1# Copyright 2017 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the 'License'); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an 'AS IS' BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Tests for python single_image_random_dot_stereograms_ops.""" 16 17from __future__ import absolute_import 18from __future__ import division 19from __future__ import print_function 20 21from tensorflow.contrib.image.python.ops.single_image_random_dot_stereograms \ 22 import single_image_random_dot_stereograms 23from tensorflow.python.framework import constant_op 24from tensorflow.python.framework import test_util 25from tensorflow.python.platform import googletest 26 27class SingleImageRandomDotStereogramsTest(test_util.TensorFlowTestCase): 28 29 def test_shape_function_default(self): 30 """ 31 NOTE: The output_image_shape is [X, Y, C] 32 while the output data is [Y, X, C] (or [H, W, C]). 33 As a result, by default the output_image_shape has the value 34 of [1024, 768, 1], but the output data will be [768, 1024, 1]. 35 """ 36 x_np = [[1, 2, 3, 3, 2, 1], 37 [1, 2, 3, 4, 5, 2], 38 [1, 2, 3, 4, 5, 3], 39 [1, 2, 3, 4, 5, 4], 40 [6, 5, 4, 4, 5, 5]] 41 x_tf = constant_op.constant(x_np) 42 # By default [1024, 768, 1] => [768, 1024, 1]. 43 sirds_1 = single_image_random_dot_stereograms( 44 x_tf, 45 convergence_dots_size=8, 46 number_colors=256, 47 normalize=True) 48 shape_1 = sirds_1.get_shape().as_list() 49 self.assertEqual(shape_1, [768, 1024, 1]) 50 with self.cached_session(): 51 r_tf_1 = sirds_1.eval() 52 self.assertAllEqual(shape_1, r_tf_1.shape) 53 54 # If color > 256 then [1024, 768, 3] => [768, 1024, 3]. 55 sirds_2 = single_image_random_dot_stereograms( 56 x_tf, 57 convergence_dots_size=8, 58 number_colors=512, 59 normalize=True) 60 shape_2 = sirds_2.get_shape().as_list() 61 self.assertEqual(shape_2, [768, 1024, 3]) 62 with self.cached_session(): 63 r_tf_2 = sirds_2.eval() 64 self.assertAllEqual(shape_2, r_tf_2.shape) 65 66 # If explicitly set output_image_shape to [1200, 800, 1], 67 # then the output data should be [800, 1200, 1]. 68 sirds_3 = single_image_random_dot_stereograms( 69 x_tf, 70 convergence_dots_size=8, 71 number_colors=256, 72 normalize=True, 73 output_image_shape=[1200, 800, 1]) 74 shape_3 = sirds_3.get_shape().as_list() 75 self.assertEqual(shape_3, [800, 1200, 1]) 76 with self.cached_session(): 77 r_tf_3 = sirds_3.eval() 78 self.assertAllEqual(shape_3, r_tf_3.shape) 79 80 81if __name__ == '__main__': 82 googletest.main() 83