1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_HOMOGENEOUS_H 11 #define EIGEN_HOMOGENEOUS_H 12 13 namespace Eigen { 14 15 /** \geometry_module \ingroup Geometry_Module 16 * 17 * \class Homogeneous 18 * 19 * \brief Expression of one (or a set of) homogeneous vector(s) 20 * 21 * \param MatrixType the type of the object in which we are making homogeneous 22 * 23 * This class represents an expression of one (or a set of) homogeneous vector(s). 24 * It is the return type of MatrixBase::homogeneous() and most of the time 25 * this is the only way it is used. 26 * 27 * \sa MatrixBase::homogeneous() 28 */ 29 30 namespace internal { 31 32 template<typename MatrixType,int Direction> 33 struct traits<Homogeneous<MatrixType,Direction> > 34 : traits<MatrixType> 35 { 36 typedef typename traits<MatrixType>::StorageKind StorageKind; 37 typedef typename ref_selector<MatrixType>::type MatrixTypeNested; 38 typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested; 39 enum { 40 RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? 41 int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, 42 ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? 43 int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, 44 RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, 45 ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, 46 MaxRowsAtCompileTime = RowsAtCompileTime, 47 MaxColsAtCompileTime = ColsAtCompileTime, 48 TmpFlags = _MatrixTypeNested::Flags & HereditaryBits, 49 Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit) 50 : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit) 51 : TmpFlags 52 }; 53 }; 54 55 template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl; 56 template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl; 57 58 } // end namespace internal 59 60 template<typename MatrixType,int _Direction> class Homogeneous 61 : public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator 62 { 63 public: 64 65 typedef MatrixType NestedExpression; 66 enum { Direction = _Direction }; 67 68 typedef MatrixBase<Homogeneous> Base; 69 EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) 70 71 EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix) 72 : m_matrix(matrix) 73 {} 74 75 EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); } 76 EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); } 77 78 EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } 79 80 template<typename Rhs> 81 EIGEN_DEVICE_FUNC inline const Product<Homogeneous,Rhs> 82 operator* (const MatrixBase<Rhs>& rhs) const 83 { 84 eigen_assert(int(Direction)==Horizontal); 85 return Product<Homogeneous,Rhs>(*this,rhs.derived()); 86 } 87 88 template<typename Lhs> friend 89 EIGEN_DEVICE_FUNC inline const Product<Lhs,Homogeneous> 90 operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs) 91 { 92 eigen_assert(int(Direction)==Vertical); 93 return Product<Lhs,Homogeneous>(lhs.derived(),rhs); 94 } 95 96 template<typename Scalar, int Dim, int Mode, int Options> friend 97 EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous > 98 operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs) 99 { 100 eigen_assert(int(Direction)==Vertical); 101 return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs); 102 } 103 104 template<typename Func> 105 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type 106 redux(const Func& func) const 107 { 108 return func(m_matrix.redux(func), Scalar(1)); 109 } 110 111 protected: 112 typename MatrixType::Nested m_matrix; 113 }; 114 115 /** \geometry_module \ingroup Geometry_Module 116 * 117 * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient. 118 * 119 * This can be used to convert affine coordinates to homogeneous coordinates. 120 * 121 * \only_for_vectors 122 * 123 * Example: \include MatrixBase_homogeneous.cpp 124 * Output: \verbinclude MatrixBase_homogeneous.out 125 * 126 * \sa VectorwiseOp::homogeneous(), class Homogeneous 127 */ 128 template<typename Derived> 129 EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType 130 MatrixBase<Derived>::homogeneous() const 131 { 132 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); 133 return HomogeneousReturnType(derived()); 134 } 135 136 /** \geometry_module \ingroup Geometry_Module 137 * 138 * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix. 139 * 140 * This can be used to convert affine coordinates to homogeneous coordinates. 141 * 142 * Example: \include VectorwiseOp_homogeneous.cpp 143 * Output: \verbinclude VectorwiseOp_homogeneous.out 144 * 145 * \sa MatrixBase::homogeneous(), class Homogeneous */ 146 template<typename ExpressionType, int Direction> 147 EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType,Direction> 148 VectorwiseOp<ExpressionType,Direction>::homogeneous() const 149 { 150 return HomogeneousReturnType(_expression()); 151 } 152 153 /** \geometry_module \ingroup Geometry_Module 154 * 155 * \brief homogeneous normalization 156 * 157 * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient. 158 * 159 * This can be used to convert homogeneous coordinates to affine coordinates. 160 * 161 * It is essentially a shortcut for: 162 * \code 163 this->head(this->size()-1)/this->coeff(this->size()-1); 164 \endcode 165 * 166 * Example: \include MatrixBase_hnormalized.cpp 167 * Output: \verbinclude MatrixBase_hnormalized.out 168 * 169 * \sa VectorwiseOp::hnormalized() */ 170 template<typename Derived> 171 EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType 172 MatrixBase<Derived>::hnormalized() const 173 { 174 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); 175 return ConstStartMinusOne(derived(),0,0, 176 ColsAtCompileTime==1?size()-1:1, 177 ColsAtCompileTime==1?1:size()-1) / coeff(size()-1); 178 } 179 180 /** \geometry_module \ingroup Geometry_Module 181 * 182 * \brief column or row-wise homogeneous normalization 183 * 184 * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row). 185 * 186 * This can be used to convert homogeneous coordinates to affine coordinates. 187 * 188 * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this. 189 * 190 * Example: \include DirectionWise_hnormalized.cpp 191 * Output: \verbinclude DirectionWise_hnormalized.out 192 * 193 * \sa MatrixBase::hnormalized() */ 194 template<typename ExpressionType, int Direction> 195 EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType 196 VectorwiseOp<ExpressionType,Direction>::hnormalized() const 197 { 198 return HNormalized_Block(_expression(),0,0, 199 Direction==Vertical ? _expression().rows()-1 : _expression().rows(), 200 Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient( 201 Replicate<HNormalized_Factors, 202 Direction==Vertical ? HNormalized_SizeMinusOne : 1, 203 Direction==Horizontal ? HNormalized_SizeMinusOne : 1> 204 (HNormalized_Factors(_expression(), 205 Direction==Vertical ? _expression().rows()-1:0, 206 Direction==Horizontal ? _expression().cols()-1:0, 207 Direction==Vertical ? 1 : _expression().rows(), 208 Direction==Horizontal ? 1 : _expression().cols()), 209 Direction==Vertical ? _expression().rows()-1 : 1, 210 Direction==Horizontal ? _expression().cols()-1 : 1)); 211 } 212 213 namespace internal { 214 215 template<typename MatrixOrTransformType> 216 struct take_matrix_for_product 217 { 218 typedef MatrixOrTransformType type; 219 EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; } 220 }; 221 222 template<typename Scalar, int Dim, int Mode,int Options> 223 struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> > 224 { 225 typedef Transform<Scalar, Dim, Mode, Options> TransformType; 226 typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type; 227 EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); } 228 }; 229 230 template<typename Scalar, int Dim, int Options> 231 struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> > 232 { 233 typedef Transform<Scalar, Dim, Projective, Options> TransformType; 234 typedef typename TransformType::MatrixType type; 235 EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); } 236 }; 237 238 template<typename MatrixType,typename Lhs> 239 struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> > 240 { 241 typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType; 242 typedef typename remove_all<MatrixType>::type MatrixTypeCleaned; 243 typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned; 244 typedef typename make_proper_matrix_type< 245 typename traits<MatrixTypeCleaned>::Scalar, 246 LhsMatrixTypeCleaned::RowsAtCompileTime, 247 MatrixTypeCleaned::ColsAtCompileTime, 248 MatrixTypeCleaned::PlainObject::Options, 249 LhsMatrixTypeCleaned::MaxRowsAtCompileTime, 250 MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; 251 }; 252 253 template<typename MatrixType,typename Lhs> 254 struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> 255 : public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> > 256 { 257 typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType; 258 typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned; 259 typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested; 260 EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) 261 : m_lhs(take_matrix_for_product<Lhs>::run(lhs)), 262 m_rhs(rhs) 263 {} 264 265 EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); } 266 EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); } 267 268 template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const 269 { 270 // FIXME investigate how to allow lazy evaluation of this product when possible 271 dst = Block<const LhsMatrixTypeNested, 272 LhsMatrixTypeNested::RowsAtCompileTime, 273 LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1> 274 (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs; 275 dst += m_lhs.col(m_lhs.cols()-1).rowwise() 276 .template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols()); 277 } 278 279 typename LhsMatrixTypeCleaned::Nested m_lhs; 280 typename MatrixType::Nested m_rhs; 281 }; 282 283 template<typename MatrixType,typename Rhs> 284 struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> > 285 { 286 typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar, 287 MatrixType::RowsAtCompileTime, 288 Rhs::ColsAtCompileTime, 289 MatrixType::PlainObject::Options, 290 MatrixType::MaxRowsAtCompileTime, 291 Rhs::MaxColsAtCompileTime>::type ReturnType; 292 }; 293 294 template<typename MatrixType,typename Rhs> 295 struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> 296 : public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> > 297 { 298 typedef typename remove_all<typename Rhs::Nested>::type RhsNested; 299 EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) 300 : m_lhs(lhs), m_rhs(rhs) 301 {} 302 303 EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); } 304 EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); } 305 306 template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const 307 { 308 // FIXME investigate how to allow lazy evaluation of this product when possible 309 dst = m_lhs * Block<const RhsNested, 310 RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1, 311 RhsNested::ColsAtCompileTime> 312 (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols()); 313 dst += m_rhs.row(m_rhs.rows()-1).colwise() 314 .template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows()); 315 } 316 317 typename MatrixType::Nested m_lhs; 318 typename Rhs::Nested m_rhs; 319 }; 320 321 template<typename ArgType,int Direction> 322 struct evaluator_traits<Homogeneous<ArgType,Direction> > 323 { 324 typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind; 325 typedef HomogeneousShape Shape; 326 }; 327 328 template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; }; 329 330 331 template<typename ArgType,int Direction> 332 struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased> 333 : evaluator<typename Homogeneous<ArgType,Direction>::PlainObject > 334 { 335 typedef Homogeneous<ArgType,Direction> XprType; 336 typedef typename XprType::PlainObject PlainObject; 337 typedef evaluator<PlainObject> Base; 338 339 EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) 340 : Base(), m_temp(op) 341 { 342 ::new (static_cast<Base*>(this)) Base(m_temp); 343 } 344 345 protected: 346 PlainObject m_temp; 347 }; 348 349 // dense = homogeneous 350 template< typename DstXprType, typename ArgType, typename Scalar> 351 struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense> 352 { 353 typedef Homogeneous<ArgType,Vertical> SrcXprType; 354 EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &) 355 { 356 Index dstRows = src.rows(); 357 Index dstCols = src.cols(); 358 if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) 359 dst.resize(dstRows, dstCols); 360 361 dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression(); 362 dst.row(dst.rows()-1).setOnes(); 363 } 364 }; 365 366 // dense = homogeneous 367 template< typename DstXprType, typename ArgType, typename Scalar> 368 struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense> 369 { 370 typedef Homogeneous<ArgType,Horizontal> SrcXprType; 371 EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &) 372 { 373 Index dstRows = src.rows(); 374 Index dstCols = src.cols(); 375 if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) 376 dst.resize(dstRows, dstCols); 377 378 dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression(); 379 dst.col(dst.cols()-1).setOnes(); 380 } 381 }; 382 383 template<typename LhsArg, typename Rhs, int ProductTag> 384 struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag> 385 { 386 template<typename Dest> 387 EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs) 388 { 389 homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst); 390 } 391 }; 392 393 template<typename Lhs,typename Rhs> 394 struct homogeneous_right_product_refactoring_helper 395 { 396 enum { 397 Dim = Lhs::ColsAtCompileTime, 398 Rows = Lhs::RowsAtCompileTime 399 }; 400 typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst; 401 typedef typename remove_const<LinearBlockConst>::type LinearBlock; 402 typedef typename Rhs::ConstRowXpr ConstantColumn; 403 typedef Replicate<const ConstantColumn,Rows,1> ConstantBlock; 404 typedef Product<Lhs,LinearBlock,LazyProduct> LinearProduct; 405 typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr; 406 }; 407 408 template<typename Lhs, typename Rhs, int ProductTag> 409 struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape> 410 : public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr> 411 { 412 typedef Product<Lhs, Rhs, LazyProduct> XprType; 413 typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper; 414 typedef typename helper::ConstantBlock ConstantBlock; 415 typedef typename helper::Xpr RefactoredXpr; 416 typedef evaluator<RefactoredXpr> Base; 417 418 EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) 419 : Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) ) 420 + ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) ) 421 {} 422 }; 423 424 template<typename Lhs, typename RhsArg, int ProductTag> 425 struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag> 426 { 427 template<typename Dest> 428 EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs) 429 { 430 homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst); 431 } 432 }; 433 434 // TODO: the following specialization is to address a regression from 3.2 to 3.3 435 // In the future, this path should be optimized. 436 template<typename Lhs, typename RhsArg, int ProductTag> 437 struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, TriangularShape, HomogeneousShape, ProductTag> 438 { 439 template<typename Dest> 440 static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs) 441 { 442 dst.noalias() = lhs * rhs.eval(); 443 } 444 }; 445 446 template<typename Lhs,typename Rhs> 447 struct homogeneous_left_product_refactoring_helper 448 { 449 enum { 450 Dim = Rhs::RowsAtCompileTime, 451 Cols = Rhs::ColsAtCompileTime 452 }; 453 typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst; 454 typedef typename remove_const<LinearBlockConst>::type LinearBlock; 455 typedef typename Lhs::ConstColXpr ConstantColumn; 456 typedef Replicate<const ConstantColumn,1,Cols> ConstantBlock; 457 typedef Product<LinearBlock,Rhs,LazyProduct> LinearProduct; 458 typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr; 459 }; 460 461 template<typename Lhs, typename Rhs, int ProductTag> 462 struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape> 463 : public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr> 464 { 465 typedef Product<Lhs, Rhs, LazyProduct> XprType; 466 typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper; 467 typedef typename helper::ConstantBlock ConstantBlock; 468 typedef typename helper::Xpr RefactoredXpr; 469 typedef evaluator<RefactoredXpr> Base; 470 471 EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) 472 : Base( xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() ) 473 + ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) ) 474 {} 475 }; 476 477 template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag> 478 struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag> 479 { 480 typedef Transform<Scalar,Dim,Mode,Options> TransformType; 481 template<typename Dest> 482 EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs) 483 { 484 homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst); 485 } 486 }; 487 488 template<typename ExpressionType, int Side, bool Transposed> 489 struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape> 490 : public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape> 491 {}; 492 493 } // end namespace internal 494 495 } // end namespace Eigen 496 497 #endif // EIGEN_HOMOGENEOUS_H 498