1 /* ====================================================================
2 * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ====================================================================
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com). */
52
53 #include <assert.h>
54 #include <string.h>
55
56 #include <openssl/digest.h>
57 #include <openssl/nid.h>
58 #include <openssl/sha.h>
59
60 #include "../internal.h"
61 #include "internal.h"
62 #include "../fipsmodule/cipher/internal.h"
63
64
65 // MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
66 // field. (SHA-384/512 have 128-bit length.)
67 #define MAX_HASH_BIT_COUNT_BYTES 16
68
69 // MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
70 // Currently SHA-384/512 has a 128-byte block size and that's the largest
71 // supported by TLS.)
72 #define MAX_HASH_BLOCK_SIZE 128
73
EVP_tls_cbc_remove_padding(crypto_word_t * out_padding_ok,size_t * out_len,const uint8_t * in,size_t in_len,size_t block_size,size_t mac_size)74 int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len,
75 const uint8_t *in, size_t in_len,
76 size_t block_size, size_t mac_size) {
77 const size_t overhead = 1 /* padding length byte */ + mac_size;
78
79 // These lengths are all public so we can test them in non-constant time.
80 if (overhead > in_len) {
81 return 0;
82 }
83
84 size_t padding_length = in[in_len - 1];
85
86 crypto_word_t good = constant_time_ge_w(in_len, overhead + padding_length);
87 // The padding consists of a length byte at the end of the record and
88 // then that many bytes of padding, all with the same value as the
89 // length byte. Thus, with the length byte included, there are i+1
90 // bytes of padding.
91 //
92 // We can't check just |padding_length+1| bytes because that leaks
93 // decrypted information. Therefore we always have to check the maximum
94 // amount of padding possible. (Again, the length of the record is
95 // public information so we can use it.)
96 size_t to_check = 256; // maximum amount of padding, inc length byte.
97 if (to_check > in_len) {
98 to_check = in_len;
99 }
100
101 for (size_t i = 0; i < to_check; i++) {
102 uint8_t mask = constant_time_ge_8(padding_length, i);
103 uint8_t b = in[in_len - 1 - i];
104 // The final |padding_length+1| bytes should all have the value
105 // |padding_length|. Therefore the XOR should be zero.
106 good &= ~(mask & (padding_length ^ b));
107 }
108
109 // If any of the final |padding_length+1| bytes had the wrong value,
110 // one or more of the lower eight bits of |good| will be cleared.
111 good = constant_time_eq_w(0xff, good & 0xff);
112
113 // Always treat |padding_length| as zero on error. If, assuming block size of
114 // 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16
115 // and returned -1, distinguishing good MAC and bad padding from bad MAC and
116 // bad padding would give POODLE's padding oracle.
117 padding_length = good & (padding_length + 1);
118 *out_len = in_len - padding_length;
119 *out_padding_ok = good;
120 return 1;
121 }
122
EVP_tls_cbc_copy_mac(uint8_t * out,size_t md_size,const uint8_t * in,size_t in_len,size_t orig_len)123 void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in,
124 size_t in_len, size_t orig_len) {
125 uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE];
126 uint8_t *rotated_mac = rotated_mac1;
127 uint8_t *rotated_mac_tmp = rotated_mac2;
128
129 // mac_end is the index of |in| just after the end of the MAC.
130 size_t mac_end = in_len;
131 size_t mac_start = mac_end - md_size;
132
133 assert(orig_len >= in_len);
134 assert(in_len >= md_size);
135 assert(md_size <= EVP_MAX_MD_SIZE);
136
137 // scan_start contains the number of bytes that we can ignore because
138 // the MAC's position can only vary by 255 bytes.
139 size_t scan_start = 0;
140 // This information is public so it's safe to branch based on it.
141 if (orig_len > md_size + 255 + 1) {
142 scan_start = orig_len - (md_size + 255 + 1);
143 }
144
145 size_t rotate_offset = 0;
146 uint8_t mac_started = 0;
147 OPENSSL_memset(rotated_mac, 0, md_size);
148 for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) {
149 if (j >= md_size) {
150 j -= md_size;
151 }
152 crypto_word_t is_mac_start = constant_time_eq_w(i, mac_start);
153 mac_started |= is_mac_start;
154 uint8_t mac_ended = constant_time_ge_8(i, mac_end);
155 rotated_mac[j] |= in[i] & mac_started & ~mac_ended;
156 // Save the offset that |mac_start| is mapped to.
157 rotate_offset |= j & is_mac_start;
158 }
159
160 // Now rotate the MAC. We rotate in log(md_size) steps, one for each bit
161 // position.
162 for (size_t offset = 1; offset < md_size; offset <<= 1, rotate_offset >>= 1) {
163 // Rotate by |offset| iff the corresponding bit is set in
164 // |rotate_offset|, placing the result in |rotated_mac_tmp|.
165 const uint8_t skip_rotate = (rotate_offset & 1) - 1;
166 for (size_t i = 0, j = offset; i < md_size; i++, j++) {
167 if (j >= md_size) {
168 j -= md_size;
169 }
170 rotated_mac_tmp[i] =
171 constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]);
172 }
173
174 // Swap pointers so |rotated_mac| contains the (possibly) rotated value.
175 // Note the number of iterations and thus the identity of these pointers is
176 // public information.
177 uint8_t *tmp = rotated_mac;
178 rotated_mac = rotated_mac_tmp;
179 rotated_mac_tmp = tmp;
180 }
181
182 OPENSSL_memcpy(out, rotated_mac, md_size);
183 }
184
185 // u32toBE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
186 // big-endian order. The value of p is advanced by four.
187 #define u32toBE(n, p) \
188 do { \
189 *((p)++) = (uint8_t)((n) >> 24); \
190 *((p)++) = (uint8_t)((n) >> 16); \
191 *((p)++) = (uint8_t)((n) >> 8); \
192 *((p)++) = (uint8_t)((n)); \
193 } while (0)
194
195 // u64toBE serialises an unsigned, 64-bit number (n) as eight bytes at (p) in
196 // big-endian order. The value of p is advanced by eight.
197 #define u64toBE(n, p) \
198 do { \
199 *((p)++) = (uint8_t)((n) >> 56); \
200 *((p)++) = (uint8_t)((n) >> 48); \
201 *((p)++) = (uint8_t)((n) >> 40); \
202 *((p)++) = (uint8_t)((n) >> 32); \
203 *((p)++) = (uint8_t)((n) >> 24); \
204 *((p)++) = (uint8_t)((n) >> 16); \
205 *((p)++) = (uint8_t)((n) >> 8); \
206 *((p)++) = (uint8_t)((n)); \
207 } while (0)
208
209 typedef union {
210 SHA_CTX sha1;
211 SHA256_CTX sha256;
212 SHA512_CTX sha512;
213 } HASH_CTX;
214
tls1_sha1_transform(HASH_CTX * ctx,const uint8_t * block)215 static void tls1_sha1_transform(HASH_CTX *ctx, const uint8_t *block) {
216 SHA1_Transform(&ctx->sha1, block);
217 }
218
tls1_sha256_transform(HASH_CTX * ctx,const uint8_t * block)219 static void tls1_sha256_transform(HASH_CTX *ctx, const uint8_t *block) {
220 SHA256_Transform(&ctx->sha256, block);
221 }
222
tls1_sha512_transform(HASH_CTX * ctx,const uint8_t * block)223 static void tls1_sha512_transform(HASH_CTX *ctx, const uint8_t *block) {
224 SHA512_Transform(&ctx->sha512, block);
225 }
226
227 // These functions serialize the state of a hash and thus perform the standard
228 // "final" operation without adding the padding and length that such a function
229 // typically does.
tls1_sha1_final_raw(HASH_CTX * ctx,uint8_t * md_out)230 static void tls1_sha1_final_raw(HASH_CTX *ctx, uint8_t *md_out) {
231 SHA_CTX *sha1 = &ctx->sha1;
232 u32toBE(sha1->h[0], md_out);
233 u32toBE(sha1->h[1], md_out);
234 u32toBE(sha1->h[2], md_out);
235 u32toBE(sha1->h[3], md_out);
236 u32toBE(sha1->h[4], md_out);
237 }
238
tls1_sha256_final_raw(HASH_CTX * ctx,uint8_t * md_out)239 static void tls1_sha256_final_raw(HASH_CTX *ctx, uint8_t *md_out) {
240 SHA256_CTX *sha256 = &ctx->sha256;
241 for (unsigned i = 0; i < 8; i++) {
242 u32toBE(sha256->h[i], md_out);
243 }
244 }
245
tls1_sha512_final_raw(HASH_CTX * ctx,uint8_t * md_out)246 static void tls1_sha512_final_raw(HASH_CTX *ctx, uint8_t *md_out) {
247 SHA512_CTX *sha512 = &ctx->sha512;
248 for (unsigned i = 0; i < 8; i++) {
249 u64toBE(sha512->h[i], md_out);
250 }
251 }
252
EVP_tls_cbc_record_digest_supported(const EVP_MD * md)253 int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) {
254 switch (EVP_MD_type(md)) {
255 case NID_sha1:
256 case NID_sha256:
257 case NID_sha384:
258 return 1;
259
260 default:
261 return 0;
262 }
263 }
264
EVP_tls_cbc_digest_record(const EVP_MD * md,uint8_t * md_out,size_t * md_out_size,const uint8_t header[13],const uint8_t * data,size_t data_plus_mac_size,size_t data_plus_mac_plus_padding_size,const uint8_t * mac_secret,unsigned mac_secret_length)265 int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out,
266 size_t *md_out_size, const uint8_t header[13],
267 const uint8_t *data, size_t data_plus_mac_size,
268 size_t data_plus_mac_plus_padding_size,
269 const uint8_t *mac_secret,
270 unsigned mac_secret_length) {
271 HASH_CTX md_state;
272 void (*md_final_raw)(HASH_CTX *ctx, uint8_t *md_out);
273 void (*md_transform)(HASH_CTX *ctx, const uint8_t *block);
274 unsigned md_size, md_block_size = 64, md_block_shift = 6;
275 // md_length_size is the number of bytes in the length field that terminates
276 // the hash.
277 unsigned md_length_size = 8;
278
279 // Bound the acceptable input so we can forget about many possible overflows
280 // later in this function. This is redundant with the record size limits in
281 // TLS.
282 if (data_plus_mac_plus_padding_size >= 1024 * 1024) {
283 assert(0);
284 return 0;
285 }
286
287 switch (EVP_MD_type(md)) {
288 case NID_sha1:
289 SHA1_Init(&md_state.sha1);
290 md_final_raw = tls1_sha1_final_raw;
291 md_transform = tls1_sha1_transform;
292 md_size = SHA_DIGEST_LENGTH;
293 break;
294
295 case NID_sha256:
296 SHA256_Init(&md_state.sha256);
297 md_final_raw = tls1_sha256_final_raw;
298 md_transform = tls1_sha256_transform;
299 md_size = SHA256_DIGEST_LENGTH;
300 break;
301
302 case NID_sha384:
303 SHA384_Init(&md_state.sha512);
304 md_final_raw = tls1_sha512_final_raw;
305 md_transform = tls1_sha512_transform;
306 md_size = SHA384_DIGEST_LENGTH;
307 md_block_size = 128;
308 md_block_shift = 7;
309 md_length_size = 16;
310 break;
311
312 default:
313 // EVP_tls_cbc_record_digest_supported should have been called first to
314 // check that the hash function is supported.
315 assert(0);
316 *md_out_size = 0;
317 return 0;
318 }
319
320 assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
321 assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
322 assert(md_block_size == (1u << md_block_shift));
323 assert(md_size <= EVP_MAX_MD_SIZE);
324
325 static const size_t kHeaderLength = 13;
326
327 // kVarianceBlocks is the number of blocks of the hash that we have to
328 // calculate in constant time because they could be altered by the
329 // padding value.
330 //
331 // TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
332 // required to be minimal. Therefore we say that the final |kVarianceBlocks|
333 // blocks can vary based on the padding and on the hash used. This value
334 // must be derived from public information.
335 const size_t kVarianceBlocks =
336 ( 255 + 1 + // maximum padding bytes + padding length
337 md_size + // length of hash's output
338 md_block_size - 1 // ceiling
339 ) / md_block_size
340 + 1; // the 0x80 marker and the encoded message length could or not
341 // require an extra block; since the exact value depends on the
342 // message length; thus, one extra block is always added to run
343 // in constant time.
344
345 // From now on we're dealing with the MAC, which conceptually has 13
346 // bytes of `header' before the start of the data.
347 size_t len = data_plus_mac_plus_padding_size + kHeaderLength;
348 // max_mac_bytes contains the maximum bytes of bytes in the MAC, including
349 // |header|, assuming that there's no padding.
350 size_t max_mac_bytes = len - md_size - 1;
351 // num_blocks is the maximum number of hash blocks.
352 size_t num_blocks =
353 (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
354 // In order to calculate the MAC in constant time we have to handle
355 // the final blocks specially because the padding value could cause the
356 // end to appear somewhere in the final |kVarianceBlocks| blocks and we
357 // can't leak where. However, |num_starting_blocks| worth of data can
358 // be hashed right away because no padding value can affect whether
359 // they are plaintext.
360 size_t num_starting_blocks = 0;
361 // k is the starting byte offset into the conceptual header||data where
362 // we start processing.
363 size_t k = 0;
364 // mac_end_offset is the index just past the end of the data to be MACed.
365 size_t mac_end_offset = data_plus_mac_size + kHeaderLength - md_size;
366 // c is the index of the 0x80 byte in the final hash block that contains
367 // application data.
368 size_t c = mac_end_offset & (md_block_size - 1);
369 // index_a is the hash block number that contains the 0x80 terminating value.
370 size_t index_a = mac_end_offset >> md_block_shift;
371 // index_b is the hash block number that contains the 64-bit hash length, in
372 // bits.
373 size_t index_b = (mac_end_offset + md_length_size) >> md_block_shift;
374
375 if (num_blocks > kVarianceBlocks) {
376 num_starting_blocks = num_blocks - kVarianceBlocks;
377 k = md_block_size * num_starting_blocks;
378 }
379
380 // bits is the hash-length in bits. It includes the additional hash
381 // block for the masked HMAC key.
382 size_t bits = 8 * mac_end_offset; // at most 18 bits to represent
383
384 // Compute the initial HMAC block.
385 bits += 8 * md_block_size;
386 // hmac_pad is the masked HMAC key.
387 uint8_t hmac_pad[MAX_HASH_BLOCK_SIZE];
388 OPENSSL_memset(hmac_pad, 0, md_block_size);
389 assert(mac_secret_length <= sizeof(hmac_pad));
390 OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length);
391 for (size_t i = 0; i < md_block_size; i++) {
392 hmac_pad[i] ^= 0x36;
393 }
394
395 md_transform(&md_state, hmac_pad);
396
397 // The length check means |bits| fits in four bytes.
398 uint8_t length_bytes[MAX_HASH_BIT_COUNT_BYTES];
399 OPENSSL_memset(length_bytes, 0, md_length_size - 4);
400 length_bytes[md_length_size - 4] = (uint8_t)(bits >> 24);
401 length_bytes[md_length_size - 3] = (uint8_t)(bits >> 16);
402 length_bytes[md_length_size - 2] = (uint8_t)(bits >> 8);
403 length_bytes[md_length_size - 1] = (uint8_t)bits;
404
405 if (k > 0) {
406 // k is a multiple of md_block_size.
407 uint8_t first_block[MAX_HASH_BLOCK_SIZE];
408 OPENSSL_memcpy(first_block, header, 13);
409 OPENSSL_memcpy(first_block + 13, data, md_block_size - 13);
410 md_transform(&md_state, first_block);
411 for (size_t i = 1; i < k / md_block_size; i++) {
412 md_transform(&md_state, data + md_block_size * i - 13);
413 }
414 }
415
416 uint8_t mac_out[EVP_MAX_MD_SIZE];
417 OPENSSL_memset(mac_out, 0, sizeof(mac_out));
418
419 // We now process the final hash blocks. For each block, we construct
420 // it in constant time. If the |i==index_a| then we'll include the 0x80
421 // bytes and zero pad etc. For each block we selectively copy it, in
422 // constant time, to |mac_out|.
423 for (size_t i = num_starting_blocks;
424 i <= num_starting_blocks + kVarianceBlocks; i++) {
425 uint8_t block[MAX_HASH_BLOCK_SIZE];
426 uint8_t is_block_a = constant_time_eq_8(i, index_a);
427 uint8_t is_block_b = constant_time_eq_8(i, index_b);
428 for (size_t j = 0; j < md_block_size; j++) {
429 uint8_t b = 0;
430 if (k < kHeaderLength) {
431 b = header[k];
432 } else if (k < data_plus_mac_plus_padding_size + kHeaderLength) {
433 b = data[k - kHeaderLength];
434 }
435 k++;
436
437 uint8_t is_past_c = is_block_a & constant_time_ge_8(j, c);
438 uint8_t is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
439 // If this is the block containing the end of the
440 // application data, and we are at the offset for the
441 // 0x80 value, then overwrite b with 0x80.
442 b = constant_time_select_8(is_past_c, 0x80, b);
443 // If this the the block containing the end of the
444 // application data and we're past the 0x80 value then
445 // just write zero.
446 b = b & ~is_past_cp1;
447 // If this is index_b (the final block), but not
448 // index_a (the end of the data), then the 64-bit
449 // length didn't fit into index_a and we're having to
450 // add an extra block of zeros.
451 b &= ~is_block_b | is_block_a;
452
453 // The final bytes of one of the blocks contains the
454 // length.
455 if (j >= md_block_size - md_length_size) {
456 // If this is index_b, write a length byte.
457 b = constant_time_select_8(
458 is_block_b, length_bytes[j - (md_block_size - md_length_size)], b);
459 }
460 block[j] = b;
461 }
462
463 md_transform(&md_state, block);
464 md_final_raw(&md_state, block);
465 // If this is index_b, copy the hash value to |mac_out|.
466 for (size_t j = 0; j < md_size; j++) {
467 mac_out[j] |= block[j] & is_block_b;
468 }
469 }
470
471 EVP_MD_CTX md_ctx;
472 EVP_MD_CTX_init(&md_ctx);
473 if (!EVP_DigestInit_ex(&md_ctx, md, NULL /* engine */)) {
474 EVP_MD_CTX_cleanup(&md_ctx);
475 return 0;
476 }
477
478 // Complete the HMAC in the standard manner.
479 for (size_t i = 0; i < md_block_size; i++) {
480 hmac_pad[i] ^= 0x6a;
481 }
482
483 EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
484 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
485 unsigned md_out_size_u;
486 EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
487 *md_out_size = md_out_size_u;
488 EVP_MD_CTX_cleanup(&md_ctx);
489
490 return 1;
491 }
492