSERT_EQ(expected, pthread_getspecific(key));
140 
141   pid_t pid = fork();
142   ASSERT_NE(-1, pid) << strerror(errno);
143 
144   if (pid == 0) {
145     // The surviving thread inherits all the forking thread's TLS values...
146     ASSERT_EQ(expected, pthread_getspecific(key));
147     _exit(99);
148   }
149 
150   AssertChildExited(pid, 99);
151 
152   ASSERT_EQ(expected, pthread_getspecific(key));
153   ASSERT_EQ(0, pthread_key_delete(key));
154 }
155 
DirtyKeyFn(void * key)156 static void* DirtyKeyFn(void* key) {
157   return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
158 }
159 
TEST(pthread,pthread_key_dirty)160 TEST(pthread, pthread_key_dirty) {
161   pthread_key_t key;
162   ASSERT_EQ(0, pthread_key_create(&key, nullptr));
163 
164   size_t stack_size = 640 * 1024;
165   void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
166   ASSERT_NE(MAP_FAILED, stack);
167   memset(stack, 0xff, stack_size);
168 
169   pthread_attr_t attr;
170   ASSERT_EQ(0, pthread_attr_init(&attr));
171   ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
172 
173   pthread_t t;
174   ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
175 
176   void* result;
177   ASSERT_EQ(0, pthread_join(t, &result));
178   ASSERT_EQ(nullptr, result); // Not ~0!
179 
180   ASSERT_EQ(0, munmap(stack, stack_size));
181   ASSERT_EQ(0, pthread_key_delete(key));
182 }
183 
TEST(pthread,static_pthread_key_used_before_creation)184 TEST(pthread, static_pthread_key_used_before_creation) {
185 #if defined(__BIONIC__)
186   // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
187   // So here tests if the static/global default value 0 can be detected as invalid key.
188   static pthread_key_t key;
189   ASSERT_EQ(nullptr, pthread_getspecific(key));
190   ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
191   ASSERT_EQ(EINVAL, pthread_key_delete(key));
192 #else
193   GTEST_SKIP() << "bionic-only test";
194 #endif
195 }
196 
IdFn(void * arg)197 static void* IdFn(void* arg) {
198   return arg;
199 }
200 
201 class SpinFunctionHelper {
202  public:
SpinFunctionHelper()203   SpinFunctionHelper() {
204     SpinFunctionHelper::spin_flag_ = true;
205   }
206 
~SpinFunctionHelper()207   ~SpinFunctionHelper() {
208     UnSpin();
209   }
210 
GetFunction()211   auto GetFunction() -> void* (*)(void*) {
212     return SpinFunctionHelper::SpinFn;
213   }
214 
UnSpin()215   void UnSpin() {
216     SpinFunctionHelper::spin_flag_ = false;
217   }
218 
219  private:
SpinFn(void *)220   static void* SpinFn(void*) {
221     while (spin_flag_) {}
222     return nullptr;
223   }
224   static std::atomic<bool> spin_flag_;
225 };
226 
227 // It doesn't matter if spin_flag_ is used in several tests,
228 // because it is always set to false after each test. Each thread
229 // loops on spin_flag_ can find it becomes false at some time.
230 std::atomic<bool> SpinFunctionHelper::spin_flag_;
231 
JoinFn(void * arg)232 static void* JoinFn(void* arg) {
233   return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), nullptr));
234 }
235 
AssertDetached(pthread_t t,bool is_detached)236 static void AssertDetached(pthread_t t, bool is_detached) {
237   pthread_attr_t attr;
238   ASSERT_EQ(0, pthread_getattr_np(t, &attr));
239   int detach_state;
240   ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
241   pthread_attr_destroy(&attr);
242   ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
243 }
244 
MakeDeadThread(pthread_t & t)245 static void MakeDeadThread(pthread_t& t) {
246   ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, nullptr));
247   ASSERT_EQ(0, pthread_join(t, nullptr));
248 }
249 
TEST(pthread,pthread_create)250 TEST(pthread, pthread_create) {
251   void* expected_result = reinterpret_cast<void*>(123);
252   // Can we create a thread?
253   pthread_t t;
254   ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, expected_result));
255   // If we join, do we get the expected value back?
256   void* result;
257   ASSERT_EQ(0, pthread_join(t, &result));
258   ASSERT_EQ(expected_result, result);
259 }
260 
TEST(pthread,pthread_create_EAGAIN)261 TEST(pthread, pthread_create_EAGAIN) {
262   pthread_attr_t attributes;
263   ASSERT_EQ(0, pthread_attr_init(&attributes));
264   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
265 
266   pthread_t t;
267   ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, nullptr));
268 }
269 
TEST(pthread,pthread_no_join_after_detach)270 TEST(pthread, pthread_no_join_after_detach) {
271   SpinFunctionHelper spin_helper;
272 
273   pthread_t t1;
274   ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
275 
276   // After a pthread_detach...
277   ASSERT_EQ(0, pthread_detach(t1));
278   AssertDetached(t1, true);
279 
280   // ...pthread_join should fail.
281   ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
282 }
283 
TEST(pthread,pthread_no_op_detach_after_join)284 TEST(pthread, pthread_no_op_detach_after_join) {
285   SpinFunctionHelper spin_helper;
286 
287   pthread_t t1;
288   ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
289 
290   // If thread 2 is already waiting to join thread 1...
291   pthread_t t2;
292   ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
293 
294   sleep(1); // (Give t2 a chance to call pthread_join.)
295 
296 #if defined(__BIONIC__)
297   ASSERT_EQ(EINVAL, pthread_detach(t1));
298 #else
299   ASSERT_EQ(0, pthread_detach(t1));
300 #endif
301   AssertDetached(t1, false);
302 
303   spin_helper.UnSpin();
304 
305   // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
306   void* join_result;
307   ASSERT_EQ(0, pthread_join(t2, &join_result));
308   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
309 }
310 
TEST(pthread,pthread_join_self)311 TEST(pthread, pthread_join_self) {
312   ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), nullptr));
313 }
314 
315 struct TestBug37410 {
316   pthread_t main_thread;
317   pthread_mutex_t mutex;
318 
mainTestBug37410319   static void main() {
320     TestBug37410 data;
321     data.main_thread = pthread_self();
322     ASSERT_EQ(0, pthread_mutex_init(&data.mutex, nullptr));
323     ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
324 
325     pthread_t t;
326     ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
327 
328     // Wait for the thread to be running...
329     ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
330     ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
331 
332     // ...and exit.
333     pthread_exit(nullptr);
334   }
335 
336  private:
thread_fnTestBug37410337   static void* thread_fn(void* arg) {
338     TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
339 
340     // Unlocking data->mutex will cause the main thread to exit, invalidating *data. Save the handle.
341     pthread_t main_thread = data->main_thread;
342 
343     // Let the main thread know we're running.
344     pthread_mutex_unlock(&data->mutex);
345 
346     // And wait for the main thread to exit.
347     pthread_join(main_thread, nullptr);
348 
349     return nullptr;
350   }
351 };
352 
353 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
354 // run this test (which exits normally) in its own process.
355 
356 class pthread_DeathTest : public BionicDeathTest {};
357 
TEST_F(pthread_DeathTest,pthread_bug_37410)358 TEST_F(pthread_DeathTest, pthread_bug_37410) {
359   // http://code.google.com/p/android/issues/detail?id=37410
360   ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
361 }
362 
SignalHandlerFn(void * arg)363 static void* SignalHandlerFn(void* arg) {
364   sigset64_t wait_set;
365   sigfillset64(&wait_set);
366   return reinterpret_cast<void*>(sigwait64(&wait_set, reinterpret_cast<int*>(arg)));
367 }
368 
TEST(pthread,pthread_sigmask)369 TEST(pthread, pthread_sigmask) {
370   // Check that SIGUSR1 isn't blocked.
371   sigset_t original_set;
372   sigemptyset(&original_set);
373   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &original_set));
374   ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
375 
376   // Block SIGUSR1.
377   sigset_t set;
378   sigemptyset(&set);
379   sigaddset(&set, SIGUSR1);
380   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, nullptr));
381 
382   // Check that SIGUSR1 is blocked.
383   sigset_t final_set;
384   sigemptyset(&final_set);
385   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &final_set));
386   ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
387   // ...and that sigprocmask agrees with pthread_sigmask.
388   sigemptyset(&final_set);
389   ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &final_set));
390   ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
391 
392   // Spawn a thread that calls sigwait and tells us what it received.
393   pthread_t signal_thread;
394   int received_signal = -1;
395   ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
396 
397   // Send that thread SIGUSR1.
398   pthread_kill(signal_thread, SIGUSR1);
399 
400   // See what it got.
401   void* join_result;
402   ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
403   ASSERT_EQ(SIGUSR1, received_signal);
404   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
405 
406   // Restore the original signal mask.
407   ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, nullptr));
408 }
409 
TEST(pthread,pthread_sigmask64_SIGTRMIN)410 TEST(pthread, pthread_sigmask64_SIGTRMIN) {
411   // Check that SIGRTMIN isn't blocked.
412   sigset64_t original_set;
413   sigemptyset64(&original_set);
414   ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &original_set));
415   ASSERT_FALSE(sigismember64(&original_set, SIGRTMIN));
416 
417   // Block SIGRTMIN.
418   sigset64_t set;
419   sigemptyset64(&set);
420   sigaddset64(&set, SIGRTMIN);
421   ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &set, nullptr));
422 
423   // Check that SIGRTMIN is blocked.
424   sigset64_t final_set;
425   sigemptyset64(&final_set);
426   ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &final_set));
427   ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
428   // ...and that sigprocmask64 agrees with pthread_sigmask64.
429   sigemptyset64(&final_set);
430   ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, nullptr, &final_set));
431   ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
432 
433   // Spawn a thread that calls sigwait64 and tells us what it received.
434   pthread_t signal_thread;
435   int received_signal = -1;
436   ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
437 
438   // Send that thread SIGRTMIN.
439   pthread_kill(signal_thread, SIGRTMIN);
440 
441   // See what it got.
442   void* join_result;
443   ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
444   ASSERT_EQ(SIGRTMIN, received_signal);
445   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
446 
447   // Restore the original signal mask.
448   ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &original_set, nullptr));
449 }
450 
test_pthread_setname_np__pthread_getname_np(pthread_t t)451 static void test_pthread_setname_np__pthread_getname_np(pthread_t t) {
452   ASSERT_EQ(0, pthread_setname_np(t, "short"));
453   char name[32];
454   ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
455   ASSERT_STREQ("short", name);
456 
457   // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
458   ASSERT_EQ(0, pthread_setname_np(t, "123456789012345"));
459   ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
460   ASSERT_STREQ("123456789012345", name);
461 
462   ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456"));
463 
464   // The passed-in buffer should be at least 16 bytes.
465   ASSERT_EQ(0, pthread_getname_np(t, name, 16));
466   ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15));
467 }
468 
TEST(pthread,pthread_setname_np__pthread_getname_np__self)469 TEST(pthread, pthread_setname_np__pthread_getname_np__self) {
470   test_pthread_setname_np__pthread_getname_np(pthread_self());
471 }
472 
TEST(pthread,pthread_setname_np__pthread_getname_np__other)473 TEST(pthread, pthread_setname_np__pthread_getname_np__other) {
474   SpinFunctionHelper spin_helper;
475 
476   pthread_t t;
477   ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
478   test_pthread_setname_np__pthread_getname_np(t);
479   spin_helper.UnSpin();
480   ASSERT_EQ(0, pthread_join(t, nullptr));
481 }
482 
483 // http://b/28051133: a kernel misfeature means that you can't change the
484 // name of another thread if you've set PR_SET_DUMPABLE to 0.
TEST(pthread,pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE)485 TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) {
486   ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno);
487 
488   SpinFunctionHelper spin_helper;
489 
490   pthread_t t;
491   ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
492   test_pthread_setname_np__pthread_getname_np(t);
493   spin_helper.UnSpin();
494   ASSERT_EQ(0, pthread_join(t, nullptr));
495 }
496 
TEST_F(pthread_DeathTest,pthread_setname_np__no_such_thread)497 TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) {
498   pthread_t dead_thread;
499   MakeDeadThread(dead_thread);
500 
501   EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"),
502                "invalid pthread_t (.*) passed to pthread_setname_np");
503 }
504 
TEST_F(pthread_DeathTest,pthread_setname_np__null_thread)505 TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) {
506   pthread_t null_thread = 0;
507   EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3"));
508 }
509 
TEST_F(pthread_DeathTest,pthread_getname_np__no_such_thread)510 TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) {
511   pthread_t dead_thread;
512   MakeDeadThread(dead_thread);
513 
514   char name[64];
515   EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)),
516                "invalid pthread_t (.*) passed to pthread_getname_np");
517 }
518 
TEST_F(pthread_DeathTest,pthread_getname_np__null_thread)519 TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) {
520   pthread_t null_thread = 0;
521 
522   char name[64];
523   EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name)));
524 }
525 
TEST(pthread,pthread_kill__0)526 TEST(pthread, pthread_kill__0) {
527   // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
528   ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
529 }
530 
TEST(pthread,pthread_kill__invalid_signal)531 TEST(pthread, pthread_kill__invalid_signal) {
532   ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
533 }
534 
pthread_kill__in_signal_handler_helper(int signal_number)535 static void pthread_kill__in_signal_handler_helper(int signal_number) {
536   static int count = 0;
537   ASSERT_EQ(SIGALRM, signal_number);
538   if (++count == 1) {
539     // Can we call pthread_kill from a signal handler?
540     ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
541   }
542 }
543 
TEST(pthread,pthread_kill__in_signal_handler)544 TEST(pthread, pthread_kill__in_signal_handler) {
545   ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
546   ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
547 }
548 
TEST(pthread,pthread_kill__exited_thread)549 TEST(pthread, pthread_kill__exited_thread) {
550   static std::promise<pid_t> tid_promise;
551   pthread_t thread;
552   ASSERT_EQ(0, pthread_create(&thread, nullptr,
553                               [](void*) -> void* {
554                                 tid_promise.set_value(gettid());
555                                 return nullptr;
556                               },
557                               nullptr));
558 
559   pid_t tid = tid_promise.get_future().get();
560   while (TEMP_FAILURE_RETRY(syscall(__NR_tgkill, getpid(), tid, 0)) != -1) {
561     continue;
562   }
563   ASSERT_EQ(ESRCH, errno);
564 
565   ASSERT_EQ(ESRCH, pthread_kill(thread, 0));
566 }
567 
TEST_F(pthread_DeathTest,pthread_detach__no_such_thread)568 TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) {
569   pthread_t dead_thread;
570   MakeDeadThread(dead_thread);
571 
572   EXPECT_DEATH(pthread_detach(dead_thread),
573                "invalid pthread_t (.*) passed to pthread_detach");
574 }
575 
TEST_F(pthread_DeathTest,pthread_detach__null_thread)576 TEST_F(pthread_DeathTest, pthread_detach__null_thread) {
577   pthread_t null_thread = 0;
578   EXPECT_EQ(ESRCH, pthread_detach(null_thread));
579 }
580 
TEST(pthread,pthread_getcpuclockid__clock_gettime)581 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
582   SpinFunctionHelper spin_helper;
583 
584   pthread_t t;
585   ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
586 
587   clockid_t c;
588   ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
589   timespec ts;
590   ASSERT_EQ(0, clock_gettime(c, &ts));
591   spin_helper.UnSpin();
592   ASSERT_EQ(0, pthread_join(t, nullptr));
593 }
594 
TEST_F(pthread_DeathTest,pthread_getcpuclockid__no_such_thread)595 TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) {
596   pthread_t dead_thread;
597   MakeDeadThread(dead_thread);
598 
599   clockid_t c;
600   EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c),
601                "invalid pthread_t (.*) passed to pthread_getcpuclockid");
602 }
603 
TEST_F(pthread_DeathTest,pthread_getcpuclockid__null_thread)604 TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) {
605   pthread_t null_thread = 0;
606   clockid_t c;
607   EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c));
608 }
609 
TEST_F(pthread_DeathTest,pthread_getschedparam__no_such_thread)610 TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) {
611   pthread_t dead_thread;
612   MakeDeadThread(dead_thread);
613 
614   int policy;
615   sched_param param;
616   EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, &param),
617                "invalid pthread_t (.*) passed to pthread_getschedparam");
618 }
619 
TEST_F(pthread_DeathTest,pthread_getschedparam__null_thread)620 TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) {
621   pthread_t null_thread = 0;
622   int policy;
623   sched_param param;
624   EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, &param));
625 }
626 
TEST_F(pthread_DeathTest,pthread_setschedparam__no_such_thread)627 TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) {
628   pthread_t dead_thread;
629   MakeDeadThread(dead_thread);
630 
631   int policy = 0;
632   sched_param param;
633   EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, &param),
634                "invalid pthread_t (.*) passed to pthread_setschedparam");
635 }
636 
TEST_F(pthread_DeathTest,pthread_setschedparam__null_thread)637 TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) {
638   pthread_t null_thread = 0;
639   int policy = 0;
640   sched_param param;
641   EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, &param));
642 }
643 
TEST_F(pthread_DeathTest,pthread_setschedprio__no_such_thread)644 TEST_F(pthread_DeathTest, pthread_setschedprio__no_such_thread) {
645   pthread_t dead_thread;
646   MakeDeadThread(dead_thread);
647 
648   EXPECT_DEATH(pthread_setschedprio(dead_thread, 123),
649                "invalid pthread_t (.*) passed to pthread_setschedprio");
650 }
651 
TEST_F(pthread_DeathTest,pthread_setschedprio__null_thread)652 TEST_F(pthread_DeathTest, pthread_setschedprio__null_thread) {
653   pthread_t null_thread = 0;
654   EXPECT_EQ(ESRCH, pthread_setschedprio(null_thread, 123));
655 }
656 
TEST_F(pthread_DeathTest,pthread_join__no_such_thread)657 TEST_F(pthread_DeathTest, pthread_join__no_such_thread) {
658   pthread_t dead_thread;
659   MakeDeadThread(dead_thread);
660 
661   EXPECT_DEATH(pthread_join(dead_thread, nullptr),
662                "invalid pthread_t (.*) passed to pthread_join");
663 }
664 
TEST_F(pthread_DeathTest,pthread_join__null_thread)665 TEST_F(pthread_DeathTest, pthread_join__null_thread) {
666   pthread_t null_thread = 0;
667   EXPECT_EQ(ESRCH, pthread_join(null_thread, nullptr));
668 }
669 
TEST_F(pthread_DeathTest,pthread_kill__no_such_thread)670 TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) {
671   pthread_t dead_thread;
672   MakeDeadThread(dead_thread);
673 
674   EXPECT_DEATH(pthread_kill(dead_thread, 0),
675                "invalid pthread_t (.*) passed to pthread_kill");
676 }
677 
TEST_F(pthread_DeathTest,pthread_kill__null_thread)678 TEST_F(pthread_DeathTest, pthread_kill__null_thread) {
679   pthread_t null_thread = 0;
680   EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0));
681 }
682 
TEST(pthread,pthread_join__multijoin)683 TEST(pthread, pthread_join__multijoin) {
684   SpinFunctionHelper spin_helper;
685 
686   pthread_t t1;
687   ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
688 
689   pthread_t t2;
690   ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
691 
692   sleep(1); // (Give t2 a chance to call pthread_join.)
693 
694   // Multiple joins to the same thread should fail.
695   ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
696 
697   spin_helper.UnSpin();
698 
699   // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
700   void* join_result;
701   ASSERT_EQ(0, pthread_join(t2, &join_result));
702   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
703 }
704 
TEST(pthread,pthread_join__race)705 TEST(pthread, pthread_join__race) {
706   // http://b/11693195 --- pthread_join could return before the thread had actually exited.
707   // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
708   for (size_t i = 0; i < 1024; ++i) {
709     size_t stack_size = 640*1024;
710     void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
711 
712     pthread_attr_t a;
713     pthread_attr_init(&a);
714     pthread_attr_setstack(&a, stack, stack_size);
715 
716     pthread_t t;
717     ASSERT_EQ(0, pthread_create(&t, &a, IdFn, nullptr));
718     ASSERT_EQ(0, pthread_join(t, nullptr));
719     ASSERT_EQ(0, munmap(stack, stack_size));
720   }
721 }
722 
GetActualGuardSizeFn(void * arg)723 static void* GetActualGuardSizeFn(void* arg) {
724   pthread_attr_t attributes;
725   pthread_getattr_np(pthread_self(), &attributes);
726   pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
727   return nullptr;
728 }
729 
GetActualGuardSize(const pthread_attr_t & attributes)730 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
731   size_t result;
732   pthread_t t;
733   pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
734   pthread_join(t, nullptr);
735   return result;
736 }
737 
GetActualStackSizeFn(void * arg)738 static void* GetActualStackSizeFn(void* arg) {
739   pthread_attr_t attributes;
740   pthread_getattr_np(pthread_self(), &attributes);
741   pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
742   return nullptr;
743 }
744 
GetActualStackSize(const pthread_attr_t & attributes)745 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
746   size_t result;
747   pthread_t t;
748   pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
749   pthread_join(t, nullptr);
750   return result;
751 }
752 
TEST(pthread,pthread_attr_setguardsize_tiny)753 TEST(pthread, pthread_attr_setguardsize_tiny) {
754   pthread_attr_t attributes;
755   ASSERT_EQ(0, pthread_attr_init(&attributes));
756 
757   // No such thing as too small: will be rounded up to one page by pthread_create.
758   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
759   size_t guard_size;
760   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
761   ASSERT_EQ(128U, guard_size);
762   ASSERT_EQ(4096U, GetActualGuardSize(attributes));
763 }
764 
TEST(pthread,pthread_attr_setguardsize_reasonable)765 TEST(pthread, pthread_attr_setguardsize_reasonable) {
766   pthread_attr_t attributes;
767   ASSERT_EQ(0, pthread_attr_init(&attributes));
768 
769   // Large enough and a multiple of the page size.
770   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
771   size_t guard_size;
772   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
773   ASSERT_EQ(32*1024U, guard_size);
774   ASSERT_EQ(32*1024U, GetActualGuardSize(attributes));
775 }
776 
TEST(pthread,pthread_attr_setguardsize_needs_rounding)777 TEST(pthread, pthread_attr_setguardsize_needs_rounding) {
778   pthread_attr_t attributes;
779   ASSERT_EQ(0, pthread_attr_init(&attributes));
780 
781   // Large enough but not a multiple of the page size.
782   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
783   size_t guard_size;
784   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
785   ASSERT_EQ(32*1024U + 1, guard_size);
786   ASSERT_EQ(36*1024U, GetActualGuardSize(attributes));
787 }
788 
TEST(pthread,pthread_attr_setguardsize_enormous)789 TEST(pthread, pthread_attr_setguardsize_enormous) {
790   pthread_attr_t attributes;
791   ASSERT_EQ(0, pthread_attr_init(&attributes));
792 
793   // Larger than the stack itself. (Historically we mistakenly carved
794   // the guard out of the stack itself, rather than adding it after the
795   // end.)
796   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024*1024));
797   size_t guard_size;
798   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
799   ASSERT_EQ(32*1024*1024U, guard_size);
800   ASSERT_EQ(32*1024*1024U, GetActualGuardSize(attributes));
801 }
802 
TEST(pthread,pthread_attr_setstacksize)803 TEST(pthread, pthread_attr_setstacksize) {
804   pthread_attr_t attributes;
805   ASSERT_EQ(0, pthread_attr_init(&attributes));
806 
807   // Get the default stack size.
808   size_t default_stack_size;
809   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
810 
811   // Too small.
812   ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
813   size_t stack_size;
814   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
815   ASSERT_EQ(default_stack_size, stack_size);
816   ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
817 
818   // Large enough and a multiple of the page size; may be rounded up by pthread_create.
819   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
820   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
821   ASSERT_EQ(32*1024U, stack_size);
822   ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
823 
824   // Large enough but not aligned; will be rounded up by pthread_create.
825   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
826   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
827   ASSERT_EQ(32*1024U + 1, stack_size);
828 #if defined(__BIONIC__)
829   ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
830 #else // __BIONIC__
831   // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
832   ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
833 #endif // __BIONIC__
834 }
835 
TEST(pthread,pthread_rwlockattr_smoke)836 TEST(pthread, pthread_rwlockattr_smoke) {
837   pthread_rwlockattr_t attr;
838   ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
839 
840   int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
841   for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
842     ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
843     int pshared;
844     ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
845     ASSERT_EQ(pshared_value_array[i], pshared);
846   }
847 
848   int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
849                       PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
850   for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
851     ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
852     int kind;
853     ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
854     ASSERT_EQ(kind_array[i], kind);
855   }
856 
857   ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
858 }
859 
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)860 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
861   pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
862   pthread_rwlock_t lock2;
863   ASSERT_EQ(0, pthread_rwlock_init(&lock2, nullptr));
864   ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
865 }
866 
TEST(pthread,pthread_rwlock_smoke)867 TEST(pthread, pthread_rwlock_smoke) {
868   pthread_rwlock_t l;
869   ASSERT_EQ(0, pthread_rwlock_init(&l, nullptr));
870 
871   // Single read lock
872   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
873   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
874 
875   // Multiple read lock
876   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
877   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
878   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
879   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
880 
881   // Write lock
882   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
883   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
884 
885   // Try writer lock
886   ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
887   ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
888   ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
889   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
890 
891   // Try reader lock
892   ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
893   ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
894   ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
895   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
896   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
897 
898   // Try writer lock after unlock
899   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
900   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
901 
902   // EDEADLK in "read after write"
903   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
904   ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
905   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
906 
907   // EDEADLK in "write after write"
908   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
909   ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
910   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
911 
912   ASSERT_EQ(0, pthread_rwlock_destroy(&l));
913 }
914 
915 struct RwlockWakeupHelperArg {
916   pthread_rwlock_t lock;
917   enum Progress {
918     LOCK_INITIALIZED,
919     LOCK_WAITING,
920     LOCK_RELEASED,
921     LOCK_ACCESSED,
922     LOCK_TIMEDOUT,
923   };
924   std::atomic<Progress> progress;
925   std::atomic<pid_t> tid;
926   std::function<int (pthread_rwlock_t*)> trylock_function;
927   std::function<int (pthread_rwlock_t*)> lock_function;
928   std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
929   clockid_t clock;
930 };
931 
pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg * arg)932 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
933   arg->tid = gettid();
934   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
935   arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
936 
937   ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
938   ASSERT_EQ(0, arg->lock_function(&arg->lock));
939   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
940   ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
941 
942   arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
943 }
944 
test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t *)> lock_function)945 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
946   RwlockWakeupHelperArg wakeup_arg;
947   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
948   ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
949   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
950   wakeup_arg.tid = 0;
951   wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
952   wakeup_arg.lock_function = lock_function;
953 
954   pthread_t thread;
955   ASSERT_EQ(0, pthread_create(&thread, nullptr,
956     reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
957   WaitUntilThreadSleep(wakeup_arg.tid);
958   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
959 
960   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
961   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
962 
963   ASSERT_EQ(0, pthread_join(thread, nullptr));
964   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
965   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
966 }
967 
TEST(pthread,pthread_rwlock_reader_wakeup_writer)968 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
969   test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
970 }
971 
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait)972 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
973   timespec ts;
974   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
975   ts.tv_sec += 1;
976   test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
977     return pthread_rwlock_timedwrlock(lock, &ts);
978   });
979 }
980 
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np)981 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np) {
982 #if defined(__BIONIC__)
983   timespec ts;
984   ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
985   ts.tv_sec += 1;
986   test_pthread_rwlock_reader_wakeup_writer(
987       [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedwrlock_monotonic_np(lock, &ts); });
988 #else   // __BIONIC__
989   GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
990 #endif  // __BIONIC__
991 }
992 
test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t *)> lock_function)993 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
994   RwlockWakeupHelperArg wakeup_arg;
995   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
996   ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
997   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
998   wakeup_arg.tid = 0;
999   wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
1000   wakeup_arg.lock_function = lock_function;
1001 
1002   pthread_t thread;
1003   ASSERT_EQ(0, pthread_create(&thread, nullptr,
1004     reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
1005   WaitUntilThreadSleep(wakeup_arg.tid);
1006   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1007 
1008   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
1009   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1010 
1011   ASSERT_EQ(0, pthread_join(thread, nullptr));
1012   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
1013   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1014 }
1015 
TEST(pthread,pthread_rwlock_writer_wakeup_reader)1016 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
1017   test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
1018 }
1019 
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait)1020 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
1021   timespec ts;
1022   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1023   ts.tv_sec += 1;
1024   test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1025     return pthread_rwlock_timedrdlock(lock, &ts);
1026   });
1027 }
1028 
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np)1029 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np) {
1030 #if defined(__BIONIC__)
1031   timespec ts;
1032   ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1033   ts.tv_sec += 1;
1034   test_pthread_rwlock_writer_wakeup_reader(
1035       [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedrdlock_monotonic_np(lock, &ts); });
1036 #else   // __BIONIC__
1037   GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
1038 #endif  // __BIONIC__
1039 }
1040 
pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg * arg)1041 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
1042   arg->tid = gettid();
1043   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
1044   arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
1045 
1046   ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
1047 
1048   timespec ts;
1049   ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
1050   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1051   ts.tv_nsec = -1;
1052   ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
1053   ts.tv_nsec = NS_PER_S;
1054   ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
1055   ts.tv_nsec = NS_PER_S - 1;
1056   ts.tv_sec = -1;
1057   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1058   ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
1059   ts.tv_sec += 1;
1060   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1061   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
1062   arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
1063 }
1064 
pthread_rwlock_timedrdlock_timeout_helper(clockid_t clock,int (* lock_function)(pthread_rwlock_t * __rwlock,const timespec * __timeout))1065 static void pthread_rwlock_timedrdlock_timeout_helper(
1066     clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
1067   RwlockWakeupHelperArg wakeup_arg;
1068   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1069   ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
1070   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1071   wakeup_arg.tid = 0;
1072   wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
1073   wakeup_arg.timed_lock_function = lock_function;
1074   wakeup_arg.clock = clock;
1075 
1076   pthread_t thread;
1077   ASSERT_EQ(0, pthread_create(&thread, nullptr,
1078       reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
1079   WaitUntilThreadSleep(wakeup_arg.tid);
1080   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1081 
1082   ASSERT_EQ(0, pthread_join(thread, nullptr));
1083   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
1084   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1085   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1086 }
1087 
TEST(pthread,pthread_rwlock_timedrdlock_timeout)1088 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
1089   pthread_rwlock_timedrdlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedrdlock);
1090 }
1091 
TEST(pthread,pthread_rwlock_timedrdlock_monotonic_np_timeout)1092 TEST(pthread, pthread_rwlock_timedrdlock_monotonic_np_timeout) {
1093 #if defined(__BIONIC__)
1094   pthread_rwlock_timedrdlock_timeout_helper(CLOCK_MONOTONIC,
1095                                             pthread_rwlock_timedrdlock_monotonic_np);
1096 #else   // __BIONIC__
1097   GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
1098 #endif  // __BIONIC__
1099 }
1100 
pthread_rwlock_timedwrlock_timeout_helper(clockid_t clock,int (* lock_function)(pthread_rwlock_t * __rwlock,const timespec * __timeout))1101 static void pthread_rwlock_timedwrlock_timeout_helper(
1102     clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
1103   RwlockWakeupHelperArg wakeup_arg;
1104   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1105   ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
1106   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1107   wakeup_arg.tid = 0;
1108   wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
1109   wakeup_arg.timed_lock_function = lock_function;
1110   wakeup_arg.clock = clock;
1111 
1112   pthread_t thread;
1113   ASSERT_EQ(0, pthread_create(&thread, nullptr,
1114       reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
1115   WaitUntilThreadSleep(wakeup_arg.tid);
1116   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1117 
1118   ASSERT_EQ(0, pthread_join(thread, nullptr));
1119   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
1120   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1121   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1122 }
1123 
TEST(pthread,pthread_rwlock_timedwrlock_timeout)1124 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
1125   pthread_rwlock_timedwrlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedwrlock);
1126 }
1127 
TEST(pthread,pthread_rwlock_timedwrlock_monotonic_np_timeout)1128 TEST(pthread, pthread_rwlock_timedwrlock_monotonic_np_timeout) {
1129 #if defined(__BIONIC__)
1130   pthread_rwlock_timedwrlock_timeout_helper(CLOCK_MONOTONIC,
1131                                             pthread_rwlock_timedwrlock_monotonic_np);
1132 #else   // __BIONIC__
1133   GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
1134 #endif  // __BIONIC__
1135 }
1136 
1137 class RwlockKindTestHelper {
1138  private:
1139   struct ThreadArg {
1140     RwlockKindTestHelper* helper;
1141     std::atomic<pid_t>& tid;
1142 
ThreadArgRwlockKindTestHelper::ThreadArg1143     ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
1144       : helper(helper), tid(tid) { }
1145   };
1146 
1147  public:
1148   pthread_rwlock_t lock;
1149 
1150  public:
RwlockKindTestHelper(int kind_type)1151   explicit RwlockKindTestHelper(int kind_type) {
1152     InitRwlock(kind_type);
1153   }
1154 
~RwlockKindTestHelper()1155   ~RwlockKindTestHelper() {
1156     DestroyRwlock();
1157   }
1158 
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)1159   void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
1160     tid = 0;
1161     ThreadArg* arg = new ThreadArg(this, tid);
1162     ASSERT_EQ(0, pthread_create(&thread, nullptr,
1163                                 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
1164   }
1165 
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)1166   void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
1167     tid = 0;
1168     ThreadArg* arg = new ThreadArg(this, tid);
1169     ASSERT_EQ(0, pthread_create(&thread, nullptr,
1170                                 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
1171   }
1172 
1173  private:
InitRwlock(int kind_type)1174   void InitRwlock(int kind_type) {
1175     pthread_rwlockattr_t attr;
1176     ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
1177     ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
1178     ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
1179     ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
1180   }
1181 
DestroyRwlock()1182   void DestroyRwlock() {
1183     ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
1184   }
1185 
WriterThreadFn(ThreadArg * arg)1186   static void WriterThreadFn(ThreadArg* arg) {
1187     arg->tid = gettid();
1188 
1189     RwlockKindTestHelper* helper = arg->helper;
1190     ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
1191     ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1192     delete arg;
1193   }
1194 
ReaderThreadFn(ThreadArg * arg)1195   static void ReaderThreadFn(ThreadArg* arg) {
1196     arg->tid = gettid();
1197 
1198     RwlockKindTestHelper* helper = arg->helper;
1199     ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
1200     ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1201     delete arg;
1202   }
1203 };
1204 
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)1205 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
1206   RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
1207   ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1208 
1209   pthread_t writer_thread;
1210   std::atomic<pid_t> writer_tid;
1211   helper.CreateWriterThread(writer_thread, writer_tid);
1212   WaitUntilThreadSleep(writer_tid);
1213 
1214   pthread_t reader_thread;
1215   std::atomic<pid_t> reader_tid;
1216   helper.CreateReaderThread(reader_thread, reader_tid);
1217   ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
1218 
1219   ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1220   ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
1221 }
1222 
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)1223 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
1224   RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
1225   ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1226 
1227   pthread_t writer_thread;
1228   std::atomic<pid_t> writer_tid;
1229   helper.CreateWriterThread(writer_thread, writer_tid);
1230   WaitUntilThreadSleep(writer_tid);
1231 
1232   pthread_t reader_thread;
1233   std::atomic<pid_t> reader_tid;
1234   helper.CreateReaderThread(reader_thread, reader_tid);
1235   WaitUntilThreadSleep(reader_tid);
1236 
1237   ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1238   ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
1239   ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
1240 }
1241 
1242 static int g_once_fn_call_count = 0;
OnceFn()1243 static void OnceFn() {
1244   ++g_once_fn_call_count;
1245 }
1246 
TEST(pthread,pthread_once_smoke)1247 TEST(pthread, pthread_once_smoke) {
1248   pthread_once_t once_control = PTHREAD_ONCE_INIT;
1249   ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1250   ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1251   ASSERT_EQ(1, g_once_fn_call_count);
1252 }
1253 
1254 static std::string pthread_once_1934122_result = "";
1255 
Routine2()1256 static void Routine2() {
1257   pthread_once_1934122_result += "2";
1258 }
1259 
Routine1()1260 static void Routine1() {
1261   pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
1262   pthread_once_1934122_result += "1";
1263   pthread_once(&once_control_2, &Routine2);
1264 }
1265 
TEST(pthread,pthread_once_1934122)1266 TEST(pthread, pthread_once_1934122) {
1267   // Very old versions of Android couldn't call pthread_once from a
1268   // pthread_once init routine. http://b/1934122.
1269   pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
1270   ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
1271   ASSERT_EQ("12", pthread_once_1934122_result);
1272 }
1273 
1274 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()1275 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()1276 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
1277 static int g_atfork_parent_calls = 0;
AtForkParent1()1278 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()1279 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
1280 static int g_atfork_child_calls = 0;
AtForkChild1()1281 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()1282 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1283 
TEST(pthread,pthread_atfork_smoke)1284 TEST(pthread, pthread_atfork_smoke) {
1285   ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1286   ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1287 
1288   pid_t pid = fork();
1289   ASSERT_NE(-1, pid) << strerror(errno);
1290 
1291   // Child and parent calls are made in the order they were registered.
1292   if (pid == 0) {
1293     ASSERT_EQ(12, g_atfork_child_calls);
1294     _exit(0);
1295   }
1296   ASSERT_EQ(12, g_atfork_parent_calls);
1297 
1298   // Prepare calls are made in the reverse order.
1299   ASSERT_EQ(21, g_atfork_prepare_calls);
1300   AssertChildExited(pid, 0);
1301 }
1302 
TEST(pthread,pthread_attr_getscope)1303 TEST(pthread, pthread_attr_getscope) {
1304   pthread_attr_t attr;
1305   ASSERT_EQ(0, pthread_attr_init(&attr));
1306 
1307   int scope;
1308   ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1309   ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1310 }
1311 
TEST(pthread,pthread_condattr_init)1312 TEST(pthread, pthread_condattr_init) {
1313   pthread_condattr_t attr;
1314   pthread_condattr_init(&attr);
1315 
1316   clockid_t clock;
1317   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1318   ASSERT_EQ(CLOCK_REALTIME, clock);
1319 
1320   int pshared;
1321   ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1322   ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1323 }
1324 
TEST(pthread,pthread_condattr_setclock)1325 TEST(pthread, pthread_condattr_setclock) {
1326   pthread_condattr_t attr;
1327   pthread_condattr_init(&attr);
1328 
1329   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1330   clockid_t clock;
1331   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1332   ASSERT_EQ(CLOCK_REALTIME, clock);
1333 
1334   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1335   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1336   ASSERT_EQ(CLOCK_MONOTONIC, clock);
1337 
1338   ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1339 }
1340 
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1341 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1342 #if defined(__BIONIC__)
1343   pthread_condattr_t attr;
1344   pthread_condattr_init(&attr);
1345 
1346   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1347   ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1348 
1349   pthread_cond_t cond_var;
1350   ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1351 
1352   ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1353   ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1354 
1355   attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1356   clockid_t clock;
1357   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1358   ASSERT_EQ(CLOCK_MONOTONIC, clock);
1359   int pshared;
1360   ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1361   ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1362 #else  // !defined(__BIONIC__)
1363   GTEST_SKIP() << "bionic-only test";
1364 #endif  // !defined(__BIONIC__)
1365 }
1366 
1367 class pthread_CondWakeupTest : public ::testing::Test {
1368  protected:
1369   pthread_mutex_t mutex;
1370   pthread_cond_t cond;
1371 
1372   enum Progress {
1373     INITIALIZED,
1374     WAITING,
1375     SIGNALED,
1376     FINISHED,
1377   };
1378   std::atomic<Progress> progress;
1379   pthread_t thread;
1380   std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
1381 
1382  protected:
SetUp()1383   void SetUp() override {
1384     ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1385   }
1386 
InitCond(clockid_t clock=CLOCK_REALTIME)1387   void InitCond(clockid_t clock=CLOCK_REALTIME) {
1388     pthread_condattr_t attr;
1389     ASSERT_EQ(0, pthread_condattr_init(&attr));
1390     ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
1391     ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1392     ASSERT_EQ(0, pthread_condattr_destroy(&attr));
1393   }
1394 
StartWaitingThread(std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex)> wait_function)1395   void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
1396     progress = INITIALIZED;
1397     this->wait_function = wait_function;
1398     ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1399     while (progress != WAITING) {
1400       usleep(5000);
1401     }
1402     usleep(5000);
1403   }
1404 
TearDown()1405   void TearDown() override {
1406     ASSERT_EQ(0, pthread_join(thread, nullptr));
1407     ASSERT_EQ(FINISHED, progress);
1408     ASSERT_EQ(0, pthread_cond_destroy(&cond));
1409     ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1410   }
1411 
1412  private:
WaitThreadFn(pthread_CondWakeupTest * test)1413   static void WaitThreadFn(pthread_CondWakeupTest* test) {
1414     ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1415     test->progress = WAITING;
1416     while (test->progress == WAITING) {
1417       ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
1418     }
1419     ASSERT_EQ(SIGNALED, test->progress);
1420     test->progress = FINISHED;
1421     ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1422   }
1423 };
1424 
TEST_F(pthread_CondWakeupTest,signal_wait)1425 TEST_F(pthread_CondWakeupTest, signal_wait) {
1426   InitCond();
1427   StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1428     return pthread_cond_wait(cond, mutex);
1429   });
1430   progress = SIGNALED;
1431   ASSERT_EQ(0, pthread_cond_signal(&cond));
1432 }
1433 
TEST_F(pthread_CondWakeupTest,broadcast_wait)1434 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
1435   InitCond();
1436   StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1437     return pthread_cond_wait(cond, mutex);
1438   });
1439   progress = SIGNALED;
1440   ASSERT_EQ(0, pthread_cond_broadcast(&cond));
1441 }
1442 
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_REALTIME)1443 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
1444   InitCond(CLOCK_REALTIME);
1445   timespec ts;
1446   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1447   ts.tv_sec += 1;
1448   StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1449     return pthread_cond_timedwait(cond, mutex, &ts);
1450   });
1451   progress = SIGNALED;
1452   ASSERT_EQ(0, pthread_cond_signal(&cond));
1453 }
1454 
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC)1455 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
1456   InitCond(CLOCK_MONOTONIC);
1457   timespec ts;
1458   ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1459   ts.tv_sec += 1;
1460   StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1461     return pthread_cond_timedwait(cond, mutex, &ts);
1462   });
1463   progress = SIGNALED;
1464   ASSERT_EQ(0, pthread_cond_signal(&cond));
1465 }
1466 
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC_np)1467 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC_np) {
1468 #if defined(__BIONIC__)
1469   InitCond(CLOCK_REALTIME);
1470   timespec ts;
1471   ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1472   ts.tv_sec += 1;
1473   StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1474     return pthread_cond_timedwait_monotonic_np(cond, mutex, &ts);
1475   });
1476   progress = SIGNALED;
1477   ASSERT_EQ(0, pthread_cond_signal(&cond));
1478 #else   // __BIONIC__
1479   GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
1480 #endif  // __BIONIC__
1481 }
1482 
pthread_cond_timedwait_timeout_helper(clockid_t clock,int (* wait_function)(pthread_cond_t * __cond,pthread_mutex_t * __mutex,const timespec * __timeout))1483 static void pthread_cond_timedwait_timeout_helper(clockid_t clock,
1484                                                   int (*wait_function)(pthread_cond_t* __cond,
1485                                                                        pthread_mutex_t* __mutex,
1486                                                                        const timespec* __timeout)) {
1487   pthread_mutex_t mutex;
1488   ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1489   pthread_cond_t cond;
1490   ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
1491   ASSERT_EQ(0, pthread_mutex_lock(&mutex));
1492 
1493   timespec ts;
1494   ASSERT_EQ(0, clock_gettime(clock, &ts));
1495   ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
1496   ts.tv_nsec = -1;
1497   ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
1498   ts.tv_nsec = NS_PER_S;
1499   ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
1500   ts.tv_nsec = NS_PER_S - 1;
1501   ts.tv_sec = -1;
1502   ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
1503   ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
1504 }
1505 
TEST(pthread,pthread_cond_timedwait_timeout)1506 TEST(pthread, pthread_cond_timedwait_timeout) {
1507   pthread_cond_timedwait_timeout_helper(CLOCK_REALTIME, pthread_cond_timedwait);
1508 }
1509 
TEST(pthread,pthread_cond_timedwait_monotonic_np_timeout)1510 TEST(pthread, pthread_cond_timedwait_monotonic_np_timeout) {
1511 #if defined(__BIONIC__)
1512   pthread_cond_timedwait_timeout_helper(CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1513 #else   // __BIONIC__
1514   GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
1515 #endif  // __BIONIC__
1516 }
1517 
TEST(pthread,pthread_attr_getstack__main_thread)1518 TEST(pthread, pthread_attr_getstack__main_thread) {
1519   // This test is only meaningful for the main thread, so make sure we're running on it!
1520   ASSERT_EQ(getpid(), syscall(__NR_gettid));
1521 
1522   // Get the main thread's attributes.
1523   pthread_attr_t attributes;
1524   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1525 
1526   // Check that we correctly report that the main thread has no guard page.
1527   size_t guard_size;
1528   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1529   ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1530 
1531   // Get the stack base and the stack size (both ways).
1532   void* stack_base;
1533   size_t stack_size;
1534   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1535   size_t stack_size2;
1536   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1537 
1538   // The two methods of asking for the stack size should agree.
1539   EXPECT_EQ(stack_size, stack_size2);
1540 
1541 #if defined(__BIONIC__)
1542   // Find stack in /proc/self/maps using a pointer to the stack.
1543   //
1544   // We do not use "[stack]" label because in native-bridge environment it is not
1545   // guaranteed to point to the right stack. A native bridge implementation may
1546   // keep separate stack for the guest code.
1547   void* maps_stack_hi = nullptr;
1548   std::vector<map_record> maps;
1549   ASSERT_TRUE(Maps::parse_maps(&maps));
1550   uintptr_t stack_address = reinterpret_cast<uintptr_t>(untag_address(&maps_stack_hi));
1551   for (const auto& map : maps) {
1552     if (map.addr_start <= stack_address && map.addr_end > stack_address){
1553       maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1554       break;
1555     }
1556   }
1557 
1558   // The high address of the /proc/self/maps stack region should equal stack_base + stack_size.
1559   // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1560   // region isn't very interesting.
1561   EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1562 
1563   // The stack size should correspond to RLIMIT_STACK.
1564   rlimit rl;
1565   ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1566   uint64_t original_rlim_cur = rl.rlim_cur;
1567   if (rl.rlim_cur == RLIM_INFINITY) {
1568     rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1569   }
1570   EXPECT_EQ(rl.rlim_cur, stack_size);
1571 
1572   auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() {
1573     rl.rlim_cur = original_rlim_cur;
1574     ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1575   });
1576 
1577   //
1578   // What if RLIMIT_STACK is smaller than the stack's current extent?
1579   //
1580   rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1581   rl.rlim_max = RLIM_INFINITY;
1582   ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1583 
1584   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1585   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1586   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1587 
1588   EXPECT_EQ(stack_size, stack_size2);
1589   ASSERT_EQ(1024U, stack_size);
1590 
1591   //
1592   // What if RLIMIT_STACK isn't a whole number of pages?
1593   //
1594   rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1595   rl.rlim_max = RLIM_INFINITY;
1596   ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1597 
1598   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1599   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1600   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1601 
1602   EXPECT_EQ(stack_size, stack_size2);
1603   ASSERT_EQ(6666U, stack_size);
1604 #endif
1605 }
1606 
1607 struct GetStackSignalHandlerArg {
1608   volatile bool done;
1609   void* signal_stack_base;
1610   size_t signal_stack_size;
1611   void* main_stack_base;
1612   size_t main_stack_size;
1613 };
1614 
1615 static GetStackSignalHandlerArg getstack_signal_handler_arg;
1616 
getstack_signal_handler(int sig)1617 static void getstack_signal_handler(int sig) {
1618   ASSERT_EQ(SIGUSR1, sig);
1619   // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1620   sleep(1);
1621   pthread_attr_t attr;
1622   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1623   void* stack_base;
1624   size_t stack_size;
1625   ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1626 
1627   // Verify if the stack used by the signal handler is the alternate stack just registered.
1628   ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr);
1629   ASSERT_LT(static_cast<void*>(untag_address(&attr)),
1630             static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) +
1631                 getstack_signal_handler_arg.signal_stack_size);
1632 
1633   // Verify if the main thread's stack got in the signal handler is correct.
1634   ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base);
1635   ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size);
1636 
1637   getstack_signal_handler_arg.done = true;
1638 }
1639 
1640 // The previous code obtained the main thread's stack by reading the entry in
1641 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1642 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1643 // switches a process while the main thread is in an alternate stack, then the kernel will label
1644 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
1645 // thread's stack is found correctly.
TEST(pthread,pthread_attr_getstack_in_signal_handler)1646 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1647   // This test is only meaningful for the main thread, so make sure we're running on it!
1648   ASSERT_EQ(getpid(), syscall(__NR_gettid));
1649 
1650   const size_t sig_stack_size = 16 * 1024;
1651   void* sig_stack = mmap(nullptr, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1652                          -1, 0);
1653   ASSERT_NE(MAP_FAILED, sig_stack);
1654   stack_t ss;
1655   ss.ss_sp = sig_stack;
1656   ss.ss_size = sig_stack_size;
1657   ss.ss_flags = 0;
1658   stack_t oss;
1659   ASSERT_EQ(0, sigaltstack(&ss, &oss));
1660 
1661   pthread_attr_t attr;
1662   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1663   void* main_stack_base;
1664   size_t main_stack_size;
1665   ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
1666 
1667   ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1668   getstack_signal_handler_arg.done = false;
1669   getstack_signal_handler_arg.signal_stack_base = sig_stack;
1670   getstack_signal_handler_arg.signal_stack_size = sig_stack_size;
1671   getstack_signal_handler_arg.main_stack_base = main_stack_base;
1672   getstack_signal_handler_arg.main_stack_size = main_stack_size;
1673   kill(getpid(), SIGUSR1);
1674   ASSERT_EQ(true, getstack_signal_handler_arg.done);
1675 
1676   ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1677   ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1678 }
1679 
pthread_attr_getstack_18908062_helper(void *)1680 static void pthread_attr_getstack_18908062_helper(void*) {
1681   char local_variable;
1682   pthread_attr_t attributes;
1683   pthread_getattr_np(pthread_self(), &attributes);
1684   void* stack_base;
1685   size_t stack_size;
1686   pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1687 
1688   // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1689   ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1690   ASSERT_LT(untag_address(&local_variable), reinterpret_cast<char*>(stack_base) + stack_size);
1691 }
1692 
1693 // Check whether something on stack is in the range of
1694 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1695 TEST(pthread, pthread_attr_getstack_18908062) {
1696   pthread_t t;
1697   ASSERT_EQ(0, pthread_create(&t, nullptr,
1698             reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1699             nullptr));
1700   ASSERT_EQ(0, pthread_join(t, nullptr));
1701 }
1702 
1703 #if defined(__BIONIC__)
1704 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1705 
pthread_gettid_np_helper(void * arg)1706 static void* pthread_gettid_np_helper(void* arg) {
1707   *reinterpret_cast<pid_t*>(arg) = gettid();
1708 
1709   // Wait for our parent to call pthread_gettid_np on us before exiting.
1710   pthread_mutex_lock(&pthread_gettid_np_mutex);
1711   pthread_mutex_unlock(&pthread_gettid_np_mutex);
1712   return nullptr;
1713 }
1714 #endif
1715 
TEST(pthread,pthread_gettid_np)1716 TEST(pthread, pthread_gettid_np) {
1717 #if defined(__BIONIC__)
1718   ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1719 
1720   // Ensure the other thread doesn't exit until after we've called
1721   // pthread_gettid_np on it.
1722   pthread_mutex_lock(&pthread_gettid_np_mutex);
1723 
1724   pid_t t_gettid_result;
1725   pthread_t t;
1726   pthread_create(&t, nullptr, pthread_gettid_np_helper, &t_gettid_result);
1727 
1728   pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1729 
1730   // Release the other thread and wait for it to exit.
1731   pthread_mutex_unlock(&pthread_gettid_np_mutex);
1732   ASSERT_EQ(0, pthread_join(t, nullptr));
1733 
1734   ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1735 #else
1736   GTEST_SKIP() << "pthread_gettid_np not available";
1737 #endif
1738 }
1739 
1740 static size_t cleanup_counter = 0;
1741 
AbortCleanupRoutine(void *)1742 static void AbortCleanupRoutine(void*) {
1743   abort();
1744 }
1745 
CountCleanupRoutine(void *)1746 static void CountCleanupRoutine(void*) {
1747   ++cleanup_counter;
1748 }
1749 
PthreadCleanupTester()1750 static void PthreadCleanupTester() {
1751   pthread_cleanup_push(CountCleanupRoutine, nullptr);
1752   pthread_cleanup_push(CountCleanupRoutine, nullptr);
1753   pthread_cleanup_push(AbortCleanupRoutine, nullptr);
1754 
1755   pthread_cleanup_pop(0); // Pop the abort without executing it.
1756   pthread_cleanup_pop(1); // Pop one count while executing it.
1757   ASSERT_EQ(1U, cleanup_counter);
1758   // Exit while the other count is still on the cleanup stack.
1759   pthread_exit(nullptr);
1760 
1761   // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1762   pthread_cleanup_pop(0);
1763 }
1764 
PthreadCleanupStartRoutine(void *)1765 static void* PthreadCleanupStartRoutine(void*) {
1766   PthreadCleanupTester();
1767   return nullptr;
1768 }
1769 
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)1770 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1771   pthread_t t;
1772   ASSERT_EQ(0, pthread_create(&t, nullptr, PthreadCleanupStartRoutine, nullptr));
1773   ASSERT_EQ(0, pthread_join(t, nullptr));
1774   ASSERT_EQ(2U, cleanup_counter);
1775 }
1776 
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)1777 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1778   ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1779 }
1780 
TEST(pthread,pthread_mutexattr_gettype)1781 TEST(pthread, pthread_mutexattr_gettype) {
1782   pthread_mutexattr_t attr;
1783   ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1784 
1785   int attr_type;
1786 
1787   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1788   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1789   ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1790 
1791   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1792   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1793   ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1794 
1795   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1796   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1797   ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1798 
1799   ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1800 }
1801 
TEST(pthread,pthread_mutexattr_protocol)1802 TEST(pthread, pthread_mutexattr_protocol) {
1803   pthread_mutexattr_t attr;
1804   ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1805 
1806   int protocol;
1807   ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
1808   ASSERT_EQ(PTHREAD_PRIO_NONE, protocol);
1809   for (size_t repeat = 0; repeat < 2; ++repeat) {
1810     for (int set_protocol : {PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT}) {
1811       ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, set_protocol));
1812       ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
1813       ASSERT_EQ(protocol, set_protocol);
1814     }
1815   }
1816 }
1817 
1818 struct PthreadMutex {
1819   pthread_mutex_t lock;
1820 
PthreadMutexPthreadMutex1821   explicit PthreadMutex(int mutex_type, int protocol = PTHREAD_PRIO_NONE) {
1822     init(mutex_type, protocol);
1823   }
1824 
~PthreadMutexPthreadMutex1825   ~PthreadMutex() {
1826     destroy();
1827   }
1828 
1829  private:
initPthreadMutex1830   void init(int mutex_type, int protocol) {
1831     pthread_mutexattr_t attr;
1832     ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1833     ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1834     ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, protocol));
1835     ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1836     ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1837   }
1838 
destroyPthreadMutex1839   void destroy() {
1840     ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1841   }
1842 
1843   DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1844 };
1845 
UnlockFromAnotherThread(pthread_mutex_t * mutex)1846 static int UnlockFromAnotherThread(pthread_mutex_t* mutex) {
1847   pthread_t thread;
1848   pthread_create(&thread, nullptr, [](void* mutex_voidp) -> void* {
1849     pthread_mutex_t* mutex = static_cast<pthread_mutex_t*>(mutex_voidp);
1850     intptr_t result = pthread_mutex_unlock(mutex);
1851     return reinterpret_cast<void*>(result);
1852   }, mutex);
1853   void* result;
1854   EXPECT_EQ(0, pthread_join(thread, &result));
1855   return reinterpret_cast<intptr_t>(result);
1856 };
1857 
TestPthreadMutexLockNormal(int protocol)1858 static void TestPthreadMutexLockNormal(int protocol) {
1859   PthreadMutex m(PTHREAD_MUTEX_NORMAL, protocol);
1860 
1861   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1862   if (protocol == PTHREAD_PRIO_INHERIT) {
1863     ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
1864   }
1865   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1866   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1867   ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1868   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1869 }
1870 
TestPthreadMutexLockErrorCheck(int protocol)1871 static void TestPthreadMutexLockErrorCheck(int protocol) {
1872   PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK, protocol);
1873 
1874   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1875   ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
1876   ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1877   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1878   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1879   if (protocol == PTHREAD_PRIO_NONE) {
1880     ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1881   } else {
1882     ASSERT_EQ(EDEADLK, pthread_mutex_trylock(&m.lock));
1883   }
1884   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1885   ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1886 }
1887 
TestPthreadMutexLockRecursive(int protocol)1888 static void TestPthreadMutexLockRecursive(int protocol) {
1889   PthreadMutex m(PTHREAD_MUTEX_RECURSIVE, protocol);
1890 
1891   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1892   ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
1893   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1894   ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
1895   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1896   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1897   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1898   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1899   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1900   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1901   ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1902 }
1903 
TEST(pthread,pthread_mutex_lock_NORMAL)1904 TEST(pthread, pthread_mutex_lock_NORMAL) {
1905   TestPthreadMutexLockNormal(PTHREAD_PRIO_NONE);
1906 }
1907 
TEST(pthread,pthread_mutex_lock_ERRORCHECK)1908 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1909   TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_NONE);
1910 }
1911 
TEST(pthread,pthread_mutex_lock_RECURSIVE)1912 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1913   TestPthreadMutexLockRecursive(PTHREAD_PRIO_NONE);
1914 }
1915 
TEST(pthread,pthread_mutex_lock_pi)1916 TEST(pthread, pthread_mutex_lock_pi) {
1917   TestPthreadMutexLockNormal(PTHREAD_PRIO_INHERIT);
1918   TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_INHERIT);
1919   TestPthreadMutexLockRecursive(PTHREAD_PRIO_INHERIT);
1920 }
1921 
TEST(pthread,pthread_mutex_pi_count_limit)1922 TEST(pthread, pthread_mutex_pi_count_limit) {
1923 #if defined(__BIONIC__) && !defined(__LP64__)
1924   // Bionic only supports 65536 pi mutexes in 32-bit programs.
1925   pthread_mutexattr_t attr;
1926   ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1927   ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT));
1928   std::vector<pthread_mutex_t> mutexes(65536);
1929   // Test if we can use 65536 pi mutexes at the same time.
1930   // Run 2 times to check if freed pi mutexes can be recycled.
1931   for (int repeat = 0; repeat < 2; ++repeat) {
1932     for (auto& m : mutexes) {
1933       ASSERT_EQ(0, pthread_mutex_init(&m, &attr));
1934     }
1935     pthread_mutex_t m;
1936     ASSERT_EQ(ENOMEM, pthread_mutex_init(&m, &attr));
1937     for (auto& m : mutexes) {
1938       ASSERT_EQ(0, pthread_mutex_lock(&m));
1939     }
1940     for (auto& m : mutexes) {
1941       ASSERT_EQ(0, pthread_mutex_unlock(&m));
1942     }
1943     for (auto& m : mutexes) {
1944       ASSERT_EQ(0, pthread_mutex_destroy(&m));
1945     }
1946   }
1947   ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1948 #else
1949   GTEST_SKIP() << "pi mutex count not limited to 64Ki";
1950 #endif
1951 }
1952 
TEST(pthread,pthread_mutex_init_same_as_static_initializers)1953 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1954   pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1955   PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1956   ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1957   pthread_mutex_destroy(&lock_normal);
1958 
1959   pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1960   PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1961   ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1962   pthread_mutex_destroy(&lock_errorcheck);
1963 
1964   pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1965   PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1966   ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1967   ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1968 }
1969 
1970 class MutexWakeupHelper {
1971  private:
1972   PthreadMutex m;
1973   enum Progress {
1974     LOCK_INITIALIZED,
1975     LOCK_WAITING,
1976     LOCK_RELEASED,
1977     LOCK_ACCESSED
1978   };
1979   std::atomic<Progress> progress;
1980   std::atomic<pid_t> tid;
1981 
thread_fn(MutexWakeupHelper * helper)1982   static void thread_fn(MutexWakeupHelper* helper) {
1983     helper->tid = gettid();
1984     ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1985     helper->progress = LOCK_WAITING;
1986 
1987     ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1988     ASSERT_EQ(LOCK_RELEASED, helper->progress);
1989     ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1990 
1991     helper->progress = LOCK_ACCESSED;
1992   }
1993 
1994  public:
MutexWakeupHelper(int mutex_type)1995   explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1996   }
1997 
test()1998   void test() {
1999     ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2000     progress = LOCK_INITIALIZED;
2001     tid = 0;
2002 
2003     pthread_t thread;
2004     ASSERT_EQ(0, pthread_create(&thread, nullptr,
2005       reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
2006 
2007     WaitUntilThreadSleep(tid);
2008     ASSERT_EQ(LOCK_WAITING, progress);
2009 
2010     progress = LOCK_RELEASED;
2011     ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2012 
2013     ASSERT_EQ(0, pthread_join(thread, nullptr));
2014     ASSERT_EQ(LOCK_ACCESSED, progress);
2015   }
2016 };
2017 
TEST(pthread,pthread_mutex_NORMAL_wakeup)2018 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
2019   MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
2020   helper.test();
2021 }
2022 
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)2023 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
2024   MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
2025   helper.test();
2026 }
2027 
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)2028 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
2029   MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
2030   helper.test();
2031 }
2032 
GetThreadPriority(pid_t tid)2033 static int GetThreadPriority(pid_t tid) {
2034   // sched_getparam() returns the static priority of a thread, which can't reflect a thread's
2035   // priority after priority inheritance. So read /proc/<pid>/stat to get the dynamic priority.
2036   std::string filename = android::base::StringPrintf("/proc/%d/stat", tid);
2037   std::string content;
2038   int result = INT_MAX;
2039   if (!android::base::ReadFileToString(filename, &content)) {
2040     return result;
2041   }
2042   std::vector<std::string> strs = android::base::Split(content, " ");
2043   if (strs.size() < 18) {
2044     return result;
2045   }
2046   if (!android::base::ParseInt(strs[17], &result)) {
2047     return INT_MAX;
2048   }
2049   return result;
2050 }
2051 
2052 class PIMutexWakeupHelper {
2053 private:
2054   PthreadMutex m;
2055   int protocol;
2056   enum Progress {
2057     LOCK_INITIALIZED,
2058     LOCK_CHILD_READY,
2059     LOCK_WAITING,
2060     LOCK_RELEASED,
2061   };
2062   std::atomic<Progress> progress;
2063   std::atomic<pid_t> main_tid;
2064   std::atomic<pid_t> child_tid;
2065   PthreadMutex start_thread_m;
2066 
thread_fn(PIMutexWakeupHelper * helper)2067   static void thread_fn(PIMutexWakeupHelper* helper) {
2068     helper->child_tid = gettid();
2069     ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
2070     ASSERT_EQ(0, setpriority(PRIO_PROCESS, gettid(), 1));
2071     ASSERT_EQ(21, GetThreadPriority(gettid()));
2072     ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
2073     helper->progress = LOCK_CHILD_READY;
2074     ASSERT_EQ(0, pthread_mutex_lock(&helper->start_thread_m.lock));
2075 
2076     ASSERT_EQ(0, pthread_mutex_unlock(&helper->start_thread_m.lock));
2077     WaitUntilThreadSleep(helper->main_tid);
2078     ASSERT_EQ(LOCK_WAITING, helper->progress);
2079 
2080     if (helper->protocol == PTHREAD_PRIO_INHERIT) {
2081       ASSERT_EQ(20, GetThreadPriority(gettid()));
2082     } else {
2083       ASSERT_EQ(21, GetThreadPriority(gettid()));
2084     }
2085     helper->progress = LOCK_RELEASED;
2086     ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
2087   }
2088 
2089 public:
PIMutexWakeupHelper(int mutex_type,int protocol)2090   explicit PIMutexWakeupHelper(int mutex_type, int protocol)
2091       : m(mutex_type, protocol), protocol(protocol), start_thread_m(PTHREAD_MUTEX_NORMAL) {
2092   }
2093 
test()2094   void test() {
2095     ASSERT_EQ(0, pthread_mutex_lock(&start_thread_m.lock));
2096     main_tid = gettid();
2097     ASSERT_EQ(20, GetThreadPriority(main_tid));
2098     progress = LOCK_INITIALIZED;
2099     child_tid = 0;
2100 
2101     pthread_t thread;
2102     ASSERT_EQ(0, pthread_create(&thread, nullptr,
2103               reinterpret_cast<void* (*)(void*)>(PIMutexWakeupHelper::thread_fn), this));
2104 
2105     WaitUntilThreadSleep(child_tid);
2106     ASSERT_EQ(LOCK_CHILD_READY, progress);
2107     ASSERT_EQ(0, pthread_mutex_unlock(&start_thread_m.lock));
2108     progress = LOCK_WAITING;
2109     ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2110 
2111     ASSERT_EQ(LOCK_RELEASED, progress);
2112     ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2113     ASSERT_EQ(0, pthread_join(thread, nullptr));
2114   }
2115 };
2116 
TEST(pthread,pthread_mutex_pi_wakeup)2117 TEST(pthread, pthread_mutex_pi_wakeup) {
2118   for (int type : {PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK}) {
2119     for (int protocol : {PTHREAD_PRIO_INHERIT}) {
2120       PIMutexWakeupHelper helper(type, protocol);
2121       helper.test();
2122     }
2123   }
2124 }
2125 
TEST(pthread,pthread_mutex_owner_tid_limit)2126 TEST(pthread, pthread_mutex_owner_tid_limit) {
2127 #if defined(__BIONIC__) && !defined(__LP64__)
2128   FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
2129   ASSERT_TRUE(fp != nullptr);
2130   long pid_max;
2131   ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
2132   fclose(fp);
2133   // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
2134   ASSERT_LE(pid_max, 65536);
2135 #else
2136   GTEST_SKIP() << "pthread_mutex supports 32-bit tid";
2137 #endif
2138 }
2139 
pthread_mutex_timedlock_helper(clockid_t clock,int (* lock_function)(pthread_mutex_t * __mutex,const timespec * __timeout))2140 static void pthread_mutex_timedlock_helper(clockid_t clock,
2141                                            int (*lock_function)(pthread_mutex_t* __mutex,
2142                                                                 const timespec* __timeout)) {
2143   pthread_mutex_t m;
2144   ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
2145 
2146   // If the mutex is already locked, pthread_mutex_timedlock should time out.
2147   ASSERT_EQ(0, pthread_mutex_lock(&m));
2148 
2149   timespec ts;
2150   ASSERT_EQ(0, clock_gettime(clock, &ts));
2151   ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2152   ts.tv_nsec = -1;
2153   ASSERT_EQ(EINVAL, lock_function(&m, &ts));
2154   ts.tv_nsec = NS_PER_S;
2155   ASSERT_EQ(EINVAL, lock_function(&m, &ts));
2156   ts.tv_nsec = NS_PER_S - 1;
2157   ts.tv_sec = -1;
2158   ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2159 
2160   // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
2161   ASSERT_EQ(0, pthread_mutex_unlock(&m));
2162 
2163   ASSERT_EQ(0, clock_gettime(clock, &ts));
2164   ts.tv_sec += 1;
2165   ASSERT_EQ(0, lock_function(&m, &ts));
2166 
2167   ASSERT_EQ(0, pthread_mutex_unlock(&m));
2168   ASSERT_EQ(0, pthread_mutex_destroy(&m));
2169 }
2170 
TEST(pthread,pthread_mutex_timedlock)2171 TEST(pthread, pthread_mutex_timedlock) {
2172   pthread_mutex_timedlock_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
2173 }
2174 
TEST(pthread,pthread_mutex_timedlock_monotonic_np)2175 TEST(pthread, pthread_mutex_timedlock_monotonic_np) {
2176 #if defined(__BIONIC__)
2177   pthread_mutex_timedlock_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
2178 #else   // __BIONIC__
2179   GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
2180 #endif  // __BIONIC__
2181 }
2182 
pthread_mutex_timedlock_pi_helper(clockid_t clock,int (* lock_function)(pthread_mutex_t * __mutex,const timespec * __timeout))2183 static void pthread_mutex_timedlock_pi_helper(clockid_t clock,
2184                                               int (*lock_function)(pthread_mutex_t* __mutex,
2185                                                                    const timespec* __timeout)) {
2186   PthreadMutex m(PTHREAD_MUTEX_NORMAL, PTHREAD_PRIO_INHERIT);
2187 
2188   timespec ts;
2189   clock_gettime(clock, &ts);
2190   ts.tv_sec += 1;
2191   ASSERT_EQ(0, lock_function(&m.lock, &ts));
2192 
2193   struct ThreadArgs {
2194     clockid_t clock;
2195     int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout);
2196     PthreadMutex& m;
2197   };
2198 
2199   ThreadArgs thread_args = {
2200     .clock = clock,
2201     .lock_function = lock_function,
2202     .m = m,
2203   };
2204 
2205   auto ThreadFn = [](void* arg) -> void* {
2206     auto args = static_cast<ThreadArgs*>(arg);
2207     timespec ts;
2208     clock_gettime(args->clock, &ts);
2209     ts.tv_sec += 1;
2210     intptr_t result = args->lock_function(&args->m.lock, &ts);
2211     return reinterpret_cast<void*>(result);
2212   };
2213 
2214   pthread_t thread;
2215   ASSERT_EQ(0, pthread_create(&thread, nullptr, ThreadFn, &thread_args));
2216   void* result;
2217   ASSERT_EQ(0, pthread_join(thread, &result));
2218   ASSERT_EQ(ETIMEDOUT, reinterpret_cast<intptr_t>(result));
2219   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2220 }
2221 
TEST(pthread,pthread_mutex_timedlock_pi)2222 TEST(pthread, pthread_mutex_timedlock_pi) {
2223   pthread_mutex_timedlock_pi_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
2224 }
2225 
TEST(pthread,pthread_mutex_timedlock_monotonic_np_pi)2226 TEST(pthread, pthread_mutex_timedlock_monotonic_np_pi) {
2227 #if defined(__BIONIC__)
2228   pthread_mutex_timedlock_pi_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
2229 #else   // __BIONIC__
2230   GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
2231 #endif  // __BIONIC__
2232 }
2233 
TEST(pthread,pthread_mutex_using_destroyed_mutex)2234 TEST(pthread, pthread_mutex_using_destroyed_mutex) {
2235 #if defined(__BIONIC__)
2236   pthread_mutex_t m;
2237   ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
2238   ASSERT_EQ(0, pthread_mutex_destroy(&m));
2239   ASSERT_EXIT(pthread_mutex_lock(&m), ::testing::KilledBySignal(SIGABRT),
2240               "pthread_mutex_lock called on a destroyed mutex");
2241   ASSERT_EXIT(pthread_mutex_unlock(&m), ::testing::KilledBySignal(SIGABRT),
2242               "pthread_mutex_unlock called on a destroyed mutex");
2243   ASSERT_EXIT(pthread_mutex_trylock(&m), ::testing::KilledBySignal(SIGABRT),
2244               "pthread_mutex_trylock called on a destroyed mutex");
2245   timespec ts;
2246   ASSERT_EXIT(pthread_mutex_timedlock(&m, &ts), ::testing::KilledBySignal(SIGABRT),
2247               "pthread_mutex_timedlock called on a destroyed mutex");
2248   ASSERT_EXIT(pthread_mutex_timedlock_monotonic_np(&m, &ts), ::testing::KilledBySignal(SIGABRT),
2249               "pthread_mutex_timedlock_monotonic_np called on a destroyed mutex");
2250   ASSERT_EXIT(pthread_mutex_destroy(&m), ::testing::KilledBySignal(SIGABRT),
2251               "pthread_mutex_destroy called on a destroyed mutex");
2252 #else
2253   GTEST_SKIP() << "bionic-only test";
2254 #endif
2255 }
2256 
2257 class StrictAlignmentAllocator {
2258  public:
allocate(size_t size,size_t alignment)2259   void* allocate(size_t size, size_t alignment) {
2260     char* p = new char[size + alignment * 2];
2261     allocated_array.push_back(p);
2262     while (!is_strict_aligned(p, alignment)) {
2263       ++p;
2264     }
2265     return p;
2266   }
2267 
~StrictAlignmentAllocator()2268   ~StrictAlignmentAllocator() {
2269     for (const auto& p : allocated_array) {
2270       delete[] p;
2271     }
2272   }
2273 
2274  private:
is_strict_aligned(char * p,size_t alignment)2275   bool is_strict_aligned(char* p, size_t alignment) {
2276     return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
2277   }
2278 
2279   std::vector<char*> allocated_array;
2280 };
2281 
TEST(pthread,pthread_types_allow_four_bytes_alignment)2282 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
2283 #if defined(__BIONIC__)
2284   // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
2285   StrictAlignmentAllocator allocator;
2286   pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
2287                              allocator.allocate(sizeof(pthread_mutex_t), 4));
2288   ASSERT_EQ(0, pthread_mutex_init(mutex, nullptr));
2289   ASSERT_EQ(0, pthread_mutex_lock(mutex));
2290   ASSERT_EQ(0, pthread_mutex_unlock(mutex));
2291   ASSERT_EQ(0, pthread_mutex_destroy(mutex));
2292 
2293   pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
2294                            allocator.allocate(sizeof(pthread_cond_t), 4));
2295   ASSERT_EQ(0, pthread_cond_init(cond, nullptr));
2296   ASSERT_EQ(0, pthread_cond_signal(cond));
2297   ASSERT_EQ(0, pthread_cond_broadcast(cond));
2298   ASSERT_EQ(0, pthread_cond_destroy(cond));
2299 
2300   pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
2301                                allocator.allocate(sizeof(pthread_rwlock_t), 4));
2302   ASSERT_EQ(0, pthread_rwlock_init(rwlock, nullptr));
2303   ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
2304   ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
2305   ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
2306   ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
2307   ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
2308 
2309 #else
2310   GTEST_SKIP() << "bionic-only test";
2311 #endif
2312 }
2313 
TEST(pthread,pthread_mutex_lock_null_32)2314 TEST(pthread, pthread_mutex_lock_null_32) {
2315 #if defined(__BIONIC__) && !defined(__LP64__)
2316   // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
2317   // EINVAL in that case: http://b/19995172.
2318   //
2319   // We decorate the public defintion with _Nonnull so that people recompiling
2320   // their code with get a warning and might fix their bug, but need to pass
2321   // NULL here to test that we remain compatible.
2322   pthread_mutex_t* null_value = nullptr;
2323   ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value));
2324 #else
2325   GTEST_SKIP() << "32-bit bionic-only test";
2326 #endif
2327 }
2328 
TEST(pthread,pthread_mutex_unlock_null_32)2329 TEST(pthread, pthread_mutex_unlock_null_32) {
2330 #if defined(__BIONIC__) && !defined(__LP64__)
2331   // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
2332   // EINVAL in that case: http://b/19995172.
2333   //
2334   // We decorate the public defintion with _Nonnull so that people recompiling
2335   // their code with get a warning and might fix their bug, but need to pass
2336   // NULL here to test that we remain compatible.
2337   pthread_mutex_t* null_value = nullptr;
2338   ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value));
2339 #else
2340   GTEST_SKIP() << "32-bit bionic-only test";
2341 #endif
2342 }
2343 
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)2344 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
2345 #if defined(__BIONIC__) && defined(__LP64__)
2346   pthread_mutex_t* null_value = nullptr;
2347   ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
2348 #else
2349   GTEST_SKIP() << "64-bit bionic-only test";
2350 #endif
2351 }
2352 
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)2353 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
2354 #if defined(__BIONIC__) && defined(__LP64__)
2355   pthread_mutex_t* null_value = nullptr;
2356   ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
2357 #else
2358   GTEST_SKIP() << "64-bit bionic-only test";
2359 #endif
2360 }
2361 
2362 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
2363 
2364 static volatile bool signal_handler_on_altstack_done;
2365 
2366 __attribute__((__noinline__))
signal_handler_backtrace()2367 static void signal_handler_backtrace() {
2368   // Check if we have enough stack space for unwinding.
2369   int count = 0;
2370   _Unwind_Backtrace(FrameCounter, &count);
2371   ASSERT_GT(count, 0);
2372 }
2373 
2374 __attribute__((__noinline__))
signal_handler_logging()2375 static void signal_handler_logging() {
2376   // Check if we have enough stack space for logging.
2377   std::string s(2048, '*');
2378   GTEST_LOG_(INFO) << s;
2379   signal_handler_on_altstack_done = true;
2380 }
2381 
2382 __attribute__((__noinline__))
signal_handler_snprintf()2383 static void signal_handler_snprintf() {
2384   // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra.
2385   char buf[PATH_MAX + 2048];
2386   ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0);
2387 }
2388 
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)2389 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
2390   ASSERT_EQ(SIGUSR1, signo);
2391   signal_handler_backtrace();
2392   signal_handler_logging();
2393   signal_handler_snprintf();
2394 }
2395 
TEST(pthread,big_enough_signal_stack)2396 TEST(pthread, big_enough_signal_stack) {
2397   signal_handler_on_altstack_done = false;
2398   ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
2399   kill(getpid(), SIGUSR1);
2400   ASSERT_TRUE(signal_handler_on_altstack_done);
2401 }
2402 
TEST(pthread,pthread_barrierattr_smoke)2403 TEST(pthread, pthread_barrierattr_smoke) {
2404   pthread_barrierattr_t attr;
2405   ASSERT_EQ(0, pthread_barrierattr_init(&attr));
2406   int pshared;
2407   ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
2408   ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
2409   ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
2410   ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
2411   ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
2412   ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
2413 }
2414 
2415 struct BarrierTestHelperData {
2416   size_t thread_count;
2417   pthread_barrier_t barrier;
2418   std::atomic<int> finished_mask;
2419   std::atomic<int> serial_thread_count;
2420   size_t iteration_count;
2421   std::atomic<size_t> finished_iteration_count;
2422 
BarrierTestHelperDataBarrierTestHelperData2423   BarrierTestHelperData(size_t thread_count, size_t iteration_count)
2424       : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
2425         iteration_count(iteration_count), finished_iteration_count(0) {
2426   }
2427 };
2428 
2429 struct BarrierTestHelperArg {
2430   int id;
2431   BarrierTestHelperData* data;
2432 };
2433 
BarrierTestHelper(BarrierTestHelperArg * arg)2434 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
2435   for (size_t i = 0; i < arg->data->iteration_count; ++i) {
2436     int result = pthread_barrier_wait(&arg->data->barrier);
2437     if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
2438       arg->data->serial_thread_count++;
2439     } else {
2440       ASSERT_EQ(0, result);
2441     }
2442     int mask = arg->data->finished_mask.fetch_or(1 << arg->id);
2443     mask |= 1 << arg->id;
2444     if (mask == ((1 << arg->data->thread_count) - 1)) {
2445       ASSERT_EQ(1, arg->data->serial_thread_count);
2446       arg->data->finished_iteration_count++;
2447       arg->data->finished_mask = 0;
2448       arg->data->serial_thread_count = 0;
2449     }
2450   }
2451 }
2452 
TEST(pthread,pthread_barrier_smoke)2453 TEST(pthread, pthread_barrier_smoke) {
2454   const size_t BARRIER_ITERATION_COUNT = 10;
2455   const size_t BARRIER_THREAD_COUNT = 10;
2456   BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
2457   ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
2458   std::vector<pthread_t> threads(data.thread_count);
2459   std::vector<BarrierTestHelperArg> args(threads.size());
2460   for (size_t i = 0; i < threads.size(); ++i) {
2461     args[i].id = i;
2462     args[i].data = &data;
2463     ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2464                                 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
2465   }
2466   for (size_t i = 0; i < threads.size(); ++i) {
2467     ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2468   }
2469   ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
2470   ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
2471 }
2472 
2473 struct BarrierDestroyTestArg {
2474   std::atomic<int> tid;
2475   pthread_barrier_t* barrier;
2476 };
2477 
BarrierDestroyTestHelper(BarrierDestroyTestArg * arg)2478 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
2479   arg->tid = gettid();
2480   ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
2481 }
2482 
TEST(pthread,pthread_barrier_destroy)2483 TEST(pthread, pthread_barrier_destroy) {
2484   pthread_barrier_t barrier;
2485   ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
2486   pthread_t thread;
2487   BarrierDestroyTestArg arg;
2488   arg.tid = 0;
2489   arg.barrier = &barrier;
2490   ASSERT_EQ(0, pthread_create(&thread, nullptr,
2491                               reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
2492   WaitUntilThreadSleep(arg.tid);
2493   ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
2494   ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
2495   // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
2496   ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
2497   ASSERT_EQ(0, pthread_join(thread, nullptr));
2498 #if defined(__BIONIC__)
2499   ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
2500 #endif
2501 }
2502 
2503 struct BarrierOrderingTestHelperArg {
2504   pthread_barrier_t* barrier;
2505   size_t* array;
2506   size_t array_length;
2507   size_t id;
2508 };
2509 
BarrierOrderingTestHelper(BarrierOrderingTestHelperArg * arg)2510 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
2511   const size_t ITERATION_COUNT = 10000;
2512   for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
2513     arg->array[arg->id] = i;
2514     int result = pthread_barrier_wait(arg->barrier);
2515     ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2516     for (size_t j = 0; j < arg->array_length; ++j) {
2517       ASSERT_EQ(i, arg->array[j]);
2518     }
2519     result = pthread_barrier_wait(arg->barrier);
2520     ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2521   }
2522 }
2523 
TEST(pthread,pthread_barrier_check_ordering)2524 TEST(pthread, pthread_barrier_check_ordering) {
2525   const size_t THREAD_COUNT = 4;
2526   pthread_barrier_t barrier;
2527   ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
2528   size_t array[THREAD_COUNT];
2529   std::vector<pthread_t> threads(THREAD_COUNT);
2530   std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
2531   for (size_t i = 0; i < THREAD_COUNT; ++i) {
2532     args[i].barrier = &barrier;
2533     args[i].array = array;
2534     args[i].array_length = THREAD_COUNT;
2535     args[i].id = i;
2536     ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2537                                 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
2538                                 &args[i]));
2539   }
2540   for (size_t i = 0; i < THREAD_COUNT; ++i) {
2541     ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2542   }
2543 }
2544 
TEST(pthread,pthread_barrier_init_zero_count)2545 TEST(pthread, pthread_barrier_init_zero_count) {
2546   pthread_barrier_t barrier;
2547   ASSERT_EQ(EINVAL, pthread_barrier_init(&barrier, nullptr, 0));
2548 }
2549 
TEST(pthread,pthread_spinlock_smoke)2550 TEST(pthread, pthread_spinlock_smoke) {
2551   pthread_spinlock_t lock;
2552   ASSERT_EQ(0, pthread_spin_init(&lock, 0));
2553   ASSERT_EQ(0, pthread_spin_trylock(&lock));
2554   ASSERT_EQ(0, pthread_spin_unlock(&lock));
2555   ASSERT_EQ(0, pthread_spin_lock(&lock));
2556   ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
2557   ASSERT_EQ(0, pthread_spin_unlock(&lock));
2558   ASSERT_EQ(0, pthread_spin_destroy(&lock));
2559 }
2560 
TEST(pthread,pthread_attr_getdetachstate__pthread_attr_setdetachstate)2561 TEST(pthread, pthread_attr_getdetachstate__pthread_attr_setdetachstate) {
2562   pthread_attr_t attr;
2563   ASSERT_EQ(0, pthread_attr_init(&attr));
2564 
2565   int state;
2566   ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2567   ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2568   ASSERT_EQ(PTHREAD_CREATE_DETACHED, state);
2569 
2570   ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
2571   ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2572   ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
2573 
2574   ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123));
2575   ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2576   ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
2577 }
2578 
TEST(pthread,pthread_create__mmap_failures)2579 TEST(pthread, pthread_create__mmap_failures) {
2580   pthread_attr_t attr;
2581   ASSERT_EQ(0, pthread_attr_init(&attr));
2582   ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2583 
2584   const auto kPageSize = sysconf(_SC_PAGE_SIZE);
2585 
2586   // Use up all the VMAs. By default this is 64Ki (though some will already be in use).
2587   std::vector<void*> pages;
2588   pages.reserve(64 * 1024);
2589   int prot = PROT_NONE;
2590   while (true) {
2591     void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0);
2592     if (page == MAP_FAILED) break;
2593     pages.push_back(page);
2594     prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE;
2595   }
2596 
2597   // Try creating threads, freeing up a page each time we fail.
2598   size_t EAGAIN_count = 0;
2599   size_t i = 0;
2600   for (; i < pages.size(); ++i) {
2601     pthread_t t;
2602     int status = pthread_create(&t, &attr, IdFn, nullptr);
2603     if (status != EAGAIN) break;
2604     ++EAGAIN_count;
2605     ASSERT_EQ(0, munmap(pages[i], kPageSize));
2606   }
2607 
2608   // Creating a thread uses at least three VMAs: the combined stack and TLS, and a guard on each
2609   // side. So we should have seen at least three failures.
2610   ASSERT_GE(EAGAIN_count, 3U);
2611 
2612   for (; i < pages.size(); ++i) {
2613     ASSERT_EQ(0, munmap(pages[i], kPageSize));
2614   }
2615 }
2616 
TEST(pthread,pthread_setschedparam)2617 TEST(pthread, pthread_setschedparam) {
2618   sched_param p = { .sched_priority = INT_MIN };
2619   ASSERT_EQ(EINVAL, pthread_setschedparam(pthread_self(), INT_MIN, &p));
2620 }
2621 
TEST(pthread,pthread_setschedprio)2622 TEST(pthread, pthread_setschedprio) {
2623   ASSERT_EQ(EINVAL, pthread_setschedprio(pthread_self(), INT_MIN));
2624 }
2625 
TEST(pthread,pthread_attr_getinheritsched__pthread_attr_setinheritsched)2626 TEST(pthread, pthread_attr_getinheritsched__pthread_attr_setinheritsched) {
2627   pthread_attr_t attr;
2628   ASSERT_EQ(0, pthread_attr_init(&attr));
2629 
2630   int state;
2631   ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2632   ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2633   ASSERT_EQ(PTHREAD_INHERIT_SCHED, state);
2634 
2635   ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2636   ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2637   ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
2638 
2639   ASSERT_EQ(EINVAL, pthread_attr_setinheritsched(&attr, 123));
2640   ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2641   ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
2642 }
2643 
TEST(pthread,pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED)2644 TEST(pthread, pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED) {
2645   pthread_attr_t attr;
2646   ASSERT_EQ(0, pthread_attr_init(&attr));
2647 
2648   // If we set invalid scheduling attributes but choose to inherit, everything's fine...
2649   sched_param param = { .sched_priority = sched_get_priority_max(SCHED_FIFO) + 1 };
2650   ASSERT_EQ(0, pthread_attr_setschedparam(&attr, &param));
2651   ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_FIFO));
2652   ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2653 
2654   pthread_t t;
2655   ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, nullptr));
2656   ASSERT_EQ(0, pthread_join(t, nullptr));
2657 
2658 #if defined(__LP64__)
2659   // If we ask to use them, though, we'll see a failure...
2660   ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2661   ASSERT_EQ(EINVAL, pthread_create(&t, &attr, IdFn, nullptr));
2662 #else
2663   // For backwards compatibility with broken apps, we just ignore failures
2664   // to set scheduler attributes on LP32.
2665 #endif
2666 }
2667 
TEST(pthread,pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect)2668 TEST(pthread, pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect) {
2669   sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2670   int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, &param);
2671   if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2672   ASSERT_EQ(0, rc);
2673 
2674   pthread_attr_t attr;
2675   ASSERT_EQ(0, pthread_attr_init(&attr));
2676   ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2677 
2678   SpinFunctionHelper spin_helper;
2679   pthread_t t;
2680   ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2681   int actual_policy;
2682   sched_param actual_param;
2683   ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2684   ASSERT_EQ(SCHED_FIFO, actual_policy);
2685   spin_helper.UnSpin();
2686   ASSERT_EQ(0, pthread_join(t, nullptr));
2687 }
2688 
TEST(pthread,pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect)2689 TEST(pthread, pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect) {
2690   sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2691   int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, &param);
2692   if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2693   ASSERT_EQ(0, rc);
2694 
2695   pthread_attr_t attr;
2696   ASSERT_EQ(0, pthread_attr_init(&attr));
2697   ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2698   ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_OTHER));
2699 
2700   SpinFunctionHelper spin_helper;
2701   pthread_t t;
2702   ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2703   int actual_policy;
2704   sched_param actual_param;
2705   ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2706   ASSERT_EQ(SCHED_OTHER, actual_policy);
2707   spin_helper.UnSpin();
2708   ASSERT_EQ(0, pthread_join(t, nullptr));
2709 }
2710 
TEST(pthread,pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK)2711 TEST(pthread, pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK) {
2712   sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2713   int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO | SCHED_RESET_ON_FORK, &param);
2714   if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2715   ASSERT_EQ(0, rc);
2716 
2717   pthread_attr_t attr;
2718   ASSERT_EQ(0, pthread_attr_init(&attr));
2719   ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2720 
2721   SpinFunctionHelper spin_helper;
2722   pthread_t t;
2723   ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2724   int actual_policy;
2725   sched_param actual_param;
2726   ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2727   ASSERT_EQ(SCHED_FIFO  | SCHED_RESET_ON_FORK, actual_policy);
2728   spin_helper.UnSpin();
2729   ASSERT_EQ(0, pthread_join(t, nullptr));
2730 }
2731