• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
5 // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_SUITESPARSEQRSUPPORT_H
12 #define EIGEN_SUITESPARSEQRSUPPORT_H
13 
14 namespace Eigen {
15 
16   template<typename MatrixType> class SPQR;
17   template<typename SPQRType> struct SPQRMatrixQReturnType;
18   template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
19   template <typename SPQRType, typename Derived> struct SPQR_QProduct;
20   namespace internal {
21     template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
22     {
23       typedef typename SPQRType::MatrixType ReturnType;
24     };
25     template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
26     {
27       typedef typename SPQRType::MatrixType ReturnType;
28     };
29     template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
30     {
31       typedef typename Derived::PlainObject ReturnType;
32     };
33   } // End namespace internal
34 
35 /**
36   * \ingroup SPQRSupport_Module
37   * \class SPQR
38   * \brief Sparse QR factorization based on SuiteSparseQR library
39   *
40   * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
41   * of sparse matrices. The result is then used to solve linear leasts_square systems.
42   * Clearly, a QR factorization is returned such that A*P = Q*R where :
43   *
44   * P is the column permutation. Use colsPermutation() to get it.
45   *
46   * Q is the orthogonal matrix represented as Householder reflectors.
47   * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
48   * You can then apply it to a vector.
49   *
50   * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
51   * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
52   *
53   * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
54   *
55   * \implsparsesolverconcept
56   *
57   *
58   */
59 template<typename _MatrixType>
60 class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
61 {
62   protected:
63     typedef SparseSolverBase<SPQR<_MatrixType> > Base;
64     using Base::m_isInitialized;
65   public:
66     typedef typename _MatrixType::Scalar Scalar;
67     typedef typename _MatrixType::RealScalar RealScalar;
68     typedef SuiteSparse_long StorageIndex ;
69     typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType;
70     typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType;
71     enum {
72       ColsAtCompileTime = Dynamic,
73       MaxColsAtCompileTime = Dynamic
74     };
75   public:
76     SPQR()
77       : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
78     {
79       cholmod_l_start(&m_cc);
80     }
81 
82     explicit SPQR(const _MatrixType& matrix)
83     : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits<Scalar>::epsilon()), m_useDefaultThreshold(true)
84     {
85       cholmod_l_start(&m_cc);
86       compute(matrix);
87     }
88 
89     ~SPQR()
90     {
91       SPQR_free();
92       cholmod_l_finish(&m_cc);
93     }
94     void SPQR_free()
95     {
96       cholmod_l_free_sparse(&m_H, &m_cc);
97       cholmod_l_free_sparse(&m_cR, &m_cc);
98       cholmod_l_free_dense(&m_HTau, &m_cc);
99       std::free(m_E);
100       std::free(m_HPinv);
101     }
102 
103     void compute(const _MatrixType& matrix)
104     {
105       if(m_isInitialized) SPQR_free();
106 
107       MatrixType mat(matrix);
108 
109       /* Compute the default threshold as in MatLab, see:
110        * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
111        * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
112        */
113       RealScalar pivotThreshold = m_tolerance;
114       if(m_useDefaultThreshold)
115       {
116         RealScalar max2Norm = 0.0;
117         for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm());
118         if(max2Norm==RealScalar(0))
119           max2Norm = RealScalar(1);
120         pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
121       }
122       cholmod_sparse A;
123       A = viewAsCholmod(mat);
124       m_rows = matrix.rows();
125       Index col = matrix.cols();
126       m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
127                              &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
128 
129       if (!m_cR)
130       {
131         m_info = NumericalIssue;
132         m_isInitialized = false;
133         return;
134       }
135       m_info = Success;
136       m_isInitialized = true;
137       m_isRUpToDate = false;
138     }
139     /**
140      * Get the number of rows of the input matrix and the Q matrix
141      */
142     inline Index rows() const {return m_rows; }
143 
144     /**
145      * Get the number of columns of the input matrix.
146      */
147     inline Index cols() const { return m_cR->ncol; }
148 
149     template<typename Rhs, typename Dest>
150     void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
151     {
152       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
153       eigen_assert(b.cols()==1 && "This method is for vectors only");
154 
155       //Compute Q^T * b
156       typename Dest::PlainObject y, y2;
157       y = matrixQ().transpose() * b;
158 
159       // Solves with the triangular matrix R
160       Index rk = this->rank();
161       y2 = y;
162       y.resize((std::max)(cols(),Index(y.rows())),y.cols());
163       y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
164 
165       // Apply the column permutation
166       // colsPermutation() performs a copy of the permutation,
167       // so let's apply it manually:
168       for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
169       for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
170 
171 //       y.bottomRows(y.rows()-rk).setZero();
172 //       dest = colsPermutation() * y.topRows(cols());
173 
174       m_info = Success;
175     }
176 
177     /** \returns the sparse triangular factor R. It is a sparse matrix
178      */
179     const MatrixType matrixR() const
180     {
181       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
182       if(!m_isRUpToDate) {
183         m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR);
184         m_isRUpToDate = true;
185       }
186       return m_R;
187     }
188     /// Get an expression of the matrix Q
189     SPQRMatrixQReturnType<SPQR> matrixQ() const
190     {
191       return SPQRMatrixQReturnType<SPQR>(*this);
192     }
193     /// Get the permutation that was applied to columns of A
194     PermutationType colsPermutation() const
195     {
196       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
197       return PermutationType(m_E, m_cR->ncol);
198     }
199     /**
200      * Gets the rank of the matrix.
201      * It should be equal to matrixQR().cols if the matrix is full-rank
202      */
203     Index rank() const
204     {
205       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
206       return m_cc.SPQR_istat[4];
207     }
208     /// Set the fill-reducing ordering method to be used
209     void setSPQROrdering(int ord) { m_ordering = ord;}
210     /// Set the tolerance tol to treat columns with 2-norm < =tol as zero
211     void setPivotThreshold(const RealScalar& tol)
212     {
213       m_useDefaultThreshold = false;
214       m_tolerance = tol;
215     }
216 
217     /** \returns a pointer to the SPQR workspace */
218     cholmod_common *cholmodCommon() const { return &m_cc; }
219 
220 
221     /** \brief Reports whether previous computation was successful.
222       *
223       * \returns \c Success if computation was succesful,
224       *          \c NumericalIssue if the sparse QR can not be computed
225       */
226     ComputationInfo info() const
227     {
228       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
229       return m_info;
230     }
231   protected:
232     bool m_analysisIsOk;
233     bool m_factorizationIsOk;
234     mutable bool m_isRUpToDate;
235     mutable ComputationInfo m_info;
236     int m_ordering; // Ordering method to use, see SPQR's manual
237     int m_allow_tol; // Allow to use some tolerance during numerical factorization.
238     RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
239     mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
240     mutable MatrixType m_R; // The sparse matrix R in Eigen format
241     mutable StorageIndex *m_E; // The permutation applied to columns
242     mutable cholmod_sparse *m_H;  //The householder vectors
243     mutable StorageIndex *m_HPinv; // The row permutation of H
244     mutable cholmod_dense *m_HTau; // The Householder coefficients
245     mutable Index m_rank; // The rank of the matrix
246     mutable cholmod_common m_cc; // Workspace and parameters
247     bool m_useDefaultThreshold;     // Use default threshold
248     Index m_rows;
249     template<typename ,typename > friend struct SPQR_QProduct;
250 };
251 
252 template <typename SPQRType, typename Derived>
253 struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
254 {
255   typedef typename SPQRType::Scalar Scalar;
256   typedef typename SPQRType::StorageIndex StorageIndex;
257   //Define the constructor to get reference to argument types
258   SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
259 
260   inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
261   inline Index cols() const { return m_other.cols(); }
262   // Assign to a vector
263   template<typename ResType>
264   void evalTo(ResType& res) const
265   {
266     cholmod_dense y_cd;
267     cholmod_dense *x_cd;
268     int method = m_transpose ? SPQR_QTX : SPQR_QX;
269     cholmod_common *cc = m_spqr.cholmodCommon();
270     y_cd = viewAsCholmod(m_other.const_cast_derived());
271     x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
272     res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
273     cholmod_l_free_dense(&x_cd, cc);
274   }
275   const SPQRType& m_spqr;
276   const Derived& m_other;
277   bool m_transpose;
278 
279 };
280 template<typename SPQRType>
281 struct SPQRMatrixQReturnType{
282 
283   SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
284   template<typename Derived>
285   SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
286   {
287     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
288   }
289   SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
290   {
291     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
292   }
293   // To use for operations with the transpose of Q
294   SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
295   {
296     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
297   }
298   const SPQRType& m_spqr;
299 };
300 
301 template<typename SPQRType>
302 struct SPQRMatrixQTransposeReturnType{
303   SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
304   template<typename Derived>
305   SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
306   {
307     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
308   }
309   const SPQRType& m_spqr;
310 };
311 
312 }// End namespace Eigen
313 #endif
314