• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Multi-output tests."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21import random
22
23import numpy as np
24
25from tensorflow.contrib.learn.python import learn
26from tensorflow.contrib.learn.python.learn.estimators._sklearn import mean_squared_error
27from tensorflow.python.platform import test
28
29
30class MultiOutputTest(test.TestCase):
31  """Multi-output tests."""
32
33  def testMultiRegression(self):
34    random.seed(42)
35    rng = np.random.RandomState(1)
36    x = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
37    y = np.array([np.pi * np.sin(x).ravel(), np.pi * np.cos(x).ravel()]).T
38    regressor = learn.LinearRegressor(
39        feature_columns=learn.infer_real_valued_columns_from_input(x),
40        label_dimension=2)
41    regressor.fit(x, y, steps=100)
42    score = mean_squared_error(np.array(list(regressor.predict_scores(x))), y)
43    self.assertLess(score, 10, "Failed with score = {0}".format(score))
44
45
46if __name__ == "__main__":
47  test.main()
48