1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/sha.h>
58
59 #include <string.h>
60
61 #include <openssl/mem.h>
62
63 #include "internal.h"
64 #include "../../internal.h"
65
66
67 // The 32-bit hash algorithms share a common byte-order neutral collector and
68 // padding function implementations that operate on unaligned data,
69 // ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
70 // this writing, so there is no need for a common collector/padding
71 // implementation yet.
72
SHA384_Init(SHA512_CTX * sha)73 int SHA384_Init(SHA512_CTX *sha) {
74 sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
75 sha->h[1] = UINT64_C(0x629a292a367cd507);
76 sha->h[2] = UINT64_C(0x9159015a3070dd17);
77 sha->h[3] = UINT64_C(0x152fecd8f70e5939);
78 sha->h[4] = UINT64_C(0x67332667ffc00b31);
79 sha->h[5] = UINT64_C(0x8eb44a8768581511);
80 sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
81 sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
82
83 sha->Nl = 0;
84 sha->Nh = 0;
85 sha->num = 0;
86 sha->md_len = SHA384_DIGEST_LENGTH;
87 return 1;
88 }
89
90
SHA512_Init(SHA512_CTX * sha)91 int SHA512_Init(SHA512_CTX *sha) {
92 sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
93 sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
94 sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
95 sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
96 sha->h[4] = UINT64_C(0x510e527fade682d1);
97 sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
98 sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
99 sha->h[7] = UINT64_C(0x5be0cd19137e2179);
100
101 sha->Nl = 0;
102 sha->Nh = 0;
103 sha->num = 0;
104 sha->md_len = SHA512_DIGEST_LENGTH;
105 return 1;
106 }
107
SHA384(const uint8_t * data,size_t len,uint8_t * out)108 uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
109 SHA512_CTX ctx;
110 SHA384_Init(&ctx);
111 SHA384_Update(&ctx, data, len);
112 SHA384_Final(out, &ctx);
113 OPENSSL_cleanse(&ctx, sizeof(ctx));
114 return out;
115 }
116
SHA512(const uint8_t * data,size_t len,uint8_t * out)117 uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
118 SHA512_CTX ctx;
119 SHA512_Init(&ctx);
120 SHA512_Update(&ctx, data, len);
121 SHA512_Final(out, &ctx);
122 OPENSSL_cleanse(&ctx, sizeof(ctx));
123 return out;
124 }
125
126 #if !defined(SHA512_ASM)
127 static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
128 size_t num_blocks);
129 #endif
130
131
SHA384_Final(uint8_t * md,SHA512_CTX * sha)132 int SHA384_Final(uint8_t *md, SHA512_CTX *sha) {
133 return SHA512_Final(md, sha);
134 }
135
SHA384_Update(SHA512_CTX * sha,const void * data,size_t len)136 int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
137 return SHA512_Update(sha, data, len);
138 }
139
SHA512_Transform(SHA512_CTX * c,const uint8_t * block)140 void SHA512_Transform(SHA512_CTX *c, const uint8_t *block) {
141 sha512_block_data_order(c->h, block, 1);
142 }
143
SHA512_Update(SHA512_CTX * c,const void * in_data,size_t len)144 int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
145 uint64_t l;
146 uint8_t *p = c->p;
147 const uint8_t *data = in_data;
148
149 if (len == 0) {
150 return 1;
151 }
152
153 l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
154 if (l < c->Nl) {
155 c->Nh++;
156 }
157 if (sizeof(len) >= 8) {
158 c->Nh += (((uint64_t)len) >> 61);
159 }
160 c->Nl = l;
161
162 if (c->num != 0) {
163 size_t n = sizeof(c->p) - c->num;
164
165 if (len < n) {
166 OPENSSL_memcpy(p + c->num, data, len);
167 c->num += (unsigned int)len;
168 return 1;
169 } else {
170 OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
171 len -= n;
172 data += n;
173 sha512_block_data_order(c->h, p, 1);
174 }
175 }
176
177 if (len >= sizeof(c->p)) {
178 sha512_block_data_order(c->h, data, len / sizeof(c->p));
179 data += len;
180 len %= sizeof(c->p);
181 data -= len;
182 }
183
184 if (len != 0) {
185 OPENSSL_memcpy(p, data, len);
186 c->num = (int)len;
187 }
188
189 return 1;
190 }
191
SHA512_Final(uint8_t * md,SHA512_CTX * sha)192 int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
193 uint8_t *p = sha->p;
194 size_t n = sha->num;
195
196 p[n] = 0x80; // There always is a room for one
197 n++;
198 if (n > (sizeof(sha->p) - 16)) {
199 OPENSSL_memset(p + n, 0, sizeof(sha->p) - n);
200 n = 0;
201 sha512_block_data_order(sha->h, p, 1);
202 }
203
204 OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n);
205 p[sizeof(sha->p) - 1] = (uint8_t)(sha->Nl);
206 p[sizeof(sha->p) - 2] = (uint8_t)(sha->Nl >> 8);
207 p[sizeof(sha->p) - 3] = (uint8_t)(sha->Nl >> 16);
208 p[sizeof(sha->p) - 4] = (uint8_t)(sha->Nl >> 24);
209 p[sizeof(sha->p) - 5] = (uint8_t)(sha->Nl >> 32);
210 p[sizeof(sha->p) - 6] = (uint8_t)(sha->Nl >> 40);
211 p[sizeof(sha->p) - 7] = (uint8_t)(sha->Nl >> 48);
212 p[sizeof(sha->p) - 8] = (uint8_t)(sha->Nl >> 56);
213 p[sizeof(sha->p) - 9] = (uint8_t)(sha->Nh);
214 p[sizeof(sha->p) - 10] = (uint8_t)(sha->Nh >> 8);
215 p[sizeof(sha->p) - 11] = (uint8_t)(sha->Nh >> 16);
216 p[sizeof(sha->p) - 12] = (uint8_t)(sha->Nh >> 24);
217 p[sizeof(sha->p) - 13] = (uint8_t)(sha->Nh >> 32);
218 p[sizeof(sha->p) - 14] = (uint8_t)(sha->Nh >> 40);
219 p[sizeof(sha->p) - 15] = (uint8_t)(sha->Nh >> 48);
220 p[sizeof(sha->p) - 16] = (uint8_t)(sha->Nh >> 56);
221
222 sha512_block_data_order(sha->h, p, 1);
223
224 if (md == NULL) {
225 // TODO(davidben): This NULL check is absent in other low-level hash 'final'
226 // functions and is one of the few places one can fail.
227 return 0;
228 }
229
230 switch (sha->md_len) {
231 // Let compiler decide if it's appropriate to unroll...
232 case SHA384_DIGEST_LENGTH:
233 for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
234 uint64_t t = sha->h[n];
235
236 *(md++) = (uint8_t)(t >> 56);
237 *(md++) = (uint8_t)(t >> 48);
238 *(md++) = (uint8_t)(t >> 40);
239 *(md++) = (uint8_t)(t >> 32);
240 *(md++) = (uint8_t)(t >> 24);
241 *(md++) = (uint8_t)(t >> 16);
242 *(md++) = (uint8_t)(t >> 8);
243 *(md++) = (uint8_t)(t);
244 }
245 break;
246 case SHA512_DIGEST_LENGTH:
247 for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
248 uint64_t t = sha->h[n];
249
250 *(md++) = (uint8_t)(t >> 56);
251 *(md++) = (uint8_t)(t >> 48);
252 *(md++) = (uint8_t)(t >> 40);
253 *(md++) = (uint8_t)(t >> 32);
254 *(md++) = (uint8_t)(t >> 24);
255 *(md++) = (uint8_t)(t >> 16);
256 *(md++) = (uint8_t)(t >> 8);
257 *(md++) = (uint8_t)(t);
258 }
259 break;
260 // ... as well as make sure md_len is not abused.
261 default:
262 // TODO(davidben): This bad |md_len| case is one of the few places a
263 // low-level hash 'final' function can fail. This should never happen.
264 return 0;
265 }
266
267 return 1;
268 }
269
270 #ifndef SHA512_ASM
271 static const uint64_t K512[80] = {
272 UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
273 UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
274 UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
275 UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
276 UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
277 UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
278 UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
279 UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
280 UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
281 UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
282 UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
283 UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
284 UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
285 UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
286 UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
287 UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
288 UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
289 UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
290 UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
291 UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
292 UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
293 UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
294 UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
295 UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
296 UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
297 UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
298 UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
299 UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
300 UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
301 UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
302 UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
303 UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
304 UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
305 UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
306 UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
307 UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
308 UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
309 UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
310 UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
311 UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
312 };
313
314 #if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
315 #if defined(__x86_64) || defined(__x86_64__)
316 #define ROTR(a, n) \
317 ({ \
318 uint64_t ret; \
319 __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
320 ret; \
321 })
322 #elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
323 #define ROTR(a, n) \
324 ({ \
325 uint64_t ret; \
326 __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \
327 ret; \
328 })
329 #elif defined(__aarch64__)
330 #define ROTR(a, n) \
331 ({ \
332 uint64_t ret; \
333 __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \
334 ret; \
335 })
336 #endif
337 #elif defined(_MSC_VER) && defined(_WIN64)
338 #pragma intrinsic(_rotr64)
339 #define ROTR(a, n) _rotr64((a), n)
340 #endif
341
342 #ifndef ROTR
343 #define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
344 #endif
345
load_u64_be(const void * ptr)346 static inline uint64_t load_u64_be(const void *ptr) {
347 uint64_t ret;
348 OPENSSL_memcpy(&ret, ptr, sizeof(ret));
349 return CRYPTO_bswap8(ret);
350 }
351
352 #define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
353 #define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
354 #define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
355 #define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
356
357 #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
358 #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
359
360
361 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
362 // This code should give better results on 32-bit CPU with less than
363 // ~24 registers, both size and performance wise...
sha512_block_data_order(uint64_t * state,const uint8_t * in,size_t num)364 static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
365 size_t num) {
366 uint64_t A, E, T;
367 uint64_t X[9 + 80], *F;
368 int i;
369
370 while (num--) {
371 F = X + 80;
372 A = state[0];
373 F[1] = state[1];
374 F[2] = state[2];
375 F[3] = state[3];
376 E = state[4];
377 F[5] = state[5];
378 F[6] = state[6];
379 F[7] = state[7];
380
381 for (i = 0; i < 16; i++, F--) {
382 T = load_u64_be(in + i * 8);
383 F[0] = A;
384 F[4] = E;
385 F[8] = T;
386 T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
387 E = F[3] + T;
388 A = T + Sigma0(A) + Maj(A, F[1], F[2]);
389 }
390
391 for (; i < 80; i++, F--) {
392 T = sigma0(F[8 + 16 - 1]);
393 T += sigma1(F[8 + 16 - 14]);
394 T += F[8 + 16] + F[8 + 16 - 9];
395
396 F[0] = A;
397 F[4] = E;
398 F[8] = T;
399 T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
400 E = F[3] + T;
401 A = T + Sigma0(A) + Maj(A, F[1], F[2]);
402 }
403
404 state[0] += A;
405 state[1] += F[1];
406 state[2] += F[2];
407 state[3] += F[3];
408 state[4] += E;
409 state[5] += F[5];
410 state[6] += F[6];
411 state[7] += F[7];
412
413 in += 16 * 8;
414 }
415 }
416
417 #else
418
419 #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
420 do { \
421 T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
422 h = Sigma0(a) + Maj(a, b, c); \
423 d += T1; \
424 h += T1; \
425 } while (0)
426
427 #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
428 do { \
429 s0 = X[(j + 1) & 0x0f]; \
430 s0 = sigma0(s0); \
431 s1 = X[(j + 14) & 0x0f]; \
432 s1 = sigma1(s1); \
433 T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
434 ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
435 } while (0)
436
sha512_block_data_order(uint64_t * state,const uint8_t * in,size_t num)437 static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
438 size_t num) {
439 uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
440 uint64_t X[16];
441 int i;
442
443 while (num--) {
444
445 a = state[0];
446 b = state[1];
447 c = state[2];
448 d = state[3];
449 e = state[4];
450 f = state[5];
451 g = state[6];
452 h = state[7];
453
454 T1 = X[0] = load_u64_be(in);
455 ROUND_00_15(0, a, b, c, d, e, f, g, h);
456 T1 = X[1] = load_u64_be(in + 8);
457 ROUND_00_15(1, h, a, b, c, d, e, f, g);
458 T1 = X[2] = load_u64_be(in + 2 * 8);
459 ROUND_00_15(2, g, h, a, b, c, d, e, f);
460 T1 = X[3] = load_u64_be(in + 3 * 8);
461 ROUND_00_15(3, f, g, h, a, b, c, d, e);
462 T1 = X[4] = load_u64_be(in + 4 * 8);
463 ROUND_00_15(4, e, f, g, h, a, b, c, d);
464 T1 = X[5] = load_u64_be(in + 5 * 8);
465 ROUND_00_15(5, d, e, f, g, h, a, b, c);
466 T1 = X[6] = load_u64_be(in + 6 * 8);
467 ROUND_00_15(6, c, d, e, f, g, h, a, b);
468 T1 = X[7] = load_u64_be(in + 7 * 8);
469 ROUND_00_15(7, b, c, d, e, f, g, h, a);
470 T1 = X[8] = load_u64_be(in + 8 * 8);
471 ROUND_00_15(8, a, b, c, d, e, f, g, h);
472 T1 = X[9] = load_u64_be(in + 9 * 8);
473 ROUND_00_15(9, h, a, b, c, d, e, f, g);
474 T1 = X[10] = load_u64_be(in + 10 * 8);
475 ROUND_00_15(10, g, h, a, b, c, d, e, f);
476 T1 = X[11] = load_u64_be(in + 11 * 8);
477 ROUND_00_15(11, f, g, h, a, b, c, d, e);
478 T1 = X[12] = load_u64_be(in + 12 * 8);
479 ROUND_00_15(12, e, f, g, h, a, b, c, d);
480 T1 = X[13] = load_u64_be(in + 13 * 8);
481 ROUND_00_15(13, d, e, f, g, h, a, b, c);
482 T1 = X[14] = load_u64_be(in + 14 * 8);
483 ROUND_00_15(14, c, d, e, f, g, h, a, b);
484 T1 = X[15] = load_u64_be(in + 15 * 8);
485 ROUND_00_15(15, b, c, d, e, f, g, h, a);
486
487 for (i = 16; i < 80; i += 16) {
488 ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
489 ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
490 ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
491 ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
492 ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
493 ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
494 ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
495 ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
496 ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
497 ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
498 ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
499 ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
500 ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
501 ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
502 ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
503 ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
504 }
505
506 state[0] += a;
507 state[1] += b;
508 state[2] += c;
509 state[3] += d;
510 state[4] += e;
511 state[5] += f;
512 state[6] += g;
513 state[7] += h;
514
515 in += 16 * 8;
516 }
517 }
518
519 #endif
520
521 #endif // !SHA512_ASM
522
523 #undef ROTR
524 #undef Sigma0
525 #undef Sigma1
526 #undef sigma0
527 #undef sigma1
528 #undef Ch
529 #undef Maj
530 #undef ROUND_00_15
531 #undef ROUND_16_80
532