1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <gtest/gtest.h>
18
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/mman.h>
27 #include <sys/prctl.h>
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <time.h>
31 #include <unistd.h>
32 #include <unwind.h>
33
34 #include <atomic>
35 #include <future>
36 #include <vector>
37
38 #include <android-base/macros.h>
39 #include <android-base/parseint.h>
40 #include <android-base/scopeguard.h>
41 #include <android-base/strings.h>
42
43 #include "private/bionic_constants.h"
44 #include "BionicDeathTest.h"
45 #include "SignalUtils.h"
46 #include "utils.h"
47
TEST(pthread,pthread_key_create)48 TEST(pthread, pthread_key_create) {
49 pthread_key_t key;
50 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
51 ASSERT_EQ(0, pthread_key_delete(key));
52 // Can't delete a key that's already been deleted.
53 ASSERT_EQ(EINVAL, pthread_key_delete(key));
54 }
55
TEST(pthread,pthread_keys_max)56 TEST(pthread, pthread_keys_max) {
57 // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
58 ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
59 }
60
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)61 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
62 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
63 ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
64 }
65
TEST(pthread,pthread_key_many_distinct)66 TEST(pthread, pthread_key_many_distinct) {
67 // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
68 // pthread keys, but We should be able to allocate at least this many keys.
69 int nkeys = PTHREAD_KEYS_MAX / 2;
70 std::vector<pthread_key_t> keys;
71
72 auto scope_guard = android::base::make_scope_guard([&keys] {
73 for (const auto& key : keys) {
74 EXPECT_EQ(0, pthread_key_delete(key));
75 }
76 });
77
78 for (int i = 0; i < nkeys; ++i) {
79 pthread_key_t key;
80 // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
81 ASSERT_EQ(0, pthread_key_create(&key, nullptr)) << i << " of " << nkeys;
82 keys.push_back(key);
83 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
84 }
85
86 for (int i = keys.size() - 1; i >= 0; --i) {
87 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
88 pthread_key_t key = keys.back();
89 keys.pop_back();
90 ASSERT_EQ(0, pthread_key_delete(key));
91 }
92 }
93
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)94 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
95 std::vector<pthread_key_t> keys;
96 int rv = 0;
97
98 // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
99 // be more than we are allowed to allocate now.
100 for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
101 pthread_key_t key;
102 rv = pthread_key_create(&key, nullptr);
103 if (rv == EAGAIN) {
104 break;
105 }
106 EXPECT_EQ(0, rv);
107 keys.push_back(key);
108 }
109
110 // Don't leak keys.
111 for (const auto& key : keys) {
112 EXPECT_EQ(0, pthread_key_delete(key));
113 }
114 keys.clear();
115
116 // We should have eventually reached the maximum number of keys and received
117 // EAGAIN.
118 ASSERT_EQ(EAGAIN, rv);
119 }
120
TEST(pthread,pthread_key_delete)121 TEST(pthread, pthread_key_delete) {
122 void* expected = reinterpret_cast<void*>(1234);
123 pthread_key_t key;
124 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
125 ASSERT_EQ(0, pthread_setspecific(key, expected));
126 ASSERT_EQ(expected, pthread_getspecific(key));
127 ASSERT_EQ(0, pthread_key_delete(key));
128 // After deletion, pthread_getspecific returns nullptr.
129 ASSERT_EQ(nullptr, pthread_getspecific(key));
130 // And you can't use pthread_setspecific with the deleted key.
131 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
132 }
133
TEST(pthread,pthread_key_fork)134 TEST(pthread, pthread_key_fork) {
135 void* expected = reinterpret_cast<void*>(1234);
136 pthread_key_t key;
137 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
138 ASSERT_EQ(0, pthread_setspecific(key, expected));
139 ASSERT_EQ(expected, pthread_getspecific(key));
140
141 pid_t pid = fork();
142 ASSERT_NE(-1, pid) << strerror(errno);
143
144 if (pid == 0) {
145 // The surviving thread inherits all the forking thread's TLS values...
146 ASSERT_EQ(expected, pthread_getspecific(key));
147 _exit(99);
148 }
149
150 AssertChildExited(pid, 99);
151
152 ASSERT_EQ(expected, pthread_getspecific(key));
153 ASSERT_EQ(0, pthread_key_delete(key));
154 }
155
DirtyKeyFn(void * key)156 static void* DirtyKeyFn(void* key) {
157 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
158 }
159
TEST(pthread,pthread_key_dirty)160 TEST(pthread, pthread_key_dirty) {
161 pthread_key_t key;
162 ASSERT_EQ(0, pthread_key_create(&key, nullptr));
163
164 size_t stack_size = 640 * 1024;
165 void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
166 ASSERT_NE(MAP_FAILED, stack);
167 memset(stack, 0xff, stack_size);
168
169 pthread_attr_t attr;
170 ASSERT_EQ(0, pthread_attr_init(&attr));
171 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
172
173 pthread_t t;
174 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
175
176 void* result;
177 ASSERT_EQ(0, pthread_join(t, &result));
178 ASSERT_EQ(nullptr, result); // Not ~0!
179
180 ASSERT_EQ(0, munmap(stack, stack_size));
181 ASSERT_EQ(0, pthread_key_delete(key));
182 }
183
TEST(pthread,static_pthread_key_used_before_creation)184 TEST(pthread, static_pthread_key_used_before_creation) {
185 #if defined(__BIONIC__)
186 // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
187 // So here tests if the static/global default value 0 can be detected as invalid key.
188 static pthread_key_t key;
189 ASSERT_EQ(nullptr, pthread_getspecific(key));
190 ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
191 ASSERT_EQ(EINVAL, pthread_key_delete(key));
192 #else
193 GTEST_SKIP() << "bionic-only test";
194 #endif
195 }
196
IdFn(void * arg)197 static void* IdFn(void* arg) {
198 return arg;
199 }
200
201 class SpinFunctionHelper {
202 public:
SpinFunctionHelper()203 SpinFunctionHelper() {
204 SpinFunctionHelper::spin_flag_ = true;
205 }
206
~SpinFunctionHelper()207 ~SpinFunctionHelper() {
208 UnSpin();
209 }
210
GetFunction()211 auto GetFunction() -> void* (*)(void*) {
212 return SpinFunctionHelper::SpinFn;
213 }
214
UnSpin()215 void UnSpin() {
216 SpinFunctionHelper::spin_flag_ = false;
217 }
218
219 private:
SpinFn(void *)220 static void* SpinFn(void*) {
221 while (spin_flag_) {}
222 return nullptr;
223 }
224 static std::atomic<bool> spin_flag_;
225 };
226
227 // It doesn't matter if spin_flag_ is used in several tests,
228 // because it is always set to false after each test. Each thread
229 // loops on spin_flag_ can find it becomes false at some time.
230 std::atomic<bool> SpinFunctionHelper::spin_flag_;
231
JoinFn(void * arg)232 static void* JoinFn(void* arg) {
233 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), nullptr));
234 }
235
AssertDetached(pthread_t t,bool is_detached)236 static void AssertDetached(pthread_t t, bool is_detached) {
237 pthread_attr_t attr;
238 ASSERT_EQ(0, pthread_getattr_np(t, &attr));
239 int detach_state;
240 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
241 pthread_attr_destroy(&attr);
242 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
243 }
244
MakeDeadThread(pthread_t & t)245 static void MakeDeadThread(pthread_t& t) {
246 ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, nullptr));
247 ASSERT_EQ(0, pthread_join(t, nullptr));
248 }
249
TEST(pthread,pthread_create)250 TEST(pthread, pthread_create) {
251 void* expected_result = reinterpret_cast<void*>(123);
252 // Can we create a thread?
253 pthread_t t;
254 ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, expected_result));
255 // If we join, do we get the expected value back?
256 void* result;
257 ASSERT_EQ(0, pthread_join(t, &result));
258 ASSERT_EQ(expected_result, result);
259 }
260
TEST(pthread,pthread_create_EAGAIN)261 TEST(pthread, pthread_create_EAGAIN) {
262 pthread_attr_t attributes;
263 ASSERT_EQ(0, pthread_attr_init(&attributes));
264 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
265
266 pthread_t t;
267 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, nullptr));
268 }
269
TEST(pthread,pthread_no_join_after_detach)270 TEST(pthread, pthread_no_join_after_detach) {
271 SpinFunctionHelper spin_helper;
272
273 pthread_t t1;
274 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
275
276 // After a pthread_detach...
277 ASSERT_EQ(0, pthread_detach(t1));
278 AssertDetached(t1, true);
279
280 // ...pthread_join should fail.
281 ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
282 }
283
TEST(pthread,pthread_no_op_detach_after_join)284 TEST(pthread, pthread_no_op_detach_after_join) {
285 SpinFunctionHelper spin_helper;
286
287 pthread_t t1;
288 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
289
290 // If thread 2 is already waiting to join thread 1...
291 pthread_t t2;
292 ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
293
294 sleep(1); // (Give t2 a chance to call pthread_join.)
295
296 #if defined(__BIONIC__)
297 ASSERT_EQ(EINVAL, pthread_detach(t1));
298 #else
299 ASSERT_EQ(0, pthread_detach(t1));
300 #endif
301 AssertDetached(t1, false);
302
303 spin_helper.UnSpin();
304
305 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
306 void* join_result;
307 ASSERT_EQ(0, pthread_join(t2, &join_result));
308 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
309 }
310
TEST(pthread,pthread_join_self)311 TEST(pthread, pthread_join_self) {
312 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), nullptr));
313 }
314
315 struct TestBug37410 {
316 pthread_t main_thread;
317 pthread_mutex_t mutex;
318
mainTestBug37410319 static void main() {
320 TestBug37410 data;
321 data.main_thread = pthread_self();
322 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, nullptr));
323 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
324
325 pthread_t t;
326 ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
327
328 // Wait for the thread to be running...
329 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
330 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
331
332 // ...and exit.
333 pthread_exit(nullptr);
334 }
335
336 private:
thread_fnTestBug37410337 static void* thread_fn(void* arg) {
338 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
339
340 // Unlocking data->mutex will cause the main thread to exit, invalidating *data. Save the handle.
341 pthread_t main_thread = data->main_thread;
342
343 // Let the main thread know we're running.
344 pthread_mutex_unlock(&data->mutex);
345
346 // And wait for the main thread to exit.
347 pthread_join(main_thread, nullptr);
348
349 return nullptr;
350 }
351 };
352
353 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
354 // run this test (which exits normally) in its own process.
355
356 class pthread_DeathTest : public BionicDeathTest {};
357
TEST_F(pthread_DeathTest,pthread_bug_37410)358 TEST_F(pthread_DeathTest, pthread_bug_37410) {
359 // http://code.google.com/p/android/issues/detail?id=37410
360 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
361 }
362
SignalHandlerFn(void * arg)363 static void* SignalHandlerFn(void* arg) {
364 sigset64_t wait_set;
365 sigfillset64(&wait_set);
366 return reinterpret_cast<void*>(sigwait64(&wait_set, reinterpret_cast<int*>(arg)));
367 }
368
TEST(pthread,pthread_sigmask)369 TEST(pthread, pthread_sigmask) {
370 // Check that SIGUSR1 isn't blocked.
371 sigset_t original_set;
372 sigemptyset(&original_set);
373 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &original_set));
374 ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
375
376 // Block SIGUSR1.
377 sigset_t set;
378 sigemptyset(&set);
379 sigaddset(&set, SIGUSR1);
380 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, nullptr));
381
382 // Check that SIGUSR1 is blocked.
383 sigset_t final_set;
384 sigemptyset(&final_set);
385 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &final_set));
386 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
387 // ...and that sigprocmask agrees with pthread_sigmask.
388 sigemptyset(&final_set);
389 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &final_set));
390 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
391
392 // Spawn a thread that calls sigwait and tells us what it received.
393 pthread_t signal_thread;
394 int received_signal = -1;
395 ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
396
397 // Send that thread SIGUSR1.
398 pthread_kill(signal_thread, SIGUSR1);
399
400 // See what it got.
401 void* join_result;
402 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
403 ASSERT_EQ(SIGUSR1, received_signal);
404 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
405
406 // Restore the original signal mask.
407 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, nullptr));
408 }
409
TEST(pthread,pthread_sigmask64_SIGTRMIN)410 TEST(pthread, pthread_sigmask64_SIGTRMIN) {
411 // Check that SIGRTMIN isn't blocked.
412 sigset64_t original_set;
413 sigemptyset64(&original_set);
414 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &original_set));
415 ASSERT_FALSE(sigismember64(&original_set, SIGRTMIN));
416
417 // Block SIGRTMIN.
418 sigset64_t set;
419 sigemptyset64(&set);
420 sigaddset64(&set, SIGRTMIN);
421 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &set, nullptr));
422
423 // Check that SIGRTMIN is blocked.
424 sigset64_t final_set;
425 sigemptyset64(&final_set);
426 ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &final_set));
427 ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
428 // ...and that sigprocmask64 agrees with pthread_sigmask64.
429 sigemptyset64(&final_set);
430 ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, nullptr, &final_set));
431 ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
432
433 // Spawn a thread that calls sigwait64 and tells us what it received.
434 pthread_t signal_thread;
435 int received_signal = -1;
436 ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
437
438 // Send that thread SIGRTMIN.
439 pthread_kill(signal_thread, SIGRTMIN);
440
441 // See what it got.
442 void* join_result;
443 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
444 ASSERT_EQ(SIGRTMIN, received_signal);
445 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
446
447 // Restore the original signal mask.
448 ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &original_set, nullptr));
449 }
450
test_pthread_setname_np__pthread_getname_np(pthread_t t)451 static void test_pthread_setname_np__pthread_getname_np(pthread_t t) {
452 ASSERT_EQ(0, pthread_setname_np(t, "short"));
453 char name[32];
454 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
455 ASSERT_STREQ("short", name);
456
457 // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
458 ASSERT_EQ(0, pthread_setname_np(t, "123456789012345"));
459 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
460 ASSERT_STREQ("123456789012345", name);
461
462 ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456"));
463
464 // The passed-in buffer should be at least 16 bytes.
465 ASSERT_EQ(0, pthread_getname_np(t, name, 16));
466 ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15));
467 }
468
TEST(pthread,pthread_setname_np__pthread_getname_np__self)469 TEST(pthread, pthread_setname_np__pthread_getname_np__self) {
470 test_pthread_setname_np__pthread_getname_np(pthread_self());
471 }
472
TEST(pthread,pthread_setname_np__pthread_getname_np__other)473 TEST(pthread, pthread_setname_np__pthread_getname_np__other) {
474 SpinFunctionHelper spin_helper;
475
476 pthread_t t;
477 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
478 test_pthread_setname_np__pthread_getname_np(t);
479 spin_helper.UnSpin();
480 ASSERT_EQ(0, pthread_join(t, nullptr));
481 }
482
483 // http://b/28051133: a kernel misfeature means that you can't change the
484 // name of another thread if you've set PR_SET_DUMPABLE to 0.
TEST(pthread,pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE)485 TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) {
486 ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno);
487
488 SpinFunctionHelper spin_helper;
489
490 pthread_t t;
491 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
492 test_pthread_setname_np__pthread_getname_np(t);
493 spin_helper.UnSpin();
494 ASSERT_EQ(0, pthread_join(t, nullptr));
495 }
496
TEST_F(pthread_DeathTest,pthread_setname_np__no_such_thread)497 TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) {
498 pthread_t dead_thread;
499 MakeDeadThread(dead_thread);
500
501 EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"),
502 "invalid pthread_t (.*) passed to pthread_setname_np");
503 }
504
TEST_F(pthread_DeathTest,pthread_setname_np__null_thread)505 TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) {
506 pthread_t null_thread = 0;
507 EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3"));
508 }
509
TEST_F(pthread_DeathTest,pthread_getname_np__no_such_thread)510 TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) {
511 pthread_t dead_thread;
512 MakeDeadThread(dead_thread);
513
514 char name[64];
515 EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)),
516 "invalid pthread_t (.*) passed to pthread_getname_np");
517 }
518
TEST_F(pthread_DeathTest,pthread_getname_np__null_thread)519 TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) {
520 pthread_t null_thread = 0;
521
522 char name[64];
523 EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name)));
524 }
525
TEST(pthread,pthread_kill__0)526 TEST(pthread, pthread_kill__0) {
527 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
528 ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
529 }
530
TEST(pthread,pthread_kill__invalid_signal)531 TEST(pthread, pthread_kill__invalid_signal) {
532 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
533 }
534
pthread_kill__in_signal_handler_helper(int signal_number)535 static void pthread_kill__in_signal_handler_helper(int signal_number) {
536 static int count = 0;
537 ASSERT_EQ(SIGALRM, signal_number);
538 if (++count == 1) {
539 // Can we call pthread_kill from a signal handler?
540 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
541 }
542 }
543
TEST(pthread,pthread_kill__in_signal_handler)544 TEST(pthread, pthread_kill__in_signal_handler) {
545 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
546 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
547 }
548
TEST(pthread,pthread_kill__exited_thread)549 TEST(pthread, pthread_kill__exited_thread) {
550 static std::promise<pid_t> tid_promise;
551 pthread_t thread;
552 ASSERT_EQ(0, pthread_create(&thread, nullptr,
553 [](void*) -> void* {
554 tid_promise.set_value(gettid());
555 return nullptr;
556 },
557 nullptr));
558
559 pid_t tid = tid_promise.get_future().get();
560 while (TEMP_FAILURE_RETRY(syscall(__NR_tgkill, getpid(), tid, 0)) != -1) {
561 continue;
562 }
563 ASSERT_EQ(ESRCH, errno);
564
565 ASSERT_EQ(ESRCH, pthread_kill(thread, 0));
566 }
567
TEST_F(pthread_DeathTest,pthread_detach__no_such_thread)568 TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) {
569 pthread_t dead_thread;
570 MakeDeadThread(dead_thread);
571
572 EXPECT_DEATH(pthread_detach(dead_thread),
573 "invalid pthread_t (.*) passed to pthread_detach");
574 }
575
TEST_F(pthread_DeathTest,pthread_detach__null_thread)576 TEST_F(pthread_DeathTest, pthread_detach__null_thread) {
577 pthread_t null_thread = 0;
578 EXPECT_EQ(ESRCH, pthread_detach(null_thread));
579 }
580
TEST(pthread,pthread_getcpuclockid__clock_gettime)581 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
582 SpinFunctionHelper spin_helper;
583
584 pthread_t t;
585 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
586
587 clockid_t c;
588 ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
589 timespec ts;
590 ASSERT_EQ(0, clock_gettime(c, &ts));
591 spin_helper.UnSpin();
592 ASSERT_EQ(0, pthread_join(t, nullptr));
593 }
594
TEST_F(pthread_DeathTest,pthread_getcpuclockid__no_such_thread)595 TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) {
596 pthread_t dead_thread;
597 MakeDeadThread(dead_thread);
598
599 clockid_t c;
600 EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c),
601 "invalid pthread_t (.*) passed to pthread_getcpuclockid");
602 }
603
TEST_F(pthread_DeathTest,pthread_getcpuclockid__null_thread)604 TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) {
605 pthread_t null_thread = 0;
606 clockid_t c;
607 EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c));
608 }
609
TEST_F(pthread_DeathTest,pthread_getschedparam__no_such_thread)610 TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) {
611 pthread_t dead_thread;
612 MakeDeadThread(dead_thread);
613
614 int policy;
615 sched_param param;
616 EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, ¶m),
617 "invalid pthread_t (.*) passed to pthread_getschedparam");
618 }
619
TEST_F(pthread_DeathTest,pthread_getschedparam__null_thread)620 TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) {
621 pthread_t null_thread = 0;
622 int policy;
623 sched_param param;
624 EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, ¶m));
625 }
626
TEST_F(pthread_DeathTest,pthread_setschedparam__no_such_thread)627 TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) {
628 pthread_t dead_thread;
629 MakeDeadThread(dead_thread);
630
631 int policy = 0;
632 sched_param param;
633 EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, ¶m),
634 "invalid pthread_t (.*) passed to pthread_setschedparam");
635 }
636
TEST_F(pthread_DeathTest,pthread_setschedparam__null_thread)637 TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) {
638 pthread_t null_thread = 0;
639 int policy = 0;
640 sched_param param;
641 EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, ¶m));
642 }
643
TEST_F(pthread_DeathTest,pthread_setschedprio__no_such_thread)644 TEST_F(pthread_DeathTest, pthread_setschedprio__no_such_thread) {
645 pthread_t dead_thread;
646 MakeDeadThread(dead_thread);
647
648 EXPECT_DEATH(pthread_setschedprio(dead_thread, 123),
649 "invalid pthread_t (.*) passed to pthread_setschedprio");
650 }
651
TEST_F(pthread_DeathTest,pthread_setschedprio__null_thread)652 TEST_F(pthread_DeathTest, pthread_setschedprio__null_thread) {
653 pthread_t null_thread = 0;
654 EXPECT_EQ(ESRCH, pthread_setschedprio(null_thread, 123));
655 }
656
TEST_F(pthread_DeathTest,pthread_join__no_such_thread)657 TEST_F(pthread_DeathTest, pthread_join__no_such_thread) {
658 pthread_t dead_thread;
659 MakeDeadThread(dead_thread);
660
661 EXPECT_DEATH(pthread_join(dead_thread, nullptr),
662 "invalid pthread_t (.*) passed to pthread_join");
663 }
664
TEST_F(pthread_DeathTest,pthread_join__null_thread)665 TEST_F(pthread_DeathTest, pthread_join__null_thread) {
666 pthread_t null_thread = 0;
667 EXPECT_EQ(ESRCH, pthread_join(null_thread, nullptr));
668 }
669
TEST_F(pthread_DeathTest,pthread_kill__no_such_thread)670 TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) {
671 pthread_t dead_thread;
672 MakeDeadThread(dead_thread);
673
674 EXPECT_DEATH(pthread_kill(dead_thread, 0),
675 "invalid pthread_t (.*) passed to pthread_kill");
676 }
677
TEST_F(pthread_DeathTest,pthread_kill__null_thread)678 TEST_F(pthread_DeathTest, pthread_kill__null_thread) {
679 pthread_t null_thread = 0;
680 EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0));
681 }
682
TEST(pthread,pthread_join__multijoin)683 TEST(pthread, pthread_join__multijoin) {
684 SpinFunctionHelper spin_helper;
685
686 pthread_t t1;
687 ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
688
689 pthread_t t2;
690 ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
691
692 sleep(1); // (Give t2 a chance to call pthread_join.)
693
694 // Multiple joins to the same thread should fail.
695 ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
696
697 spin_helper.UnSpin();
698
699 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
700 void* join_result;
701 ASSERT_EQ(0, pthread_join(t2, &join_result));
702 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
703 }
704
TEST(pthread,pthread_join__race)705 TEST(pthread, pthread_join__race) {
706 // http://b/11693195 --- pthread_join could return before the thread had actually exited.
707 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
708 for (size_t i = 0; i < 1024; ++i) {
709 size_t stack_size = 640*1024;
710 void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
711
712 pthread_attr_t a;
713 pthread_attr_init(&a);
714 pthread_attr_setstack(&a, stack, stack_size);
715
716 pthread_t t;
717 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, nullptr));
718 ASSERT_EQ(0, pthread_join(t, nullptr));
719 ASSERT_EQ(0, munmap(stack, stack_size));
720 }
721 }
722
GetActualGuardSizeFn(void * arg)723 static void* GetActualGuardSizeFn(void* arg) {
724 pthread_attr_t attributes;
725 pthread_getattr_np(pthread_self(), &attributes);
726 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
727 return nullptr;
728 }
729
GetActualGuardSize(const pthread_attr_t & attributes)730 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
731 size_t result;
732 pthread_t t;
733 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
734 pthread_join(t, nullptr);
735 return result;
736 }
737
GetActualStackSizeFn(void * arg)738 static void* GetActualStackSizeFn(void* arg) {
739 pthread_attr_t attributes;
740 pthread_getattr_np(pthread_self(), &attributes);
741 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
742 return nullptr;
743 }
744
GetActualStackSize(const pthread_attr_t & attributes)745 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
746 size_t result;
747 pthread_t t;
748 pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
749 pthread_join(t, nullptr);
750 return result;
751 }
752
TEST(pthread,pthread_attr_setguardsize_tiny)753 TEST(pthread, pthread_attr_setguardsize_tiny) {
754 pthread_attr_t attributes;
755 ASSERT_EQ(0, pthread_attr_init(&attributes));
756
757 // No such thing as too small: will be rounded up to one page by pthread_create.
758 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
759 size_t guard_size;
760 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
761 ASSERT_EQ(128U, guard_size);
762 ASSERT_EQ(4096U, GetActualGuardSize(attributes));
763 }
764
TEST(pthread,pthread_attr_setguardsize_reasonable)765 TEST(pthread, pthread_attr_setguardsize_reasonable) {
766 pthread_attr_t attributes;
767 ASSERT_EQ(0, pthread_attr_init(&attributes));
768
769 // Large enough and a multiple of the page size.
770 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
771 size_t guard_size;
772 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
773 ASSERT_EQ(32*1024U, guard_size);
774 ASSERT_EQ(32*1024U, GetActualGuardSize(attributes));
775 }
776
TEST(pthread,pthread_attr_setguardsize_needs_rounding)777 TEST(pthread, pthread_attr_setguardsize_needs_rounding) {
778 pthread_attr_t attributes;
779 ASSERT_EQ(0, pthread_attr_init(&attributes));
780
781 // Large enough but not a multiple of the page size.
782 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
783 size_t guard_size;
784 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
785 ASSERT_EQ(32*1024U + 1, guard_size);
786 ASSERT_EQ(36*1024U, GetActualGuardSize(attributes));
787 }
788
TEST(pthread,pthread_attr_setguardsize_enormous)789 TEST(pthread, pthread_attr_setguardsize_enormous) {
790 pthread_attr_t attributes;
791 ASSERT_EQ(0, pthread_attr_init(&attributes));
792
793 // Larger than the stack itself. (Historically we mistakenly carved
794 // the guard out of the stack itself, rather than adding it after the
795 // end.)
796 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024*1024));
797 size_t guard_size;
798 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
799 ASSERT_EQ(32*1024*1024U, guard_size);
800 ASSERT_EQ(32*1024*1024U, GetActualGuardSize(attributes));
801 }
802
TEST(pthread,pthread_attr_setstacksize)803 TEST(pthread, pthread_attr_setstacksize) {
804 pthread_attr_t attributes;
805 ASSERT_EQ(0, pthread_attr_init(&attributes));
806
807 // Get the default stack size.
808 size_t default_stack_size;
809 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
810
811 // Too small.
812 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
813 size_t stack_size;
814 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
815 ASSERT_EQ(default_stack_size, stack_size);
816 ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
817
818 // Large enough and a multiple of the page size; may be rounded up by pthread_create.
819 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
820 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
821 ASSERT_EQ(32*1024U, stack_size);
822 ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
823
824 // Large enough but not aligned; will be rounded up by pthread_create.
825 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
826 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
827 ASSERT_EQ(32*1024U + 1, stack_size);
828 #if defined(__BIONIC__)
829 ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
830 #else // __BIONIC__
831 // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
832 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
833 #endif // __BIONIC__
834 }
835
TEST(pthread,pthread_rwlockattr_smoke)836 TEST(pthread, pthread_rwlockattr_smoke) {
837 pthread_rwlockattr_t attr;
838 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
839
840 int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
841 for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
842 ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
843 int pshared;
844 ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
845 ASSERT_EQ(pshared_value_array[i], pshared);
846 }
847
848 int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
849 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
850 for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
851 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
852 int kind;
853 ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
854 ASSERT_EQ(kind_array[i], kind);
855 }
856
857 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
858 }
859
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)860 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
861 pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
862 pthread_rwlock_t lock2;
863 ASSERT_EQ(0, pthread_rwlock_init(&lock2, nullptr));
864 ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
865 }
866
TEST(pthread,pthread_rwlock_smoke)867 TEST(pthread, pthread_rwlock_smoke) {
868 pthread_rwlock_t l;
869 ASSERT_EQ(0, pthread_rwlock_init(&l, nullptr));
870
871 // Single read lock
872 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
873 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
874
875 // Multiple read lock
876 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
877 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
878 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
879 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
880
881 // Write lock
882 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
883 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
884
885 // Try writer lock
886 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
887 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
888 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
889 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
890
891 // Try reader lock
892 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
893 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
894 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
895 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
896 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
897
898 // Try writer lock after unlock
899 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
900 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
901
902 // EDEADLK in "read after write"
903 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
904 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
905 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
906
907 // EDEADLK in "write after write"
908 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
909 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
910 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
911
912 ASSERT_EQ(0, pthread_rwlock_destroy(&l));
913 }
914
915 struct RwlockWakeupHelperArg {
916 pthread_rwlock_t lock;
917 enum Progress {
918 LOCK_INITIALIZED,
919 LOCK_WAITING,
920 LOCK_RELEASED,
921 LOCK_ACCESSED,
922 LOCK_TIMEDOUT,
923 };
924 std::atomic<Progress> progress;
925 std::atomic<pid_t> tid;
926 std::function<int (pthread_rwlock_t*)> trylock_function;
927 std::function<int (pthread_rwlock_t*)> lock_function;
928 std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
929 clockid_t clock;
930 };
931
pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg * arg)932 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
933 arg->tid = gettid();
934 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
935 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
936
937 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
938 ASSERT_EQ(0, arg->lock_function(&arg->lock));
939 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
940 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
941
942 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
943 }
944
test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t *)> lock_function)945 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
946 RwlockWakeupHelperArg wakeup_arg;
947 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
948 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
949 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
950 wakeup_arg.tid = 0;
951 wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
952 wakeup_arg.lock_function = lock_function;
953
954 pthread_t thread;
955 ASSERT_EQ(0, pthread_create(&thread, nullptr,
956 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
957 WaitUntilThreadSleep(wakeup_arg.tid);
958 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
959
960 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
961 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
962
963 ASSERT_EQ(0, pthread_join(thread, nullptr));
964 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
965 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
966 }
967
TEST(pthread,pthread_rwlock_reader_wakeup_writer)968 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
969 test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
970 }
971
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait)972 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
973 timespec ts;
974 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
975 ts.tv_sec += 1;
976 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
977 return pthread_rwlock_timedwrlock(lock, &ts);
978 });
979 }
980
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np)981 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np) {
982 #if defined(__BIONIC__)
983 timespec ts;
984 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
985 ts.tv_sec += 1;
986 test_pthread_rwlock_reader_wakeup_writer(
987 [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedwrlock_monotonic_np(lock, &ts); });
988 #else // __BIONIC__
989 GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
990 #endif // __BIONIC__
991 }
992
test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t *)> lock_function)993 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
994 RwlockWakeupHelperArg wakeup_arg;
995 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
996 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
997 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
998 wakeup_arg.tid = 0;
999 wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
1000 wakeup_arg.lock_function = lock_function;
1001
1002 pthread_t thread;
1003 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1004 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
1005 WaitUntilThreadSleep(wakeup_arg.tid);
1006 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1007
1008 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
1009 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1010
1011 ASSERT_EQ(0, pthread_join(thread, nullptr));
1012 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
1013 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1014 }
1015
TEST(pthread,pthread_rwlock_writer_wakeup_reader)1016 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
1017 test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
1018 }
1019
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait)1020 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
1021 timespec ts;
1022 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1023 ts.tv_sec += 1;
1024 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
1025 return pthread_rwlock_timedrdlock(lock, &ts);
1026 });
1027 }
1028
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np)1029 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np) {
1030 #if defined(__BIONIC__)
1031 timespec ts;
1032 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1033 ts.tv_sec += 1;
1034 test_pthread_rwlock_writer_wakeup_reader(
1035 [&](pthread_rwlock_t* lock) { return pthread_rwlock_timedrdlock_monotonic_np(lock, &ts); });
1036 #else // __BIONIC__
1037 GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
1038 #endif // __BIONIC__
1039 }
1040
pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg * arg)1041 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
1042 arg->tid = gettid();
1043 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
1044 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
1045
1046 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
1047
1048 timespec ts;
1049 ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
1050 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1051 ts.tv_nsec = -1;
1052 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
1053 ts.tv_nsec = NS_PER_S;
1054 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
1055 ts.tv_nsec = NS_PER_S - 1;
1056 ts.tv_sec = -1;
1057 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1058 ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
1059 ts.tv_sec += 1;
1060 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
1061 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
1062 arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
1063 }
1064
pthread_rwlock_timedrdlock_timeout_helper(clockid_t clock,int (* lock_function)(pthread_rwlock_t * __rwlock,const timespec * __timeout))1065 static void pthread_rwlock_timedrdlock_timeout_helper(
1066 clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
1067 RwlockWakeupHelperArg wakeup_arg;
1068 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1069 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
1070 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1071 wakeup_arg.tid = 0;
1072 wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
1073 wakeup_arg.timed_lock_function = lock_function;
1074 wakeup_arg.clock = clock;
1075
1076 pthread_t thread;
1077 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1078 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
1079 WaitUntilThreadSleep(wakeup_arg.tid);
1080 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1081
1082 ASSERT_EQ(0, pthread_join(thread, nullptr));
1083 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
1084 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1085 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1086 }
1087
TEST(pthread,pthread_rwlock_timedrdlock_timeout)1088 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
1089 pthread_rwlock_timedrdlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedrdlock);
1090 }
1091
TEST(pthread,pthread_rwlock_timedrdlock_monotonic_np_timeout)1092 TEST(pthread, pthread_rwlock_timedrdlock_monotonic_np_timeout) {
1093 #if defined(__BIONIC__)
1094 pthread_rwlock_timedrdlock_timeout_helper(CLOCK_MONOTONIC,
1095 pthread_rwlock_timedrdlock_monotonic_np);
1096 #else // __BIONIC__
1097 GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
1098 #endif // __BIONIC__
1099 }
1100
pthread_rwlock_timedwrlock_timeout_helper(clockid_t clock,int (* lock_function)(pthread_rwlock_t * __rwlock,const timespec * __timeout))1101 static void pthread_rwlock_timedwrlock_timeout_helper(
1102 clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
1103 RwlockWakeupHelperArg wakeup_arg;
1104 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
1105 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
1106 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
1107 wakeup_arg.tid = 0;
1108 wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
1109 wakeup_arg.timed_lock_function = lock_function;
1110 wakeup_arg.clock = clock;
1111
1112 pthread_t thread;
1113 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1114 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
1115 WaitUntilThreadSleep(wakeup_arg.tid);
1116 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
1117
1118 ASSERT_EQ(0, pthread_join(thread, nullptr));
1119 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
1120 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
1121 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
1122 }
1123
TEST(pthread,pthread_rwlock_timedwrlock_timeout)1124 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
1125 pthread_rwlock_timedwrlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedwrlock);
1126 }
1127
TEST(pthread,pthread_rwlock_timedwrlock_monotonic_np_timeout)1128 TEST(pthread, pthread_rwlock_timedwrlock_monotonic_np_timeout) {
1129 #if defined(__BIONIC__)
1130 pthread_rwlock_timedwrlock_timeout_helper(CLOCK_MONOTONIC,
1131 pthread_rwlock_timedwrlock_monotonic_np);
1132 #else // __BIONIC__
1133 GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
1134 #endif // __BIONIC__
1135 }
1136
1137 class RwlockKindTestHelper {
1138 private:
1139 struct ThreadArg {
1140 RwlockKindTestHelper* helper;
1141 std::atomic<pid_t>& tid;
1142
ThreadArgRwlockKindTestHelper::ThreadArg1143 ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
1144 : helper(helper), tid(tid) { }
1145 };
1146
1147 public:
1148 pthread_rwlock_t lock;
1149
1150 public:
RwlockKindTestHelper(int kind_type)1151 explicit RwlockKindTestHelper(int kind_type) {
1152 InitRwlock(kind_type);
1153 }
1154
~RwlockKindTestHelper()1155 ~RwlockKindTestHelper() {
1156 DestroyRwlock();
1157 }
1158
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)1159 void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
1160 tid = 0;
1161 ThreadArg* arg = new ThreadArg(this, tid);
1162 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1163 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
1164 }
1165
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)1166 void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
1167 tid = 0;
1168 ThreadArg* arg = new ThreadArg(this, tid);
1169 ASSERT_EQ(0, pthread_create(&thread, nullptr,
1170 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
1171 }
1172
1173 private:
InitRwlock(int kind_type)1174 void InitRwlock(int kind_type) {
1175 pthread_rwlockattr_t attr;
1176 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
1177 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
1178 ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
1179 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
1180 }
1181
DestroyRwlock()1182 void DestroyRwlock() {
1183 ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
1184 }
1185
WriterThreadFn(ThreadArg * arg)1186 static void WriterThreadFn(ThreadArg* arg) {
1187 arg->tid = gettid();
1188
1189 RwlockKindTestHelper* helper = arg->helper;
1190 ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
1191 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1192 delete arg;
1193 }
1194
ReaderThreadFn(ThreadArg * arg)1195 static void ReaderThreadFn(ThreadArg* arg) {
1196 arg->tid = gettid();
1197
1198 RwlockKindTestHelper* helper = arg->helper;
1199 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
1200 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1201 delete arg;
1202 }
1203 };
1204
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)1205 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
1206 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
1207 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1208
1209 pthread_t writer_thread;
1210 std::atomic<pid_t> writer_tid;
1211 helper.CreateWriterThread(writer_thread, writer_tid);
1212 WaitUntilThreadSleep(writer_tid);
1213
1214 pthread_t reader_thread;
1215 std::atomic<pid_t> reader_tid;
1216 helper.CreateReaderThread(reader_thread, reader_tid);
1217 ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
1218
1219 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1220 ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
1221 }
1222
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)1223 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
1224 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
1225 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1226
1227 pthread_t writer_thread;
1228 std::atomic<pid_t> writer_tid;
1229 helper.CreateWriterThread(writer_thread, writer_tid);
1230 WaitUntilThreadSleep(writer_tid);
1231
1232 pthread_t reader_thread;
1233 std::atomic<pid_t> reader_tid;
1234 helper.CreateReaderThread(reader_thread, reader_tid);
1235 WaitUntilThreadSleep(reader_tid);
1236
1237 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1238 ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
1239 ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
1240 }
1241
1242 static int g_once_fn_call_count = 0;
OnceFn()1243 static void OnceFn() {
1244 ++g_once_fn_call_count;
1245 }
1246
TEST(pthread,pthread_once_smoke)1247 TEST(pthread, pthread_once_smoke) {
1248 pthread_once_t once_control = PTHREAD_ONCE_INIT;
1249 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1250 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1251 ASSERT_EQ(1, g_once_fn_call_count);
1252 }
1253
1254 static std::string pthread_once_1934122_result = "";
1255
Routine2()1256 static void Routine2() {
1257 pthread_once_1934122_result += "2";
1258 }
1259
Routine1()1260 static void Routine1() {
1261 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
1262 pthread_once_1934122_result += "1";
1263 pthread_once(&once_control_2, &Routine2);
1264 }
1265
TEST(pthread,pthread_once_1934122)1266 TEST(pthread, pthread_once_1934122) {
1267 // Very old versions of Android couldn't call pthread_once from a
1268 // pthread_once init routine. http://b/1934122.
1269 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
1270 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
1271 ASSERT_EQ("12", pthread_once_1934122_result);
1272 }
1273
1274 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()1275 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()1276 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
1277 static int g_atfork_parent_calls = 0;
AtForkParent1()1278 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()1279 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
1280 static int g_atfork_child_calls = 0;
AtForkChild1()1281 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()1282 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1283
TEST(pthread,pthread_atfork_smoke)1284 TEST(pthread, pthread_atfork_smoke) {
1285 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1286 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1287
1288 pid_t pid = fork();
1289 ASSERT_NE(-1, pid) << strerror(errno);
1290
1291 // Child and parent calls are made in the order they were registered.
1292 if (pid == 0) {
1293 ASSERT_EQ(12, g_atfork_child_calls);
1294 _exit(0);
1295 }
1296 ASSERT_EQ(12, g_atfork_parent_calls);
1297
1298 // Prepare calls are made in the reverse order.
1299 ASSERT_EQ(21, g_atfork_prepare_calls);
1300 AssertChildExited(pid, 0);
1301 }
1302
TEST(pthread,pthread_attr_getscope)1303 TEST(pthread, pthread_attr_getscope) {
1304 pthread_attr_t attr;
1305 ASSERT_EQ(0, pthread_attr_init(&attr));
1306
1307 int scope;
1308 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1309 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1310 }
1311
TEST(pthread,pthread_condattr_init)1312 TEST(pthread, pthread_condattr_init) {
1313 pthread_condattr_t attr;
1314 pthread_condattr_init(&attr);
1315
1316 clockid_t clock;
1317 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1318 ASSERT_EQ(CLOCK_REALTIME, clock);
1319
1320 int pshared;
1321 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1322 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1323 }
1324
TEST(pthread,pthread_condattr_setclock)1325 TEST(pthread, pthread_condattr_setclock) {
1326 pthread_condattr_t attr;
1327 pthread_condattr_init(&attr);
1328
1329 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1330 clockid_t clock;
1331 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1332 ASSERT_EQ(CLOCK_REALTIME, clock);
1333
1334 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1335 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1336 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1337
1338 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1339 }
1340
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1341 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1342 #if defined(__BIONIC__)
1343 pthread_condattr_t attr;
1344 pthread_condattr_init(&attr);
1345
1346 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1347 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1348
1349 pthread_cond_t cond_var;
1350 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1351
1352 ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1353 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1354
1355 attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1356 clockid_t clock;
1357 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1358 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1359 int pshared;
1360 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1361 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1362 #else // !defined(__BIONIC__)
1363 GTEST_SKIP() << "bionic-only test";
1364 #endif // !defined(__BIONIC__)
1365 }
1366
1367 class pthread_CondWakeupTest : public ::testing::Test {
1368 protected:
1369 pthread_mutex_t mutex;
1370 pthread_cond_t cond;
1371
1372 enum Progress {
1373 INITIALIZED,
1374 WAITING,
1375 SIGNALED,
1376 FINISHED,
1377 };
1378 std::atomic<Progress> progress;
1379 pthread_t thread;
1380 std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
1381
1382 protected:
SetUp()1383 void SetUp() override {
1384 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1385 }
1386
InitCond(clockid_t clock=CLOCK_REALTIME)1387 void InitCond(clockid_t clock=CLOCK_REALTIME) {
1388 pthread_condattr_t attr;
1389 ASSERT_EQ(0, pthread_condattr_init(&attr));
1390 ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
1391 ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1392 ASSERT_EQ(0, pthread_condattr_destroy(&attr));
1393 }
1394
StartWaitingThread(std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex)> wait_function)1395 void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
1396 progress = INITIALIZED;
1397 this->wait_function = wait_function;
1398 ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1399 while (progress != WAITING) {
1400 usleep(5000);
1401 }
1402 usleep(5000);
1403 }
1404
TearDown()1405 void TearDown() override {
1406 ASSERT_EQ(0, pthread_join(thread, nullptr));
1407 ASSERT_EQ(FINISHED, progress);
1408 ASSERT_EQ(0, pthread_cond_destroy(&cond));
1409 ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1410 }
1411
1412 private:
WaitThreadFn(pthread_CondWakeupTest * test)1413 static void WaitThreadFn(pthread_CondWakeupTest* test) {
1414 ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1415 test->progress = WAITING;
1416 while (test->progress == WAITING) {
1417 ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
1418 }
1419 ASSERT_EQ(SIGNALED, test->progress);
1420 test->progress = FINISHED;
1421 ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1422 }
1423 };
1424
TEST_F(pthread_CondWakeupTest,signal_wait)1425 TEST_F(pthread_CondWakeupTest, signal_wait) {
1426 InitCond();
1427 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1428 return pthread_cond_wait(cond, mutex);
1429 });
1430 progress = SIGNALED;
1431 ASSERT_EQ(0, pthread_cond_signal(&cond));
1432 }
1433
TEST_F(pthread_CondWakeupTest,broadcast_wait)1434 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
1435 InitCond();
1436 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1437 return pthread_cond_wait(cond, mutex);
1438 });
1439 progress = SIGNALED;
1440 ASSERT_EQ(0, pthread_cond_broadcast(&cond));
1441 }
1442
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_REALTIME)1443 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
1444 InitCond(CLOCK_REALTIME);
1445 timespec ts;
1446 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1447 ts.tv_sec += 1;
1448 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1449 return pthread_cond_timedwait(cond, mutex, &ts);
1450 });
1451 progress = SIGNALED;
1452 ASSERT_EQ(0, pthread_cond_signal(&cond));
1453 }
1454
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC)1455 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
1456 InitCond(CLOCK_MONOTONIC);
1457 timespec ts;
1458 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1459 ts.tv_sec += 1;
1460 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1461 return pthread_cond_timedwait(cond, mutex, &ts);
1462 });
1463 progress = SIGNALED;
1464 ASSERT_EQ(0, pthread_cond_signal(&cond));
1465 }
1466
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC_np)1467 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC_np) {
1468 #if defined(__BIONIC__)
1469 InitCond(CLOCK_REALTIME);
1470 timespec ts;
1471 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1472 ts.tv_sec += 1;
1473 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1474 return pthread_cond_timedwait_monotonic_np(cond, mutex, &ts);
1475 });
1476 progress = SIGNALED;
1477 ASSERT_EQ(0, pthread_cond_signal(&cond));
1478 #else // __BIONIC__
1479 GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
1480 #endif // __BIONIC__
1481 }
1482
pthread_cond_timedwait_timeout_helper(clockid_t clock,int (* wait_function)(pthread_cond_t * __cond,pthread_mutex_t * __mutex,const timespec * __timeout))1483 static void pthread_cond_timedwait_timeout_helper(clockid_t clock,
1484 int (*wait_function)(pthread_cond_t* __cond,
1485 pthread_mutex_t* __mutex,
1486 const timespec* __timeout)) {
1487 pthread_mutex_t mutex;
1488 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1489 pthread_cond_t cond;
1490 ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
1491 ASSERT_EQ(0, pthread_mutex_lock(&mutex));
1492
1493 timespec ts;
1494 ASSERT_EQ(0, clock_gettime(clock, &ts));
1495 ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
1496 ts.tv_nsec = -1;
1497 ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
1498 ts.tv_nsec = NS_PER_S;
1499 ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
1500 ts.tv_nsec = NS_PER_S - 1;
1501 ts.tv_sec = -1;
1502 ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
1503 ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
1504 }
1505
TEST(pthread,pthread_cond_timedwait_timeout)1506 TEST(pthread, pthread_cond_timedwait_timeout) {
1507 pthread_cond_timedwait_timeout_helper(CLOCK_REALTIME, pthread_cond_timedwait);
1508 }
1509
TEST(pthread,pthread_cond_timedwait_monotonic_np_timeout)1510 TEST(pthread, pthread_cond_timedwait_monotonic_np_timeout) {
1511 #if defined(__BIONIC__)
1512 pthread_cond_timedwait_timeout_helper(CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
1513 #else // __BIONIC__
1514 GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
1515 #endif // __BIONIC__
1516 }
1517
TEST(pthread,pthread_attr_getstack__main_thread)1518 TEST(pthread, pthread_attr_getstack__main_thread) {
1519 // This test is only meaningful for the main thread, so make sure we're running on it!
1520 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1521
1522 // Get the main thread's attributes.
1523 pthread_attr_t attributes;
1524 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1525
1526 // Check that we correctly report that the main thread has no guard page.
1527 size_t guard_size;
1528 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1529 ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1530
1531 // Get the stack base and the stack size (both ways).
1532 void* stack_base;
1533 size_t stack_size;
1534 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1535 size_t stack_size2;
1536 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1537
1538 // The two methods of asking for the stack size should agree.
1539 EXPECT_EQ(stack_size, stack_size2);
1540
1541 #if defined(__BIONIC__)
1542 // Find stack in /proc/self/maps using a pointer to the stack.
1543 //
1544 // We do not use "[stack]" label because in native-bridge environment it is not
1545 // guaranteed to point to the right stack. A native bridge implementation may
1546 // keep separate stack for the guest code.
1547 void* maps_stack_hi = nullptr;
1548 std::vector<map_record> maps;
1549 ASSERT_TRUE(Maps::parse_maps(&maps));
1550 uintptr_t stack_address = reinterpret_cast<uintptr_t>(untag_address(&maps_stack_hi));
1551 for (const auto& map : maps) {
1552 if (map.addr_start <= stack_address && map.addr_end > stack_address){
1553 maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1554 break;
1555 }
1556 }
1557
1558 // The high address of the /proc/self/maps stack region should equal stack_base + stack_size.
1559 // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1560 // region isn't very interesting.
1561 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1562
1563 // The stack size should correspond to RLIMIT_STACK.
1564 rlimit rl;
1565 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1566 uint64_t original_rlim_cur = rl.rlim_cur;
1567 if (rl.rlim_cur == RLIM_INFINITY) {
1568 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1569 }
1570 EXPECT_EQ(rl.rlim_cur, stack_size);
1571
1572 auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() {
1573 rl.rlim_cur = original_rlim_cur;
1574 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1575 });
1576
1577 //
1578 // What if RLIMIT_STACK is smaller than the stack's current extent?
1579 //
1580 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1581 rl.rlim_max = RLIM_INFINITY;
1582 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1583
1584 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1585 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1586 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1587
1588 EXPECT_EQ(stack_size, stack_size2);
1589 ASSERT_EQ(1024U, stack_size);
1590
1591 //
1592 // What if RLIMIT_STACK isn't a whole number of pages?
1593 //
1594 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1595 rl.rlim_max = RLIM_INFINITY;
1596 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1597
1598 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1599 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1600 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1601
1602 EXPECT_EQ(stack_size, stack_size2);
1603 ASSERT_EQ(6666U, stack_size);
1604 #endif
1605 }
1606
1607 struct GetStackSignalHandlerArg {
1608 volatile bool done;
1609 void* signal_stack_base;
1610 size_t signal_stack_size;
1611 void* main_stack_base;
1612 size_t main_stack_size;
1613 };
1614
1615 static GetStackSignalHandlerArg getstack_signal_handler_arg;
1616
getstack_signal_handler(int sig)1617 static void getstack_signal_handler(int sig) {
1618 ASSERT_EQ(SIGUSR1, sig);
1619 // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1620 sleep(1);
1621 pthread_attr_t attr;
1622 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1623 void* stack_base;
1624 size_t stack_size;
1625 ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1626
1627 // Verify if the stack used by the signal handler is the alternate stack just registered.
1628 ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr);
1629 ASSERT_LT(static_cast<void*>(untag_address(&attr)),
1630 static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) +
1631 getstack_signal_handler_arg.signal_stack_size);
1632
1633 // Verify if the main thread's stack got in the signal handler is correct.
1634 ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base);
1635 ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size);
1636
1637 getstack_signal_handler_arg.done = true;
1638 }
1639
1640 // The previous code obtained the main thread's stack by reading the entry in
1641 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1642 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1643 // switches a process while the main thread is in an alternate stack, then the kernel will label
1644 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
1645 // thread's stack is found correctly.
TEST(pthread,pthread_attr_getstack_in_signal_handler)1646 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1647 // This test is only meaningful for the main thread, so make sure we're running on it!
1648 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1649
1650 const size_t sig_stack_size = 16 * 1024;
1651 void* sig_stack = mmap(nullptr, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1652 -1, 0);
1653 ASSERT_NE(MAP_FAILED, sig_stack);
1654 stack_t ss;
1655 ss.ss_sp = sig_stack;
1656 ss.ss_size = sig_stack_size;
1657 ss.ss_flags = 0;
1658 stack_t oss;
1659 ASSERT_EQ(0, sigaltstack(&ss, &oss));
1660
1661 pthread_attr_t attr;
1662 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1663 void* main_stack_base;
1664 size_t main_stack_size;
1665 ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
1666
1667 ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1668 getstack_signal_handler_arg.done = false;
1669 getstack_signal_handler_arg.signal_stack_base = sig_stack;
1670 getstack_signal_handler_arg.signal_stack_size = sig_stack_size;
1671 getstack_signal_handler_arg.main_stack_base = main_stack_base;
1672 getstack_signal_handler_arg.main_stack_size = main_stack_size;
1673 kill(getpid(), SIGUSR1);
1674 ASSERT_EQ(true, getstack_signal_handler_arg.done);
1675
1676 ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1677 ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1678 }
1679
pthread_attr_getstack_18908062_helper(void *)1680 static void pthread_attr_getstack_18908062_helper(void*) {
1681 char local_variable;
1682 pthread_attr_t attributes;
1683 pthread_getattr_np(pthread_self(), &attributes);
1684 void* stack_base;
1685 size_t stack_size;
1686 pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1687
1688 // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1689 ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1690 ASSERT_LT(untag_address(&local_variable), reinterpret_cast<char*>(stack_base) + stack_size);
1691 }
1692
1693 // Check whether something on stack is in the range of
1694 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1695 TEST(pthread, pthread_attr_getstack_18908062) {
1696 pthread_t t;
1697 ASSERT_EQ(0, pthread_create(&t, nullptr,
1698 reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1699 nullptr));
1700 ASSERT_EQ(0, pthread_join(t, nullptr));
1701 }
1702
1703 #if defined(__BIONIC__)
1704 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1705
pthread_gettid_np_helper(void * arg)1706 static void* pthread_gettid_np_helper(void* arg) {
1707 *reinterpret_cast<pid_t*>(arg) = gettid();
1708
1709 // Wait for our parent to call pthread_gettid_np on us before exiting.
1710 pthread_mutex_lock(&pthread_gettid_np_mutex);
1711 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1712 return nullptr;
1713 }
1714 #endif
1715
TEST(pthread,pthread_gettid_np)1716 TEST(pthread, pthread_gettid_np) {
1717 #if defined(__BIONIC__)
1718 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1719
1720 // Ensure the other thread doesn't exit until after we've called
1721 // pthread_gettid_np on it.
1722 pthread_mutex_lock(&pthread_gettid_np_mutex);
1723
1724 pid_t t_gettid_result;
1725 pthread_t t;
1726 pthread_create(&t, nullptr, pthread_gettid_np_helper, &t_gettid_result);
1727
1728 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1729
1730 // Release the other thread and wait for it to exit.
1731 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1732 ASSERT_EQ(0, pthread_join(t, nullptr));
1733
1734 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1735 #else
1736 GTEST_SKIP() << "pthread_gettid_np not available";
1737 #endif
1738 }
1739
1740 static size_t cleanup_counter = 0;
1741
AbortCleanupRoutine(void *)1742 static void AbortCleanupRoutine(void*) {
1743 abort();
1744 }
1745
CountCleanupRoutine(void *)1746 static void CountCleanupRoutine(void*) {
1747 ++cleanup_counter;
1748 }
1749
PthreadCleanupTester()1750 static void PthreadCleanupTester() {
1751 pthread_cleanup_push(CountCleanupRoutine, nullptr);
1752 pthread_cleanup_push(CountCleanupRoutine, nullptr);
1753 pthread_cleanup_push(AbortCleanupRoutine, nullptr);
1754
1755 pthread_cleanup_pop(0); // Pop the abort without executing it.
1756 pthread_cleanup_pop(1); // Pop one count while executing it.
1757 ASSERT_EQ(1U, cleanup_counter);
1758 // Exit while the other count is still on the cleanup stack.
1759 pthread_exit(nullptr);
1760
1761 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1762 pthread_cleanup_pop(0);
1763 }
1764
PthreadCleanupStartRoutine(void *)1765 static void* PthreadCleanupStartRoutine(void*) {
1766 PthreadCleanupTester();
1767 return nullptr;
1768 }
1769
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)1770 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1771 pthread_t t;
1772 ASSERT_EQ(0, pthread_create(&t, nullptr, PthreadCleanupStartRoutine, nullptr));
1773 ASSERT_EQ(0, pthread_join(t, nullptr));
1774 ASSERT_EQ(2U, cleanup_counter);
1775 }
1776
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)1777 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1778 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1779 }
1780
TEST(pthread,pthread_mutexattr_gettype)1781 TEST(pthread, pthread_mutexattr_gettype) {
1782 pthread_mutexattr_t attr;
1783 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1784
1785 int attr_type;
1786
1787 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1788 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1789 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1790
1791 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1792 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1793 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1794
1795 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1796 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1797 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1798
1799 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1800 }
1801
TEST(pthread,pthread_mutexattr_protocol)1802 TEST(pthread, pthread_mutexattr_protocol) {
1803 pthread_mutexattr_t attr;
1804 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1805
1806 int protocol;
1807 ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
1808 ASSERT_EQ(PTHREAD_PRIO_NONE, protocol);
1809 for (size_t repeat = 0; repeat < 2; ++repeat) {
1810 for (int set_protocol : {PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT}) {
1811 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, set_protocol));
1812 ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
1813 ASSERT_EQ(protocol, set_protocol);
1814 }
1815 }
1816 }
1817
1818 struct PthreadMutex {
1819 pthread_mutex_t lock;
1820
PthreadMutexPthreadMutex1821 explicit PthreadMutex(int mutex_type, int protocol = PTHREAD_PRIO_NONE) {
1822 init(mutex_type, protocol);
1823 }
1824
~PthreadMutexPthreadMutex1825 ~PthreadMutex() {
1826 destroy();
1827 }
1828
1829 private:
initPthreadMutex1830 void init(int mutex_type, int protocol) {
1831 pthread_mutexattr_t attr;
1832 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1833 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1834 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, protocol));
1835 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1836 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1837 }
1838
destroyPthreadMutex1839 void destroy() {
1840 ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1841 }
1842
1843 DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1844 };
1845
UnlockFromAnotherThread(pthread_mutex_t * mutex)1846 static int UnlockFromAnotherThread(pthread_mutex_t* mutex) {
1847 pthread_t thread;
1848 pthread_create(&thread, nullptr, [](void* mutex_voidp) -> void* {
1849 pthread_mutex_t* mutex = static_cast<pthread_mutex_t*>(mutex_voidp);
1850 intptr_t result = pthread_mutex_unlock(mutex);
1851 return reinterpret_cast<void*>(result);
1852 }, mutex);
1853 void* result;
1854 EXPECT_EQ(0, pthread_join(thread, &result));
1855 return reinterpret_cast<intptr_t>(result);
1856 };
1857
TestPthreadMutexLockNormal(int protocol)1858 static void TestPthreadMutexLockNormal(int protocol) {
1859 PthreadMutex m(PTHREAD_MUTEX_NORMAL, protocol);
1860
1861 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1862 if (protocol == PTHREAD_PRIO_INHERIT) {
1863 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
1864 }
1865 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1866 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1867 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1868 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1869 }
1870
TestPthreadMutexLockErrorCheck(int protocol)1871 static void TestPthreadMutexLockErrorCheck(int protocol) {
1872 PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK, protocol);
1873
1874 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1875 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
1876 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1877 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1878 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1879 if (protocol == PTHREAD_PRIO_NONE) {
1880 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1881 } else {
1882 ASSERT_EQ(EDEADLK, pthread_mutex_trylock(&m.lock));
1883 }
1884 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1885 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1886 }
1887
TestPthreadMutexLockRecursive(int protocol)1888 static void TestPthreadMutexLockRecursive(int protocol) {
1889 PthreadMutex m(PTHREAD_MUTEX_RECURSIVE, protocol);
1890
1891 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1892 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
1893 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1894 ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
1895 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1896 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1897 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1898 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1899 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1900 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1901 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1902 }
1903
TEST(pthread,pthread_mutex_lock_NORMAL)1904 TEST(pthread, pthread_mutex_lock_NORMAL) {
1905 TestPthreadMutexLockNormal(PTHREAD_PRIO_NONE);
1906 }
1907
TEST(pthread,pthread_mutex_lock_ERRORCHECK)1908 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1909 TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_NONE);
1910 }
1911
TEST(pthread,pthread_mutex_lock_RECURSIVE)1912 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1913 TestPthreadMutexLockRecursive(PTHREAD_PRIO_NONE);
1914 }
1915
TEST(pthread,pthread_mutex_lock_pi)1916 TEST(pthread, pthread_mutex_lock_pi) {
1917 TestPthreadMutexLockNormal(PTHREAD_PRIO_INHERIT);
1918 TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_INHERIT);
1919 TestPthreadMutexLockRecursive(PTHREAD_PRIO_INHERIT);
1920 }
1921
TEST(pthread,pthread_mutex_pi_count_limit)1922 TEST(pthread, pthread_mutex_pi_count_limit) {
1923 #if defined(__BIONIC__) && !defined(__LP64__)
1924 // Bionic only supports 65536 pi mutexes in 32-bit programs.
1925 pthread_mutexattr_t attr;
1926 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1927 ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT));
1928 std::vector<pthread_mutex_t> mutexes(65536);
1929 // Test if we can use 65536 pi mutexes at the same time.
1930 // Run 2 times to check if freed pi mutexes can be recycled.
1931 for (int repeat = 0; repeat < 2; ++repeat) {
1932 for (auto& m : mutexes) {
1933 ASSERT_EQ(0, pthread_mutex_init(&m, &attr));
1934 }
1935 pthread_mutex_t m;
1936 ASSERT_EQ(ENOMEM, pthread_mutex_init(&m, &attr));
1937 for (auto& m : mutexes) {
1938 ASSERT_EQ(0, pthread_mutex_lock(&m));
1939 }
1940 for (auto& m : mutexes) {
1941 ASSERT_EQ(0, pthread_mutex_unlock(&m));
1942 }
1943 for (auto& m : mutexes) {
1944 ASSERT_EQ(0, pthread_mutex_destroy(&m));
1945 }
1946 }
1947 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1948 #else
1949 GTEST_SKIP() << "pi mutex count not limited to 64Ki";
1950 #endif
1951 }
1952
TEST(pthread,pthread_mutex_init_same_as_static_initializers)1953 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1954 pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1955 PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1956 ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1957 pthread_mutex_destroy(&lock_normal);
1958
1959 pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1960 PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1961 ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1962 pthread_mutex_destroy(&lock_errorcheck);
1963
1964 pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1965 PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1966 ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1967 ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1968 }
1969
1970 class MutexWakeupHelper {
1971 private:
1972 PthreadMutex m;
1973 enum Progress {
1974 LOCK_INITIALIZED,
1975 LOCK_WAITING,
1976 LOCK_RELEASED,
1977 LOCK_ACCESSED
1978 };
1979 std::atomic<Progress> progress;
1980 std::atomic<pid_t> tid;
1981
thread_fn(MutexWakeupHelper * helper)1982 static void thread_fn(MutexWakeupHelper* helper) {
1983 helper->tid = gettid();
1984 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1985 helper->progress = LOCK_WAITING;
1986
1987 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1988 ASSERT_EQ(LOCK_RELEASED, helper->progress);
1989 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1990
1991 helper->progress = LOCK_ACCESSED;
1992 }
1993
1994 public:
MutexWakeupHelper(int mutex_type)1995 explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1996 }
1997
test()1998 void test() {
1999 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2000 progress = LOCK_INITIALIZED;
2001 tid = 0;
2002
2003 pthread_t thread;
2004 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2005 reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
2006
2007 WaitUntilThreadSleep(tid);
2008 ASSERT_EQ(LOCK_WAITING, progress);
2009
2010 progress = LOCK_RELEASED;
2011 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2012
2013 ASSERT_EQ(0, pthread_join(thread, nullptr));
2014 ASSERT_EQ(LOCK_ACCESSED, progress);
2015 }
2016 };
2017
TEST(pthread,pthread_mutex_NORMAL_wakeup)2018 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
2019 MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
2020 helper.test();
2021 }
2022
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)2023 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
2024 MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
2025 helper.test();
2026 }
2027
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)2028 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
2029 MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
2030 helper.test();
2031 }
2032
GetThreadPriority(pid_t tid)2033 static int GetThreadPriority(pid_t tid) {
2034 // sched_getparam() returns the static priority of a thread, which can't reflect a thread's
2035 // priority after priority inheritance. So read /proc/<pid>/stat to get the dynamic priority.
2036 std::string filename = android::base::StringPrintf("/proc/%d/stat", tid);
2037 std::string content;
2038 int result = INT_MAX;
2039 if (!android::base::ReadFileToString(filename, &content)) {
2040 return result;
2041 }
2042 std::vector<std::string> strs = android::base::Split(content, " ");
2043 if (strs.size() < 18) {
2044 return result;
2045 }
2046 if (!android::base::ParseInt(strs[17], &result)) {
2047 return INT_MAX;
2048 }
2049 return result;
2050 }
2051
2052 class PIMutexWakeupHelper {
2053 private:
2054 PthreadMutex m;
2055 int protocol;
2056 enum Progress {
2057 LOCK_INITIALIZED,
2058 LOCK_CHILD_READY,
2059 LOCK_WAITING,
2060 LOCK_RELEASED,
2061 };
2062 std::atomic<Progress> progress;
2063 std::atomic<pid_t> main_tid;
2064 std::atomic<pid_t> child_tid;
2065 PthreadMutex start_thread_m;
2066
thread_fn(PIMutexWakeupHelper * helper)2067 static void thread_fn(PIMutexWakeupHelper* helper) {
2068 helper->child_tid = gettid();
2069 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
2070 ASSERT_EQ(0, setpriority(PRIO_PROCESS, gettid(), 1));
2071 ASSERT_EQ(21, GetThreadPriority(gettid()));
2072 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
2073 helper->progress = LOCK_CHILD_READY;
2074 ASSERT_EQ(0, pthread_mutex_lock(&helper->start_thread_m.lock));
2075
2076 ASSERT_EQ(0, pthread_mutex_unlock(&helper->start_thread_m.lock));
2077 WaitUntilThreadSleep(helper->main_tid);
2078 ASSERT_EQ(LOCK_WAITING, helper->progress);
2079
2080 if (helper->protocol == PTHREAD_PRIO_INHERIT) {
2081 ASSERT_EQ(20, GetThreadPriority(gettid()));
2082 } else {
2083 ASSERT_EQ(21, GetThreadPriority(gettid()));
2084 }
2085 helper->progress = LOCK_RELEASED;
2086 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
2087 }
2088
2089 public:
PIMutexWakeupHelper(int mutex_type,int protocol)2090 explicit PIMutexWakeupHelper(int mutex_type, int protocol)
2091 : m(mutex_type, protocol), protocol(protocol), start_thread_m(PTHREAD_MUTEX_NORMAL) {
2092 }
2093
test()2094 void test() {
2095 ASSERT_EQ(0, pthread_mutex_lock(&start_thread_m.lock));
2096 main_tid = gettid();
2097 ASSERT_EQ(20, GetThreadPriority(main_tid));
2098 progress = LOCK_INITIALIZED;
2099 child_tid = 0;
2100
2101 pthread_t thread;
2102 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2103 reinterpret_cast<void* (*)(void*)>(PIMutexWakeupHelper::thread_fn), this));
2104
2105 WaitUntilThreadSleep(child_tid);
2106 ASSERT_EQ(LOCK_CHILD_READY, progress);
2107 ASSERT_EQ(0, pthread_mutex_unlock(&start_thread_m.lock));
2108 progress = LOCK_WAITING;
2109 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
2110
2111 ASSERT_EQ(LOCK_RELEASED, progress);
2112 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2113 ASSERT_EQ(0, pthread_join(thread, nullptr));
2114 }
2115 };
2116
TEST(pthread,pthread_mutex_pi_wakeup)2117 TEST(pthread, pthread_mutex_pi_wakeup) {
2118 for (int type : {PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK}) {
2119 for (int protocol : {PTHREAD_PRIO_INHERIT}) {
2120 PIMutexWakeupHelper helper(type, protocol);
2121 helper.test();
2122 }
2123 }
2124 }
2125
TEST(pthread,pthread_mutex_owner_tid_limit)2126 TEST(pthread, pthread_mutex_owner_tid_limit) {
2127 #if defined(__BIONIC__) && !defined(__LP64__)
2128 FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
2129 ASSERT_TRUE(fp != nullptr);
2130 long pid_max;
2131 ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
2132 fclose(fp);
2133 // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
2134 ASSERT_LE(pid_max, 65536);
2135 #else
2136 GTEST_SKIP() << "pthread_mutex supports 32-bit tid";
2137 #endif
2138 }
2139
pthread_mutex_timedlock_helper(clockid_t clock,int (* lock_function)(pthread_mutex_t * __mutex,const timespec * __timeout))2140 static void pthread_mutex_timedlock_helper(clockid_t clock,
2141 int (*lock_function)(pthread_mutex_t* __mutex,
2142 const timespec* __timeout)) {
2143 pthread_mutex_t m;
2144 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
2145
2146 // If the mutex is already locked, pthread_mutex_timedlock should time out.
2147 ASSERT_EQ(0, pthread_mutex_lock(&m));
2148
2149 timespec ts;
2150 ASSERT_EQ(0, clock_gettime(clock, &ts));
2151 ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2152 ts.tv_nsec = -1;
2153 ASSERT_EQ(EINVAL, lock_function(&m, &ts));
2154 ts.tv_nsec = NS_PER_S;
2155 ASSERT_EQ(EINVAL, lock_function(&m, &ts));
2156 ts.tv_nsec = NS_PER_S - 1;
2157 ts.tv_sec = -1;
2158 ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
2159
2160 // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
2161 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2162
2163 ASSERT_EQ(0, clock_gettime(clock, &ts));
2164 ts.tv_sec += 1;
2165 ASSERT_EQ(0, lock_function(&m, &ts));
2166
2167 ASSERT_EQ(0, pthread_mutex_unlock(&m));
2168 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2169 }
2170
TEST(pthread,pthread_mutex_timedlock)2171 TEST(pthread, pthread_mutex_timedlock) {
2172 pthread_mutex_timedlock_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
2173 }
2174
TEST(pthread,pthread_mutex_timedlock_monotonic_np)2175 TEST(pthread, pthread_mutex_timedlock_monotonic_np) {
2176 #if defined(__BIONIC__)
2177 pthread_mutex_timedlock_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
2178 #else // __BIONIC__
2179 GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
2180 #endif // __BIONIC__
2181 }
2182
pthread_mutex_timedlock_pi_helper(clockid_t clock,int (* lock_function)(pthread_mutex_t * __mutex,const timespec * __timeout))2183 static void pthread_mutex_timedlock_pi_helper(clockid_t clock,
2184 int (*lock_function)(pthread_mutex_t* __mutex,
2185 const timespec* __timeout)) {
2186 PthreadMutex m(PTHREAD_MUTEX_NORMAL, PTHREAD_PRIO_INHERIT);
2187
2188 timespec ts;
2189 clock_gettime(clock, &ts);
2190 ts.tv_sec += 1;
2191 ASSERT_EQ(0, lock_function(&m.lock, &ts));
2192
2193 struct ThreadArgs {
2194 clockid_t clock;
2195 int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout);
2196 PthreadMutex& m;
2197 };
2198
2199 ThreadArgs thread_args = {
2200 .clock = clock,
2201 .lock_function = lock_function,
2202 .m = m,
2203 };
2204
2205 auto ThreadFn = [](void* arg) -> void* {
2206 auto args = static_cast<ThreadArgs*>(arg);
2207 timespec ts;
2208 clock_gettime(args->clock, &ts);
2209 ts.tv_sec += 1;
2210 intptr_t result = args->lock_function(&args->m.lock, &ts);
2211 return reinterpret_cast<void*>(result);
2212 };
2213
2214 pthread_t thread;
2215 ASSERT_EQ(0, pthread_create(&thread, nullptr, ThreadFn, &thread_args));
2216 void* result;
2217 ASSERT_EQ(0, pthread_join(thread, &result));
2218 ASSERT_EQ(ETIMEDOUT, reinterpret_cast<intptr_t>(result));
2219 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
2220 }
2221
TEST(pthread,pthread_mutex_timedlock_pi)2222 TEST(pthread, pthread_mutex_timedlock_pi) {
2223 pthread_mutex_timedlock_pi_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
2224 }
2225
TEST(pthread,pthread_mutex_timedlock_monotonic_np_pi)2226 TEST(pthread, pthread_mutex_timedlock_monotonic_np_pi) {
2227 #if defined(__BIONIC__)
2228 pthread_mutex_timedlock_pi_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
2229 #else // __BIONIC__
2230 GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
2231 #endif // __BIONIC__
2232 }
2233
TEST(pthread,pthread_mutex_using_destroyed_mutex)2234 TEST(pthread, pthread_mutex_using_destroyed_mutex) {
2235 #if defined(__BIONIC__)
2236 pthread_mutex_t m;
2237 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
2238 ASSERT_EQ(0, pthread_mutex_destroy(&m));
2239 ASSERT_EXIT(pthread_mutex_lock(&m), ::testing::KilledBySignal(SIGABRT),
2240 "pthread_mutex_lock called on a destroyed mutex");
2241 ASSERT_EXIT(pthread_mutex_unlock(&m), ::testing::KilledBySignal(SIGABRT),
2242 "pthread_mutex_unlock called on a destroyed mutex");
2243 ASSERT_EXIT(pthread_mutex_trylock(&m), ::testing::KilledBySignal(SIGABRT),
2244 "pthread_mutex_trylock called on a destroyed mutex");
2245 timespec ts;
2246 ASSERT_EXIT(pthread_mutex_timedlock(&m, &ts), ::testing::KilledBySignal(SIGABRT),
2247 "pthread_mutex_timedlock called on a destroyed mutex");
2248 ASSERT_EXIT(pthread_mutex_timedlock_monotonic_np(&m, &ts), ::testing::KilledBySignal(SIGABRT),
2249 "pthread_mutex_timedlock_monotonic_np called on a destroyed mutex");
2250 ASSERT_EXIT(pthread_mutex_destroy(&m), ::testing::KilledBySignal(SIGABRT),
2251 "pthread_mutex_destroy called on a destroyed mutex");
2252 #else
2253 GTEST_SKIP() << "bionic-only test";
2254 #endif
2255 }
2256
2257 class StrictAlignmentAllocator {
2258 public:
allocate(size_t size,size_t alignment)2259 void* allocate(size_t size, size_t alignment) {
2260 char* p = new char[size + alignment * 2];
2261 allocated_array.push_back(p);
2262 while (!is_strict_aligned(p, alignment)) {
2263 ++p;
2264 }
2265 return p;
2266 }
2267
~StrictAlignmentAllocator()2268 ~StrictAlignmentAllocator() {
2269 for (const auto& p : allocated_array) {
2270 delete[] p;
2271 }
2272 }
2273
2274 private:
is_strict_aligned(char * p,size_t alignment)2275 bool is_strict_aligned(char* p, size_t alignment) {
2276 return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
2277 }
2278
2279 std::vector<char*> allocated_array;
2280 };
2281
TEST(pthread,pthread_types_allow_four_bytes_alignment)2282 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
2283 #if defined(__BIONIC__)
2284 // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
2285 StrictAlignmentAllocator allocator;
2286 pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
2287 allocator.allocate(sizeof(pthread_mutex_t), 4));
2288 ASSERT_EQ(0, pthread_mutex_init(mutex, nullptr));
2289 ASSERT_EQ(0, pthread_mutex_lock(mutex));
2290 ASSERT_EQ(0, pthread_mutex_unlock(mutex));
2291 ASSERT_EQ(0, pthread_mutex_destroy(mutex));
2292
2293 pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
2294 allocator.allocate(sizeof(pthread_cond_t), 4));
2295 ASSERT_EQ(0, pthread_cond_init(cond, nullptr));
2296 ASSERT_EQ(0, pthread_cond_signal(cond));
2297 ASSERT_EQ(0, pthread_cond_broadcast(cond));
2298 ASSERT_EQ(0, pthread_cond_destroy(cond));
2299
2300 pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
2301 allocator.allocate(sizeof(pthread_rwlock_t), 4));
2302 ASSERT_EQ(0, pthread_rwlock_init(rwlock, nullptr));
2303 ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
2304 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
2305 ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
2306 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
2307 ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
2308
2309 #else
2310 GTEST_SKIP() << "bionic-only test";
2311 #endif
2312 }
2313
TEST(pthread,pthread_mutex_lock_null_32)2314 TEST(pthread, pthread_mutex_lock_null_32) {
2315 #if defined(__BIONIC__) && !defined(__LP64__)
2316 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
2317 // EINVAL in that case: http://b/19995172.
2318 //
2319 // We decorate the public defintion with _Nonnull so that people recompiling
2320 // their code with get a warning and might fix their bug, but need to pass
2321 // NULL here to test that we remain compatible.
2322 pthread_mutex_t* null_value = nullptr;
2323 ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value));
2324 #else
2325 GTEST_SKIP() << "32-bit bionic-only test";
2326 #endif
2327 }
2328
TEST(pthread,pthread_mutex_unlock_null_32)2329 TEST(pthread, pthread_mutex_unlock_null_32) {
2330 #if defined(__BIONIC__) && !defined(__LP64__)
2331 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
2332 // EINVAL in that case: http://b/19995172.
2333 //
2334 // We decorate the public defintion with _Nonnull so that people recompiling
2335 // their code with get a warning and might fix their bug, but need to pass
2336 // NULL here to test that we remain compatible.
2337 pthread_mutex_t* null_value = nullptr;
2338 ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value));
2339 #else
2340 GTEST_SKIP() << "32-bit bionic-only test";
2341 #endif
2342 }
2343
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)2344 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
2345 #if defined(__BIONIC__) && defined(__LP64__)
2346 pthread_mutex_t* null_value = nullptr;
2347 ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
2348 #else
2349 GTEST_SKIP() << "64-bit bionic-only test";
2350 #endif
2351 }
2352
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)2353 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
2354 #if defined(__BIONIC__) && defined(__LP64__)
2355 pthread_mutex_t* null_value = nullptr;
2356 ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
2357 #else
2358 GTEST_SKIP() << "64-bit bionic-only test";
2359 #endif
2360 }
2361
2362 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
2363
2364 static volatile bool signal_handler_on_altstack_done;
2365
2366 __attribute__((__noinline__))
signal_handler_backtrace()2367 static void signal_handler_backtrace() {
2368 // Check if we have enough stack space for unwinding.
2369 int count = 0;
2370 _Unwind_Backtrace(FrameCounter, &count);
2371 ASSERT_GT(count, 0);
2372 }
2373
2374 __attribute__((__noinline__))
signal_handler_logging()2375 static void signal_handler_logging() {
2376 // Check if we have enough stack space for logging.
2377 std::string s(2048, '*');
2378 GTEST_LOG_(INFO) << s;
2379 signal_handler_on_altstack_done = true;
2380 }
2381
2382 __attribute__((__noinline__))
signal_handler_snprintf()2383 static void signal_handler_snprintf() {
2384 // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra.
2385 char buf[PATH_MAX + 2048];
2386 ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0);
2387 }
2388
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)2389 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
2390 ASSERT_EQ(SIGUSR1, signo);
2391 signal_handler_backtrace();
2392 signal_handler_logging();
2393 signal_handler_snprintf();
2394 }
2395
TEST(pthread,big_enough_signal_stack)2396 TEST(pthread, big_enough_signal_stack) {
2397 signal_handler_on_altstack_done = false;
2398 ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
2399 kill(getpid(), SIGUSR1);
2400 ASSERT_TRUE(signal_handler_on_altstack_done);
2401 }
2402
TEST(pthread,pthread_barrierattr_smoke)2403 TEST(pthread, pthread_barrierattr_smoke) {
2404 pthread_barrierattr_t attr;
2405 ASSERT_EQ(0, pthread_barrierattr_init(&attr));
2406 int pshared;
2407 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
2408 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
2409 ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
2410 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
2411 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
2412 ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
2413 }
2414
2415 struct BarrierTestHelperData {
2416 size_t thread_count;
2417 pthread_barrier_t barrier;
2418 std::atomic<int> finished_mask;
2419 std::atomic<int> serial_thread_count;
2420 size_t iteration_count;
2421 std::atomic<size_t> finished_iteration_count;
2422
BarrierTestHelperDataBarrierTestHelperData2423 BarrierTestHelperData(size_t thread_count, size_t iteration_count)
2424 : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
2425 iteration_count(iteration_count), finished_iteration_count(0) {
2426 }
2427 };
2428
2429 struct BarrierTestHelperArg {
2430 int id;
2431 BarrierTestHelperData* data;
2432 };
2433
BarrierTestHelper(BarrierTestHelperArg * arg)2434 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
2435 for (size_t i = 0; i < arg->data->iteration_count; ++i) {
2436 int result = pthread_barrier_wait(&arg->data->barrier);
2437 if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
2438 arg->data->serial_thread_count++;
2439 } else {
2440 ASSERT_EQ(0, result);
2441 }
2442 int mask = arg->data->finished_mask.fetch_or(1 << arg->id);
2443 mask |= 1 << arg->id;
2444 if (mask == ((1 << arg->data->thread_count) - 1)) {
2445 ASSERT_EQ(1, arg->data->serial_thread_count);
2446 arg->data->finished_iteration_count++;
2447 arg->data->finished_mask = 0;
2448 arg->data->serial_thread_count = 0;
2449 }
2450 }
2451 }
2452
TEST(pthread,pthread_barrier_smoke)2453 TEST(pthread, pthread_barrier_smoke) {
2454 const size_t BARRIER_ITERATION_COUNT = 10;
2455 const size_t BARRIER_THREAD_COUNT = 10;
2456 BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
2457 ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
2458 std::vector<pthread_t> threads(data.thread_count);
2459 std::vector<BarrierTestHelperArg> args(threads.size());
2460 for (size_t i = 0; i < threads.size(); ++i) {
2461 args[i].id = i;
2462 args[i].data = &data;
2463 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2464 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
2465 }
2466 for (size_t i = 0; i < threads.size(); ++i) {
2467 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2468 }
2469 ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
2470 ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
2471 }
2472
2473 struct BarrierDestroyTestArg {
2474 std::atomic<int> tid;
2475 pthread_barrier_t* barrier;
2476 };
2477
BarrierDestroyTestHelper(BarrierDestroyTestArg * arg)2478 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
2479 arg->tid = gettid();
2480 ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
2481 }
2482
TEST(pthread,pthread_barrier_destroy)2483 TEST(pthread, pthread_barrier_destroy) {
2484 pthread_barrier_t barrier;
2485 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
2486 pthread_t thread;
2487 BarrierDestroyTestArg arg;
2488 arg.tid = 0;
2489 arg.barrier = &barrier;
2490 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2491 reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
2492 WaitUntilThreadSleep(arg.tid);
2493 ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
2494 ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
2495 // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
2496 ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
2497 ASSERT_EQ(0, pthread_join(thread, nullptr));
2498 #if defined(__BIONIC__)
2499 ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
2500 #endif
2501 }
2502
2503 struct BarrierOrderingTestHelperArg {
2504 pthread_barrier_t* barrier;
2505 size_t* array;
2506 size_t array_length;
2507 size_t id;
2508 };
2509
BarrierOrderingTestHelper(BarrierOrderingTestHelperArg * arg)2510 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
2511 const size_t ITERATION_COUNT = 10000;
2512 for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
2513 arg->array[arg->id] = i;
2514 int result = pthread_barrier_wait(arg->barrier);
2515 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2516 for (size_t j = 0; j < arg->array_length; ++j) {
2517 ASSERT_EQ(i, arg->array[j]);
2518 }
2519 result = pthread_barrier_wait(arg->barrier);
2520 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2521 }
2522 }
2523
TEST(pthread,pthread_barrier_check_ordering)2524 TEST(pthread, pthread_barrier_check_ordering) {
2525 const size_t THREAD_COUNT = 4;
2526 pthread_barrier_t barrier;
2527 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
2528 size_t array[THREAD_COUNT];
2529 std::vector<pthread_t> threads(THREAD_COUNT);
2530 std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
2531 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2532 args[i].barrier = &barrier;
2533 args[i].array = array;
2534 args[i].array_length = THREAD_COUNT;
2535 args[i].id = i;
2536 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2537 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
2538 &args[i]));
2539 }
2540 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2541 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2542 }
2543 }
2544
TEST(pthread,pthread_barrier_init_zero_count)2545 TEST(pthread, pthread_barrier_init_zero_count) {
2546 pthread_barrier_t barrier;
2547 ASSERT_EQ(EINVAL, pthread_barrier_init(&barrier, nullptr, 0));
2548 }
2549
TEST(pthread,pthread_spinlock_smoke)2550 TEST(pthread, pthread_spinlock_smoke) {
2551 pthread_spinlock_t lock;
2552 ASSERT_EQ(0, pthread_spin_init(&lock, 0));
2553 ASSERT_EQ(0, pthread_spin_trylock(&lock));
2554 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2555 ASSERT_EQ(0, pthread_spin_lock(&lock));
2556 ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
2557 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2558 ASSERT_EQ(0, pthread_spin_destroy(&lock));
2559 }
2560
TEST(pthread,pthread_attr_getdetachstate__pthread_attr_setdetachstate)2561 TEST(pthread, pthread_attr_getdetachstate__pthread_attr_setdetachstate) {
2562 pthread_attr_t attr;
2563 ASSERT_EQ(0, pthread_attr_init(&attr));
2564
2565 int state;
2566 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2567 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2568 ASSERT_EQ(PTHREAD_CREATE_DETACHED, state);
2569
2570 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
2571 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2572 ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
2573
2574 ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123));
2575 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
2576 ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
2577 }
2578
TEST(pthread,pthread_create__mmap_failures)2579 TEST(pthread, pthread_create__mmap_failures) {
2580 pthread_attr_t attr;
2581 ASSERT_EQ(0, pthread_attr_init(&attr));
2582 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2583
2584 const auto kPageSize = sysconf(_SC_PAGE_SIZE);
2585
2586 // Use up all the VMAs. By default this is 64Ki (though some will already be in use).
2587 std::vector<void*> pages;
2588 pages.reserve(64 * 1024);
2589 int prot = PROT_NONE;
2590 while (true) {
2591 void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0);
2592 if (page == MAP_FAILED) break;
2593 pages.push_back(page);
2594 prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE;
2595 }
2596
2597 // Try creating threads, freeing up a page each time we fail.
2598 size_t EAGAIN_count = 0;
2599 size_t i = 0;
2600 for (; i < pages.size(); ++i) {
2601 pthread_t t;
2602 int status = pthread_create(&t, &attr, IdFn, nullptr);
2603 if (status != EAGAIN) break;
2604 ++EAGAIN_count;
2605 ASSERT_EQ(0, munmap(pages[i], kPageSize));
2606 }
2607
2608 // Creating a thread uses at least three VMAs: the combined stack and TLS, and a guard on each
2609 // side. So we should have seen at least three failures.
2610 ASSERT_GE(EAGAIN_count, 3U);
2611
2612 for (; i < pages.size(); ++i) {
2613 ASSERT_EQ(0, munmap(pages[i], kPageSize));
2614 }
2615 }
2616
TEST(pthread,pthread_setschedparam)2617 TEST(pthread, pthread_setschedparam) {
2618 sched_param p = { .sched_priority = INT_MIN };
2619 ASSERT_EQ(EINVAL, pthread_setschedparam(pthread_self(), INT_MIN, &p));
2620 }
2621
TEST(pthread,pthread_setschedprio)2622 TEST(pthread, pthread_setschedprio) {
2623 ASSERT_EQ(EINVAL, pthread_setschedprio(pthread_self(), INT_MIN));
2624 }
2625
TEST(pthread,pthread_attr_getinheritsched__pthread_attr_setinheritsched)2626 TEST(pthread, pthread_attr_getinheritsched__pthread_attr_setinheritsched) {
2627 pthread_attr_t attr;
2628 ASSERT_EQ(0, pthread_attr_init(&attr));
2629
2630 int state;
2631 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2632 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2633 ASSERT_EQ(PTHREAD_INHERIT_SCHED, state);
2634
2635 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2636 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2637 ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
2638
2639 ASSERT_EQ(EINVAL, pthread_attr_setinheritsched(&attr, 123));
2640 ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
2641 ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
2642 }
2643
TEST(pthread,pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED)2644 TEST(pthread, pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED) {
2645 pthread_attr_t attr;
2646 ASSERT_EQ(0, pthread_attr_init(&attr));
2647
2648 // If we set invalid scheduling attributes but choose to inherit, everything's fine...
2649 sched_param param = { .sched_priority = sched_get_priority_max(SCHED_FIFO) + 1 };
2650 ASSERT_EQ(0, pthread_attr_setschedparam(&attr, ¶m));
2651 ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_FIFO));
2652 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2653
2654 pthread_t t;
2655 ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, nullptr));
2656 ASSERT_EQ(0, pthread_join(t, nullptr));
2657
2658 #if defined(__LP64__)
2659 // If we ask to use them, though, we'll see a failure...
2660 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2661 ASSERT_EQ(EINVAL, pthread_create(&t, &attr, IdFn, nullptr));
2662 #else
2663 // For backwards compatibility with broken apps, we just ignore failures
2664 // to set scheduler attributes on LP32.
2665 #endif
2666 }
2667
TEST(pthread,pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect)2668 TEST(pthread, pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect) {
2669 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2670 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m);
2671 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2672 ASSERT_EQ(0, rc);
2673
2674 pthread_attr_t attr;
2675 ASSERT_EQ(0, pthread_attr_init(&attr));
2676 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2677
2678 SpinFunctionHelper spin_helper;
2679 pthread_t t;
2680 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2681 int actual_policy;
2682 sched_param actual_param;
2683 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2684 ASSERT_EQ(SCHED_FIFO, actual_policy);
2685 spin_helper.UnSpin();
2686 ASSERT_EQ(0, pthread_join(t, nullptr));
2687 }
2688
TEST(pthread,pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect)2689 TEST(pthread, pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect) {
2690 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2691 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m);
2692 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2693 ASSERT_EQ(0, rc);
2694
2695 pthread_attr_t attr;
2696 ASSERT_EQ(0, pthread_attr_init(&attr));
2697 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
2698 ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_OTHER));
2699
2700 SpinFunctionHelper spin_helper;
2701 pthread_t t;
2702 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2703 int actual_policy;
2704 sched_param actual_param;
2705 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2706 ASSERT_EQ(SCHED_OTHER, actual_policy);
2707 spin_helper.UnSpin();
2708 ASSERT_EQ(0, pthread_join(t, nullptr));
2709 }
2710
TEST(pthread,pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK)2711 TEST(pthread, pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK) {
2712 sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
2713 int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO | SCHED_RESET_ON_FORK, ¶m);
2714 if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
2715 ASSERT_EQ(0, rc);
2716
2717 pthread_attr_t attr;
2718 ASSERT_EQ(0, pthread_attr_init(&attr));
2719 ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
2720
2721 SpinFunctionHelper spin_helper;
2722 pthread_t t;
2723 ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
2724 int actual_policy;
2725 sched_param actual_param;
2726 ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
2727 ASSERT_EQ(SCHED_FIFO | SCHED_RESET_ON_FORK, actual_policy);
2728 spin_helper.UnSpin();
2729 ASSERT_EQ(0, pthread_join(t, nullptr));
2730 }
2731