• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_HOMOGENEOUS_H
11 #define EIGEN_HOMOGENEOUS_H
12 
13 namespace Eigen {
14 
15 /** \geometry_module \ingroup Geometry_Module
16   *
17   * \class Homogeneous
18   *
19   * \brief Expression of one (or a set of) homogeneous vector(s)
20   *
21   * \param MatrixType the type of the object in which we are making homogeneous
22   *
23   * This class represents an expression of one (or a set of) homogeneous vector(s).
24   * It is the return type of MatrixBase::homogeneous() and most of the time
25   * this is the only way it is used.
26   *
27   * \sa MatrixBase::homogeneous()
28   */
29 
30 namespace internal {
31 
32 template<typename MatrixType,int Direction>
33 struct traits<Homogeneous<MatrixType,Direction> >
34  : traits<MatrixType>
35 {
36   typedef typename traits<MatrixType>::StorageKind StorageKind;
37   typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
38   typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
39   enum {
40     RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
41                   int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
42     ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ?
43                   int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
44     RowsAtCompileTime = Direction==Vertical  ?  RowsPlusOne : MatrixType::RowsAtCompileTime,
45     ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
46     MaxRowsAtCompileTime = RowsAtCompileTime,
47     MaxColsAtCompileTime = ColsAtCompileTime,
48     TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
49     Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
50           : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
51           : TmpFlags
52   };
53 };
54 
55 template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl;
56 template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl;
57 
58 } // end namespace internal
59 
60 template<typename MatrixType,int _Direction> class Homogeneous
61   : public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator
62 {
63   public:
64 
65     typedef MatrixType NestedExpression;
66     enum { Direction = _Direction };
67 
68     typedef MatrixBase<Homogeneous> Base;
69     EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
70 
71     EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix)
72       : m_matrix(matrix)
73     {}
74 
75     EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical   ? 1 : 0); }
76     EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
77 
78     EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; }
79 
80     template<typename Rhs>
81     EIGEN_DEVICE_FUNC inline const Product<Homogeneous,Rhs>
82     operator* (const MatrixBase<Rhs>& rhs) const
83     {
84       eigen_assert(int(Direction)==Horizontal);
85       return Product<Homogeneous,Rhs>(*this,rhs.derived());
86     }
87 
88     template<typename Lhs> friend
89     EIGEN_DEVICE_FUNC inline const Product<Lhs,Homogeneous>
90     operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
91     {
92       eigen_assert(int(Direction)==Vertical);
93       return Product<Lhs,Homogeneous>(lhs.derived(),rhs);
94     }
95 
96     template<typename Scalar, int Dim, int Mode, int Options> friend
97     EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous >
98     operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
99     {
100       eigen_assert(int(Direction)==Vertical);
101       return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs);
102     }
103 
104     template<typename Func>
105     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type
106     redux(const Func& func) const
107     {
108       return func(m_matrix.redux(func), Scalar(1));
109     }
110 
111   protected:
112     typename MatrixType::Nested m_matrix;
113 };
114 
115 /** \geometry_module \ingroup Geometry_Module
116   *
117   * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient.
118   *
119   * This can be used to convert affine coordinates to homogeneous coordinates.
120   *
121   * \only_for_vectors
122   *
123   * Example: \include MatrixBase_homogeneous.cpp
124   * Output: \verbinclude MatrixBase_homogeneous.out
125   *
126   * \sa VectorwiseOp::homogeneous(), class Homogeneous
127   */
128 template<typename Derived>
129 EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType
130 MatrixBase<Derived>::homogeneous() const
131 {
132   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
133   return HomogeneousReturnType(derived());
134 }
135 
136 /** \geometry_module \ingroup Geometry_Module
137   *
138   * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix.
139   *
140   * This can be used to convert affine coordinates to homogeneous coordinates.
141   *
142   * Example: \include VectorwiseOp_homogeneous.cpp
143   * Output: \verbinclude VectorwiseOp_homogeneous.out
144   *
145   * \sa MatrixBase::homogeneous(), class Homogeneous */
146 template<typename ExpressionType, int Direction>
147 EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType,Direction>
148 VectorwiseOp<ExpressionType,Direction>::homogeneous() const
149 {
150   return HomogeneousReturnType(_expression());
151 }
152 
153 /** \geometry_module \ingroup Geometry_Module
154   *
155   * \brief homogeneous normalization
156   *
157   * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient.
158   *
159   * This can be used to convert homogeneous coordinates to affine coordinates.
160   *
161   * It is essentially a shortcut for:
162   * \code
163     this->head(this->size()-1)/this->coeff(this->size()-1);
164     \endcode
165   *
166   * Example: \include MatrixBase_hnormalized.cpp
167   * Output: \verbinclude MatrixBase_hnormalized.out
168   *
169   * \sa VectorwiseOp::hnormalized() */
170 template<typename Derived>
171 EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType
172 MatrixBase<Derived>::hnormalized() const
173 {
174   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
175   return ConstStartMinusOne(derived(),0,0,
176     ColsAtCompileTime==1?size()-1:1,
177     ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
178 }
179 
180 /** \geometry_module \ingroup Geometry_Module
181   *
182   * \brief column or row-wise homogeneous normalization
183   *
184   * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row).
185   *
186   * This can be used to convert homogeneous coordinates to affine coordinates.
187   *
188   * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this.
189   *
190   * Example: \include DirectionWise_hnormalized.cpp
191   * Output: \verbinclude DirectionWise_hnormalized.out
192   *
193   * \sa MatrixBase::hnormalized() */
194 template<typename ExpressionType, int Direction>
195 EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
196 VectorwiseOp<ExpressionType,Direction>::hnormalized() const
197 {
198   return HNormalized_Block(_expression(),0,0,
199       Direction==Vertical   ? _expression().rows()-1 : _expression().rows(),
200       Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient(
201       Replicate<HNormalized_Factors,
202                 Direction==Vertical   ? HNormalized_SizeMinusOne : 1,
203                 Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
204         (HNormalized_Factors(_expression(),
205           Direction==Vertical    ? _expression().rows()-1:0,
206           Direction==Horizontal  ? _expression().cols()-1:0,
207           Direction==Vertical    ? 1 : _expression().rows(),
208           Direction==Horizontal  ? 1 : _expression().cols()),
209          Direction==Vertical   ? _expression().rows()-1 : 1,
210          Direction==Horizontal ? _expression().cols()-1 : 1));
211 }
212 
213 namespace internal {
214 
215 template<typename MatrixOrTransformType>
216 struct take_matrix_for_product
217 {
218   typedef MatrixOrTransformType type;
219   EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; }
220 };
221 
222 template<typename Scalar, int Dim, int Mode,int Options>
223 struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
224 {
225   typedef Transform<Scalar, Dim, Mode, Options> TransformType;
226   typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type;
227   EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); }
228 };
229 
230 template<typename Scalar, int Dim, int Options>
231 struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
232 {
233   typedef Transform<Scalar, Dim, Projective, Options> TransformType;
234   typedef typename TransformType::MatrixType type;
235   EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); }
236 };
237 
238 template<typename MatrixType,typename Lhs>
239 struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
240 {
241   typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType;
242   typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
243   typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
244   typedef typename make_proper_matrix_type<
245                  typename traits<MatrixTypeCleaned>::Scalar,
246                  LhsMatrixTypeCleaned::RowsAtCompileTime,
247                  MatrixTypeCleaned::ColsAtCompileTime,
248                  MatrixTypeCleaned::PlainObject::Options,
249                  LhsMatrixTypeCleaned::MaxRowsAtCompileTime,
250                  MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
251 };
252 
253 template<typename MatrixType,typename Lhs>
254 struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
255   : public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
256 {
257   typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
258   typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
259   typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
260   EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
261     : m_lhs(take_matrix_for_product<Lhs>::run(lhs)),
262       m_rhs(rhs)
263   {}
264 
265   EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
266   EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
267 
268   template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
269   {
270     // FIXME investigate how to allow lazy evaluation of this product when possible
271     dst = Block<const LhsMatrixTypeNested,
272               LhsMatrixTypeNested::RowsAtCompileTime,
273               LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1>
274             (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs;
275     dst += m_lhs.col(m_lhs.cols()-1).rowwise()
276             .template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
277   }
278 
279   typename LhsMatrixTypeCleaned::Nested m_lhs;
280   typename MatrixType::Nested m_rhs;
281 };
282 
283 template<typename MatrixType,typename Rhs>
284 struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
285 {
286   typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar,
287                  MatrixType::RowsAtCompileTime,
288                  Rhs::ColsAtCompileTime,
289                  MatrixType::PlainObject::Options,
290                  MatrixType::MaxRowsAtCompileTime,
291                  Rhs::MaxColsAtCompileTime>::type ReturnType;
292 };
293 
294 template<typename MatrixType,typename Rhs>
295 struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
296   : public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
297 {
298   typedef typename remove_all<typename Rhs::Nested>::type RhsNested;
299   EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
300     : m_lhs(lhs), m_rhs(rhs)
301   {}
302 
303   EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
304   EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
305 
306   template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
307   {
308     // FIXME investigate how to allow lazy evaluation of this product when possible
309     dst = m_lhs * Block<const RhsNested,
310                         RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1,
311                         RhsNested::ColsAtCompileTime>
312             (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols());
313     dst += m_rhs.row(m_rhs.rows()-1).colwise()
314             .template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
315   }
316 
317   typename MatrixType::Nested m_lhs;
318   typename Rhs::Nested m_rhs;
319 };
320 
321 template<typename ArgType,int Direction>
322 struct evaluator_traits<Homogeneous<ArgType,Direction> >
323 {
324   typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
325   typedef HomogeneousShape Shape;
326 };
327 
328 template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; };
329 
330 
331 template<typename ArgType,int Direction>
332 struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased>
333   : evaluator<typename Homogeneous<ArgType,Direction>::PlainObject >
334 {
335   typedef Homogeneous<ArgType,Direction> XprType;
336   typedef typename XprType::PlainObject PlainObject;
337   typedef evaluator<PlainObject> Base;
338 
339   EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
340     : Base(), m_temp(op)
341   {
342     ::new (static_cast<Base*>(this)) Base(m_temp);
343   }
344 
345 protected:
346   PlainObject m_temp;
347 };
348 
349 // dense = homogeneous
350 template< typename DstXprType, typename ArgType, typename Scalar>
351 struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
352 {
353   typedef Homogeneous<ArgType,Vertical> SrcXprType;
354   EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
355   {
356     Index dstRows = src.rows();
357     Index dstCols = src.cols();
358     if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
359       dst.resize(dstRows, dstCols);
360 
361     dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
362     dst.row(dst.rows()-1).setOnes();
363   }
364 };
365 
366 // dense = homogeneous
367 template< typename DstXprType, typename ArgType, typename Scalar>
368 struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
369 {
370   typedef Homogeneous<ArgType,Horizontal> SrcXprType;
371   EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
372   {
373     Index dstRows = src.rows();
374     Index dstCols = src.cols();
375     if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
376       dst.resize(dstRows, dstCols);
377 
378     dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
379     dst.col(dst.cols()-1).setOnes();
380   }
381 };
382 
383 template<typename LhsArg, typename Rhs, int ProductTag>
384 struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag>
385 {
386   template<typename Dest>
387   EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs)
388   {
389     homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
390   }
391 };
392 
393 template<typename Lhs,typename Rhs>
394 struct homogeneous_right_product_refactoring_helper
395 {
396   enum {
397     Dim  = Lhs::ColsAtCompileTime,
398     Rows = Lhs::RowsAtCompileTime
399   };
400   typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type          LinearBlockConst;
401   typedef typename remove_const<LinearBlockConst>::type                 LinearBlock;
402   typedef typename Rhs::ConstRowXpr                                     ConstantColumn;
403   typedef Replicate<const ConstantColumn,Rows,1>                        ConstantBlock;
404   typedef Product<Lhs,LinearBlock,LazyProduct>                          LinearProduct;
405   typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
406 };
407 
408 template<typename Lhs, typename Rhs, int ProductTag>
409 struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape>
410  : public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr>
411 {
412   typedef Product<Lhs, Rhs, LazyProduct> XprType;
413   typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper;
414   typedef typename helper::ConstantBlock ConstantBlock;
415   typedef typename helper::Xpr RefactoredXpr;
416   typedef evaluator<RefactoredXpr> Base;
417 
418   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
419     : Base(  xpr.lhs().nestedExpression() .lazyProduct(  xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) )
420             + ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) )
421   {}
422 };
423 
424 template<typename Lhs, typename RhsArg, int ProductTag>
425 struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
426 {
427   template<typename Dest>
428   EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
429   {
430     homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
431   }
432 };
433 
434 // TODO: the following specialization is to address a regression from 3.2 to 3.3
435 // In the future, this path should be optimized.
436 template<typename Lhs, typename RhsArg, int ProductTag>
437 struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, TriangularShape, HomogeneousShape, ProductTag>
438 {
439   template<typename Dest>
440   static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
441   {
442     dst.noalias() = lhs * rhs.eval();
443   }
444 };
445 
446 template<typename Lhs,typename Rhs>
447 struct homogeneous_left_product_refactoring_helper
448 {
449   enum {
450     Dim = Rhs::RowsAtCompileTime,
451     Cols = Rhs::ColsAtCompileTime
452   };
453   typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type          LinearBlockConst;
454   typedef typename remove_const<LinearBlockConst>::type                 LinearBlock;
455   typedef typename Lhs::ConstColXpr                                     ConstantColumn;
456   typedef Replicate<const ConstantColumn,1,Cols>                        ConstantBlock;
457   typedef Product<LinearBlock,Rhs,LazyProduct>                          LinearProduct;
458   typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
459 };
460 
461 template<typename Lhs, typename Rhs, int ProductTag>
462 struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape>
463  : public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr>
464 {
465   typedef Product<Lhs, Rhs, LazyProduct> XprType;
466   typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper;
467   typedef typename helper::ConstantBlock ConstantBlock;
468   typedef typename helper::Xpr RefactoredXpr;
469   typedef evaluator<RefactoredXpr> Base;
470 
471   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
472     : Base(   xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() )
473             + ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) )
474   {}
475 };
476 
477 template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag>
478 struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
479 {
480   typedef Transform<Scalar,Dim,Mode,Options> TransformType;
481   template<typename Dest>
482   EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
483   {
484     homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst);
485   }
486 };
487 
488 template<typename ExpressionType, int Side, bool Transposed>
489 struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape>
490   : public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
491 {};
492 
493 } // end namespace internal
494 
495 } // end namespace Eigen
496 
497 #endif // EIGEN_HOMOGENEOUS_H
498