• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2009 VMware, Inc.
4  * Copyright 2007 VMware, Inc.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 
29 /**
30  * @file
31  * Code generate the whole fragment pipeline.
32  *
33  * The fragment pipeline consists of the following stages:
34  * - early depth test
35  * - fragment shader
36  * - alpha test
37  * - depth/stencil test
38  * - blending
39  *
40  * This file has only the glue to assemble the fragment pipeline.  The actual
41  * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42  * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43  * muster the LLVM JIT execution engine to create a function that follows an
44  * established binary interface and that can be called from C directly.
45  *
46  * A big source of complexity here is that we often want to run different
47  * stages with different precisions and data types and precisions. For example,
48  * the fragment shader needs typically to be done in floats, but the
49  * depth/stencil test and blending is better done in the type that most closely
50  * matches the depth/stencil and color buffer respectively.
51  *
52  * Since the width of a SIMD vector register stays the same regardless of the
53  * element type, different types imply different number of elements, so we must
54  * code generate more instances of the stages with larger types to be able to
55  * feed/consume the stages with smaller types.
56  *
57  * @author Jose Fonseca <jfonseca@vmware.com>
58  */
59 
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_bitarit.h"
88 #include "gallivm/lp_bld_pack.h"
89 #include "gallivm/lp_bld_format.h"
90 #include "gallivm/lp_bld_quad.h"
91 
92 #include "lp_bld_alpha.h"
93 #include "lp_bld_blend.h"
94 #include "lp_bld_depth.h"
95 #include "lp_bld_interp.h"
96 #include "lp_context.h"
97 #include "lp_debug.h"
98 #include "lp_perf.h"
99 #include "lp_setup.h"
100 #include "lp_state.h"
101 #include "lp_tex_sample.h"
102 #include "lp_flush.h"
103 #include "lp_state_fs.h"
104 #include "lp_rast.h"
105 
106 
107 /** Fragment shader number (for debugging) */
108 static unsigned fs_no = 0;
109 
110 
111 /**
112  * Expand the relevant bits of mask_input to a n*4-dword mask for the
113  * n*four pixels in n 2x2 quads.  This will set the n*four elements of the
114  * quad mask vector to 0 or ~0.
115  * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
116  * quad arguments with fs length 8.
117  *
118  * \param first_quad  which quad(s) of the quad group to test, in [0,3]
119  * \param mask_input  bitwise mask for the whole 4x4 stamp
120  */
121 static LLVMValueRef
generate_quad_mask(struct gallivm_state * gallivm,struct lp_type fs_type,unsigned first_quad,LLVMValueRef mask_input)122 generate_quad_mask(struct gallivm_state *gallivm,
123                    struct lp_type fs_type,
124                    unsigned first_quad,
125                    LLVMValueRef mask_input) /* int32 */
126 {
127    LLVMBuilderRef builder = gallivm->builder;
128    struct lp_type mask_type;
129    LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
130    LLVMValueRef bits[16];
131    LLVMValueRef mask, bits_vec;
132    int shift, i;
133 
134    /*
135     * XXX: We'll need a different path for 16 x u8
136     */
137    assert(fs_type.width == 32);
138    assert(fs_type.length <= ARRAY_SIZE(bits));
139    mask_type = lp_int_type(fs_type);
140 
141    /*
142     * mask_input >>= (quad * 4)
143     */
144    switch (first_quad) {
145    case 0:
146       shift = 0;
147       break;
148    case 1:
149       assert(fs_type.length == 4);
150       shift = 2;
151       break;
152    case 2:
153       shift = 8;
154       break;
155    case 3:
156       assert(fs_type.length == 4);
157       shift = 10;
158       break;
159    default:
160       assert(0);
161       shift = 0;
162    }
163 
164    mask_input = LLVMBuildLShr(builder,
165                               mask_input,
166                               LLVMConstInt(i32t, shift, 0),
167                               "");
168 
169    /*
170     * mask = { mask_input & (1 << i), for i in [0,3] }
171     */
172    mask = lp_build_broadcast(gallivm,
173                              lp_build_vec_type(gallivm, mask_type),
174                              mask_input);
175 
176    for (i = 0; i < fs_type.length / 4; i++) {
177       unsigned j = 2 * (i % 2) + (i / 2) * 8;
178       bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
179       bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
180       bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
181       bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
182    }
183    bits_vec = LLVMConstVector(bits, fs_type.length);
184    mask = LLVMBuildAnd(builder, mask, bits_vec, "");
185 
186    /*
187     * mask = mask == bits ? ~0 : 0
188     */
189    mask = lp_build_compare(gallivm,
190                            mask_type, PIPE_FUNC_EQUAL,
191                            mask, bits_vec);
192 
193    return mask;
194 }
195 
196 
197 #define EARLY_DEPTH_TEST  0x1
198 #define LATE_DEPTH_TEST   0x2
199 #define EARLY_DEPTH_WRITE 0x4
200 #define LATE_DEPTH_WRITE  0x8
201 
202 static int
find_output_by_semantic(const struct tgsi_shader_info * info,unsigned semantic,unsigned index)203 find_output_by_semantic( const struct tgsi_shader_info *info,
204 			 unsigned semantic,
205 			 unsigned index )
206 {
207    int i;
208 
209    for (i = 0; i < info->num_outputs; i++)
210       if (info->output_semantic_name[i] == semantic &&
211 	  info->output_semantic_index[i] == index)
212 	 return i;
213 
214    return -1;
215 }
216 
217 
218 /**
219  * Fetch the specified lp_jit_viewport structure for a given viewport_index.
220  */
221 static LLVMValueRef
lp_llvm_viewport(LLVMValueRef context_ptr,struct gallivm_state * gallivm,LLVMValueRef viewport_index)222 lp_llvm_viewport(LLVMValueRef context_ptr,
223                  struct gallivm_state *gallivm,
224                  LLVMValueRef viewport_index)
225 {
226    LLVMBuilderRef builder = gallivm->builder;
227    LLVMValueRef ptr;
228    LLVMValueRef res;
229    struct lp_type viewport_type =
230       lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
231 
232    ptr = lp_jit_context_viewports(gallivm, context_ptr);
233    ptr = LLVMBuildPointerCast(builder, ptr,
234             LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
235 
236    res = lp_build_pointer_get(builder, ptr, viewport_index);
237 
238    return res;
239 }
240 
241 
242 static LLVMValueRef
lp_build_depth_clamp(struct gallivm_state * gallivm,LLVMBuilderRef builder,struct lp_type type,LLVMValueRef context_ptr,LLVMValueRef thread_data_ptr,LLVMValueRef z)243 lp_build_depth_clamp(struct gallivm_state *gallivm,
244                      LLVMBuilderRef builder,
245                      struct lp_type type,
246                      LLVMValueRef context_ptr,
247                      LLVMValueRef thread_data_ptr,
248                      LLVMValueRef z)
249 {
250    LLVMValueRef viewport, min_depth, max_depth;
251    LLVMValueRef viewport_index;
252    struct lp_build_context f32_bld;
253 
254    assert(type.floating);
255    lp_build_context_init(&f32_bld, gallivm, type);
256 
257    /*
258     * Assumes clamping of the viewport index will occur in setup/gs. Value
259     * is passed through the rasterization stage via lp_rast_shader_inputs.
260     *
261     * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
262     *      semantics.
263     */
264    viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
265                        thread_data_ptr);
266 
267    /*
268     * Load the min and max depth from the lp_jit_context.viewports
269     * array of lp_jit_viewport structures.
270     */
271    viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
272 
273    /* viewports[viewport_index].min_depth */
274    min_depth = LLVMBuildExtractElement(builder, viewport,
275                   lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
276    min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
277 
278    /* viewports[viewport_index].max_depth */
279    max_depth = LLVMBuildExtractElement(builder, viewport,
280                   lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
281    max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
282 
283    /*
284     * Clamp to the min and max depth values for the given viewport.
285     */
286    return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
287 }
288 
289 
290 /**
291  * Generate the fragment shader, depth/stencil test, and alpha tests.
292  */
293 static void
generate_fs_loop(struct gallivm_state * gallivm,struct lp_fragment_shader * shader,const struct lp_fragment_shader_variant_key * key,LLVMBuilderRef builder,struct lp_type type,LLVMValueRef context_ptr,LLVMValueRef num_loop,struct lp_build_interp_soa_context * interp,struct lp_build_sampler_soa * sampler,LLVMValueRef mask_store,LLVMValueRef (* out_color)[4],LLVMValueRef depth_ptr,LLVMValueRef depth_stride,LLVMValueRef facing,LLVMValueRef thread_data_ptr)294 generate_fs_loop(struct gallivm_state *gallivm,
295                  struct lp_fragment_shader *shader,
296                  const struct lp_fragment_shader_variant_key *key,
297                  LLVMBuilderRef builder,
298                  struct lp_type type,
299                  LLVMValueRef context_ptr,
300                  LLVMValueRef num_loop,
301                  struct lp_build_interp_soa_context *interp,
302                  struct lp_build_sampler_soa *sampler,
303                  LLVMValueRef mask_store,
304                  LLVMValueRef (*out_color)[4],
305                  LLVMValueRef depth_ptr,
306                  LLVMValueRef depth_stride,
307                  LLVMValueRef facing,
308                  LLVMValueRef thread_data_ptr)
309 {
310    const struct util_format_description *zs_format_desc = NULL;
311    const struct tgsi_token *tokens = shader->base.tokens;
312    struct lp_type int_type = lp_int_type(type);
313    LLVMTypeRef vec_type, int_vec_type;
314    LLVMValueRef mask_ptr, mask_val;
315    LLVMValueRef consts_ptr, num_consts_ptr;
316    LLVMValueRef z;
317    LLVMValueRef z_value, s_value;
318    LLVMValueRef z_fb, s_fb;
319    LLVMValueRef stencil_refs[2];
320    LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
321    struct lp_build_for_loop_state loop_state;
322    struct lp_build_mask_context mask;
323    /*
324     * TODO: figure out if simple_shader optimization is really worthwile to
325     * keep. Disabled because it may hide some real bugs in the (depth/stencil)
326     * code since tests tend to take another codepath than real shaders.
327     */
328    boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
329                             shader->info.base.num_inputs < 3 &&
330                             shader->info.base.num_instructions < 8) && 0;
331    const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
332                                      util_blend_state_is_dual(&key->blend, 0);
333    unsigned attrib;
334    unsigned chan;
335    unsigned cbuf;
336    unsigned depth_mode;
337 
338    struct lp_bld_tgsi_system_values system_values;
339 
340    memset(&system_values, 0, sizeof(system_values));
341 
342    if (key->depth.enabled ||
343        key->stencil[0].enabled) {
344 
345       zs_format_desc = util_format_description(key->zsbuf_format);
346       assert(zs_format_desc);
347 
348       if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
349          if (key->alpha.enabled ||
350              key->blend.alpha_to_coverage ||
351              shader->info.base.uses_kill ||
352              shader->info.base.writes_samplemask) {
353             /* With alpha test and kill, can do the depth test early
354              * and hopefully eliminate some quads.  But need to do a
355              * special deferred depth write once the final mask value
356              * is known. This only works though if there's either no
357              * stencil test or the stencil value isn't written.
358              */
359             if (key->stencil[0].enabled && (key->stencil[0].writemask ||
360                                             (key->stencil[1].enabled &&
361                                              key->stencil[1].writemask)))
362                depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
363             else
364                depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
365          }
366          else
367             depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
368       }
369       else {
370          depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
371       }
372 
373       if (!(key->depth.enabled && key->depth.writemask) &&
374           !(key->stencil[0].enabled && (key->stencil[0].writemask ||
375                                         (key->stencil[1].enabled &&
376                                          key->stencil[1].writemask))))
377          depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
378    }
379    else {
380       depth_mode = 0;
381    }
382 
383    vec_type = lp_build_vec_type(gallivm, type);
384    int_vec_type = lp_build_vec_type(gallivm, int_type);
385 
386    stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
387    stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
388    /* convert scalar stencil refs into vectors */
389    stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
390    stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
391 
392    consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
393    num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
394 
395    lp_build_for_loop_begin(&loop_state, gallivm,
396                            lp_build_const_int32(gallivm, 0),
397                            LLVMIntULT,
398                            num_loop,
399                            lp_build_const_int32(gallivm, 1));
400 
401    mask_ptr = LLVMBuildGEP(builder, mask_store,
402                            &loop_state.counter, 1, "mask_ptr");
403    mask_val = LLVMBuildLoad(builder, mask_ptr, "");
404 
405    memset(outputs, 0, sizeof outputs);
406 
407    for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
408       for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
409          out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
410                                                        lp_build_vec_type(gallivm,
411                                                                          type),
412                                                        num_loop, "color");
413       }
414    }
415    if (dual_source_blend) {
416       assert(key->nr_cbufs <= 1);
417       for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
418          out_color[1][chan] = lp_build_array_alloca(gallivm,
419                                                     lp_build_vec_type(gallivm,
420                                                                       type),
421                                                     num_loop, "color1");
422       }
423    }
424 
425 
426    /* 'mask' will control execution based on quad's pixel alive/killed state */
427    lp_build_mask_begin(&mask, gallivm, type, mask_val);
428 
429    if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
430       lp_build_mask_check(&mask);
431 
432    lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
433    z = interp->pos[2];
434 
435    if (depth_mode & EARLY_DEPTH_TEST) {
436       /*
437        * Clamp according to ARB_depth_clamp semantics.
438        */
439       if (key->depth_clamp) {
440          z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
441                                   thread_data_ptr, z);
442       }
443       lp_build_depth_stencil_load_swizzled(gallivm, type,
444                                            zs_format_desc, key->resource_1d,
445                                            depth_ptr, depth_stride,
446                                            &z_fb, &s_fb, loop_state.counter);
447       lp_build_depth_stencil_test(gallivm,
448                                   &key->depth,
449                                   key->stencil,
450                                   type,
451                                   zs_format_desc,
452                                   &mask,
453                                   stencil_refs,
454                                   z, z_fb, s_fb,
455                                   facing,
456                                   &z_value, &s_value,
457                                   !simple_shader);
458 
459       if (depth_mode & EARLY_DEPTH_WRITE) {
460          lp_build_depth_stencil_write_swizzled(gallivm, type,
461                                                zs_format_desc, key->resource_1d,
462                                                NULL, NULL, NULL, loop_state.counter,
463                                                depth_ptr, depth_stride,
464                                                z_value, s_value);
465       }
466       /*
467        * Note mask check if stencil is enabled must be after ds write not after
468        * stencil test otherwise new stencil values may not get written if all
469        * fragments got killed by depth/stencil test.
470        */
471       if (!simple_shader && key->stencil[0].enabled)
472          lp_build_mask_check(&mask);
473    }
474 
475    lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
476 
477    /* Build the actual shader */
478    lp_build_tgsi_soa(gallivm, tokens, type, &mask,
479                      consts_ptr, num_consts_ptr, &system_values,
480                      interp->inputs,
481                      outputs, context_ptr, thread_data_ptr,
482                      sampler, &shader->info.base, NULL);
483 
484    /* Alpha test */
485    if (key->alpha.enabled) {
486       int color0 = find_output_by_semantic(&shader->info.base,
487                                            TGSI_SEMANTIC_COLOR,
488                                            0);
489 
490       if (color0 != -1 && outputs[color0][3]) {
491          const struct util_format_description *cbuf_format_desc;
492          LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
493          LLVMValueRef alpha_ref_value;
494 
495          alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
496          alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
497 
498          cbuf_format_desc = util_format_description(key->cbuf_format[0]);
499 
500          lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
501                              &mask, alpha, alpha_ref_value,
502                              (depth_mode & LATE_DEPTH_TEST) != 0);
503       }
504    }
505 
506    /* Emulate Alpha to Coverage with Alpha test */
507    if (key->blend.alpha_to_coverage) {
508       int color0 = find_output_by_semantic(&shader->info.base,
509                                            TGSI_SEMANTIC_COLOR,
510                                            0);
511 
512       if (color0 != -1 && outputs[color0][3]) {
513          LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
514 
515          lp_build_alpha_to_coverage(gallivm, type,
516                                     &mask, alpha,
517                                     (depth_mode & LATE_DEPTH_TEST) != 0);
518       }
519    }
520 
521    if (shader->info.base.writes_samplemask) {
522       int smaski = find_output_by_semantic(&shader->info.base,
523                                            TGSI_SEMANTIC_SAMPLEMASK,
524                                            0);
525       LLVMValueRef smask;
526       struct lp_build_context smask_bld;
527       lp_build_context_init(&smask_bld, gallivm, int_type);
528 
529       assert(smaski >= 0);
530       smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
531       /*
532        * Pixel is alive according to the first sample in the mask.
533        */
534       smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
535       smask = lp_build_and(&smask_bld, smask, smask_bld.one);
536       smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
537       lp_build_mask_update(&mask, smask);
538    }
539 
540    /* Late Z test */
541    if (depth_mode & LATE_DEPTH_TEST) {
542       int pos0 = find_output_by_semantic(&shader->info.base,
543                                          TGSI_SEMANTIC_POSITION,
544                                          0);
545       int s_out = find_output_by_semantic(&shader->info.base,
546                                           TGSI_SEMANTIC_STENCIL,
547                                           0);
548       if (pos0 != -1 && outputs[pos0][2]) {
549          z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
550       }
551       /*
552        * Clamp according to ARB_depth_clamp semantics.
553        */
554       if (key->depth_clamp) {
555          z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
556                                   thread_data_ptr, z);
557       }
558 
559       if (s_out != -1 && outputs[s_out][1]) {
560          /* there's only one value, and spec says to discard additional bits */
561          LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
562          stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
563          stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
564          stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
565          stencil_refs[1] = stencil_refs[0];
566       }
567 
568       lp_build_depth_stencil_load_swizzled(gallivm, type,
569                                            zs_format_desc, key->resource_1d,
570                                            depth_ptr, depth_stride,
571                                            &z_fb, &s_fb, loop_state.counter);
572 
573       lp_build_depth_stencil_test(gallivm,
574                                   &key->depth,
575                                   key->stencil,
576                                   type,
577                                   zs_format_desc,
578                                   &mask,
579                                   stencil_refs,
580                                   z, z_fb, s_fb,
581                                   facing,
582                                   &z_value, &s_value,
583                                   !simple_shader);
584       /* Late Z write */
585       if (depth_mode & LATE_DEPTH_WRITE) {
586          lp_build_depth_stencil_write_swizzled(gallivm, type,
587                                                zs_format_desc, key->resource_1d,
588                                                NULL, NULL, NULL, loop_state.counter,
589                                                depth_ptr, depth_stride,
590                                                z_value, s_value);
591       }
592    }
593    else if ((depth_mode & EARLY_DEPTH_TEST) &&
594             (depth_mode & LATE_DEPTH_WRITE))
595    {
596       /* Need to apply a reduced mask to the depth write.  Reload the
597        * depth value, update from zs_value with the new mask value and
598        * write that out.
599        */
600       lp_build_depth_stencil_write_swizzled(gallivm, type,
601                                             zs_format_desc, key->resource_1d,
602                                             &mask, z_fb, s_fb, loop_state.counter,
603                                             depth_ptr, depth_stride,
604                                             z_value, s_value);
605    }
606 
607 
608    /* Color write  */
609    for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
610    {
611       unsigned cbuf = shader->info.base.output_semantic_index[attrib];
612       if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
613            ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
614       {
615          for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
616             if(outputs[attrib][chan]) {
617                /* XXX: just initialize outputs to point at colors[] and
618                 * skip this.
619                 */
620                LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
621                LLVMValueRef color_ptr;
622                color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
623                                         &loop_state.counter, 1, "");
624                lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
625                LLVMBuildStore(builder, out, color_ptr);
626             }
627          }
628       }
629    }
630 
631    if (key->occlusion_count) {
632       LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
633       lp_build_name(counter, "counter");
634       lp_build_occlusion_count(gallivm, type,
635                                lp_build_mask_value(&mask), counter);
636    }
637 
638    mask_val = lp_build_mask_end(&mask);
639    LLVMBuildStore(builder, mask_val, mask_ptr);
640    lp_build_for_loop_end(&loop_state);
641 }
642 
643 
644 /**
645  * This function will reorder pixels from the fragment shader SoA to memory layout AoS
646  *
647  * Fragment Shader outputs pixels in small 2x2 blocks
648  *  e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
649  *
650  * However in memory pixels are stored in rows
651  *  e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
652  *
653  * @param type            fragment shader type (4x or 8x float)
654  * @param num_fs          number of fs_src
655  * @param is_1d           whether we're outputting to a 1d resource
656  * @param dst_channels    number of output channels
657  * @param fs_src          output from fragment shader
658  * @param dst             pointer to store result
659  * @param pad_inline      is channel padding inline or at end of row
660  * @return                the number of dsts
661  */
662 static int
generate_fs_twiddle(struct gallivm_state * gallivm,struct lp_type type,unsigned num_fs,unsigned dst_channels,LLVMValueRef fs_src[][4],LLVMValueRef * dst,bool pad_inline)663 generate_fs_twiddle(struct gallivm_state *gallivm,
664                     struct lp_type type,
665                     unsigned num_fs,
666                     unsigned dst_channels,
667                     LLVMValueRef fs_src[][4],
668                     LLVMValueRef* dst,
669                     bool pad_inline)
670 {
671    LLVMValueRef src[16];
672 
673    bool swizzle_pad;
674    bool twiddle;
675    bool split;
676 
677    unsigned pixels = type.length / 4;
678    unsigned reorder_group;
679    unsigned src_channels;
680    unsigned src_count;
681    unsigned i;
682 
683    src_channels = dst_channels < 3 ? dst_channels : 4;
684    src_count = num_fs * src_channels;
685 
686    assert(pixels == 2 || pixels == 1);
687    assert(num_fs * src_channels <= ARRAY_SIZE(src));
688 
689    /*
690     * Transpose from SoA -> AoS
691     */
692    for (i = 0; i < num_fs; ++i) {
693       lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
694    }
695 
696    /*
697     * Pick transformation options
698     */
699    swizzle_pad = false;
700    twiddle = false;
701    split = false;
702    reorder_group = 0;
703 
704    if (dst_channels == 1) {
705       twiddle = true;
706 
707       if (pixels == 2) {
708          split = true;
709       }
710    } else if (dst_channels == 2) {
711       if (pixels == 1) {
712          reorder_group = 1;
713       }
714    } else if (dst_channels > 2) {
715       if (pixels == 1) {
716          reorder_group = 2;
717       } else {
718          twiddle = true;
719       }
720 
721       if (!pad_inline && dst_channels == 3 && pixels > 1) {
722          swizzle_pad = true;
723       }
724    }
725 
726    /*
727     * Split the src in half
728     */
729    if (split) {
730       for (i = num_fs; i > 0; --i) {
731          src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
732          src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
733       }
734 
735       src_count *= 2;
736       type.length = 4;
737    }
738 
739    /*
740     * Ensure pixels are in memory order
741     */
742    if (reorder_group) {
743       /* Twiddle pixels by reordering the array, e.g.:
744        *
745        * src_count =  8 -> 0 2 1 3 4 6 5 7
746        * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
747        */
748       const unsigned reorder_sw[] = { 0, 2, 1, 3 };
749 
750       for (i = 0; i < src_count; ++i) {
751          unsigned group = i / reorder_group;
752          unsigned block = (group / 4) * 4 * reorder_group;
753          unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
754          dst[i] = src[j];
755       }
756    } else if (twiddle) {
757       /* Twiddle pixels across elements of array */
758       /*
759        * XXX: we should avoid this in some cases, but would need to tell
760        * lp_build_conv to reorder (or deal with it ourselves).
761        */
762       lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
763    } else {
764       /* Do nothing */
765       memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
766    }
767 
768    /*
769     * Moves any padding between pixels to the end
770     * e.g. RGBXRGBX -> RGBRGBXX
771     */
772    if (swizzle_pad) {
773       unsigned char swizzles[16];
774       unsigned elems = pixels * dst_channels;
775 
776       for (i = 0; i < type.length; ++i) {
777          if (i < elems)
778             swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
779          else
780             swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
781       }
782 
783       for (i = 0; i < src_count; ++i) {
784          dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
785       }
786    }
787 
788    return src_count;
789 }
790 
791 
792 /*
793  * Untwiddle and transpose, much like the above.
794  * However, this is after conversion, so we get packed vectors.
795  * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
796  * the vectors will look like:
797  * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
798  * be swizzled here). Extending to 16bit should be trivial.
799  * Should also be extended to handle twice wide vectors with AVX2...
800  */
801 static void
fs_twiddle_transpose(struct gallivm_state * gallivm,struct lp_type type,LLVMValueRef * src,unsigned src_count,LLVMValueRef * dst)802 fs_twiddle_transpose(struct gallivm_state *gallivm,
803                      struct lp_type type,
804                      LLVMValueRef *src,
805                      unsigned src_count,
806                      LLVMValueRef *dst)
807 {
808    unsigned i, j;
809    struct lp_type type64, type16, type32;
810    LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
811    LLVMBuilderRef builder = gallivm->builder;
812    LLVMValueRef tmp[4], shuf[8];
813    for (j = 0; j < 2; j++) {
814       shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
815       shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
816       shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
817       shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
818    }
819 
820    assert(src_count == 4 || src_count == 2 || src_count == 1);
821    assert(type.width == 8);
822    assert(type.length == 16);
823 
824    type8_t = lp_build_vec_type(gallivm, type);
825 
826    type64 = type;
827    type64.length /= 8;
828    type64.width *= 8;
829    type64_t = lp_build_vec_type(gallivm, type64);
830 
831    type16 = type;
832    type16.length /= 2;
833    type16.width *= 2;
834    type16_t = lp_build_vec_type(gallivm, type16);
835 
836    type32 = type;
837    type32.length /= 4;
838    type32.width *= 4;
839    type32_t = lp_build_vec_type(gallivm, type32);
840 
841    lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
842 
843    if (src_count == 1) {
844       /* transpose was no-op, just untwiddle */
845       LLVMValueRef shuf_vec;
846       shuf_vec = LLVMConstVector(shuf, 8);
847       tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
848       tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
849       dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
850    } else if (src_count == 2) {
851       LLVMValueRef shuf_vec;
852       shuf_vec = LLVMConstVector(shuf, 4);
853 
854       for (i = 0; i < 2; i++) {
855          tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
856          tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
857          dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
858       }
859    } else {
860       for (j = 0; j < 2; j++) {
861          LLVMValueRef lo, hi, lo2, hi2;
862           /*
863           * Note that if we only really have 3 valid channels (rgb)
864           * and we don't need alpha we could substitute a undef here
865           * for the respective channel (causing llvm to drop conversion
866           * for alpha).
867           */
868          /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
869          lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
870          hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
871          lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
872          hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
873          dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
874          dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
875       }
876    }
877 }
878 
879 
880 /**
881  * Load an unswizzled block of pixels from memory
882  */
883 static void
load_unswizzled_block(struct gallivm_state * gallivm,LLVMValueRef base_ptr,LLVMValueRef stride,unsigned block_width,unsigned block_height,LLVMValueRef * dst,struct lp_type dst_type,unsigned dst_count,unsigned dst_alignment)884 load_unswizzled_block(struct gallivm_state *gallivm,
885                       LLVMValueRef base_ptr,
886                       LLVMValueRef stride,
887                       unsigned block_width,
888                       unsigned block_height,
889                       LLVMValueRef* dst,
890                       struct lp_type dst_type,
891                       unsigned dst_count,
892                       unsigned dst_alignment)
893 {
894    LLVMBuilderRef builder = gallivm->builder;
895    unsigned row_size = dst_count / block_height;
896    unsigned i;
897 
898    /* Ensure block exactly fits into dst */
899    assert((block_width * block_height) % dst_count == 0);
900 
901    for (i = 0; i < dst_count; ++i) {
902       unsigned x = i % row_size;
903       unsigned y = i / row_size;
904 
905       LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
906       LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
907 
908       LLVMValueRef gep[2];
909       LLVMValueRef dst_ptr;
910 
911       gep[0] = lp_build_const_int32(gallivm, 0);
912       gep[1] = LLVMBuildAdd(builder, bx, by, "");
913 
914       dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
915       dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
916                                  LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
917 
918       dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
919 
920       LLVMSetAlignment(dst[i], dst_alignment);
921    }
922 }
923 
924 
925 /**
926  * Store an unswizzled block of pixels to memory
927  */
928 static void
store_unswizzled_block(struct gallivm_state * gallivm,LLVMValueRef base_ptr,LLVMValueRef stride,unsigned block_width,unsigned block_height,LLVMValueRef * src,struct lp_type src_type,unsigned src_count,unsigned src_alignment)929 store_unswizzled_block(struct gallivm_state *gallivm,
930                        LLVMValueRef base_ptr,
931                        LLVMValueRef stride,
932                        unsigned block_width,
933                        unsigned block_height,
934                        LLVMValueRef* src,
935                        struct lp_type src_type,
936                        unsigned src_count,
937                        unsigned src_alignment)
938 {
939    LLVMBuilderRef builder = gallivm->builder;
940    unsigned row_size = src_count / block_height;
941    unsigned i;
942 
943    /* Ensure src exactly fits into block */
944    assert((block_width * block_height) % src_count == 0);
945 
946    for (i = 0; i < src_count; ++i) {
947       unsigned x = i % row_size;
948       unsigned y = i / row_size;
949 
950       LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
951       LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
952 
953       LLVMValueRef gep[2];
954       LLVMValueRef src_ptr;
955 
956       gep[0] = lp_build_const_int32(gallivm, 0);
957       gep[1] = LLVMBuildAdd(builder, bx, by, "");
958 
959       src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
960       src_ptr = LLVMBuildBitCast(builder, src_ptr,
961                                  LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
962 
963       src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
964 
965       LLVMSetAlignment(src_ptr, src_alignment);
966    }
967 }
968 
969 
970 /**
971  * Checks if a format description is an arithmetic format
972  *
973  * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
974  */
975 static inline boolean
is_arithmetic_format(const struct util_format_description * format_desc)976 is_arithmetic_format(const struct util_format_description *format_desc)
977 {
978    boolean arith = false;
979    unsigned i;
980 
981    for (i = 0; i < format_desc->nr_channels; ++i) {
982       arith |= format_desc->channel[i].size != format_desc->channel[0].size;
983       arith |= (format_desc->channel[i].size % 8) != 0;
984    }
985 
986    return arith;
987 }
988 
989 
990 /**
991  * Checks if this format requires special handling due to required expansion
992  * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
993  * SoA conversion.
994  */
995 static inline boolean
format_expands_to_float_soa(const struct util_format_description * format_desc)996 format_expands_to_float_soa(const struct util_format_description *format_desc)
997 {
998    if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
999        format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1000       return true;
1001    }
1002    return false;
1003 }
1004 
1005 
1006 /**
1007  * Retrieves the type representing the memory layout for a format
1008  *
1009  * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1010  */
1011 static inline void
lp_mem_type_from_format_desc(const struct util_format_description * format_desc,struct lp_type * type)1012 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1013                              struct lp_type* type)
1014 {
1015    unsigned i;
1016    unsigned chan;
1017 
1018    if (format_expands_to_float_soa(format_desc)) {
1019       /* just make this a uint with width of block */
1020       type->floating = false;
1021       type->fixed = false;
1022       type->sign = false;
1023       type->norm = false;
1024       type->width = format_desc->block.bits;
1025       type->length = 1;
1026       return;
1027    }
1028 
1029    for (i = 0; i < 4; i++)
1030       if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1031          break;
1032    chan = i;
1033 
1034    memset(type, 0, sizeof(struct lp_type));
1035    type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1036    type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1037    type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1038    type->norm     = format_desc->channel[chan].normalized;
1039 
1040    if (is_arithmetic_format(format_desc)) {
1041       type->width = 0;
1042       type->length = 1;
1043 
1044       for (i = 0; i < format_desc->nr_channels; ++i) {
1045          type->width += format_desc->channel[i].size;
1046       }
1047    } else {
1048       type->width = format_desc->channel[chan].size;
1049       type->length = format_desc->nr_channels;
1050    }
1051 }
1052 
1053 
1054 /**
1055  * Retrieves the type for a format which is usable in the blending code.
1056  *
1057  * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1058  */
1059 static inline void
lp_blend_type_from_format_desc(const struct util_format_description * format_desc,struct lp_type * type)1060 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1061                                struct lp_type* type)
1062 {
1063    unsigned i;
1064    unsigned chan;
1065 
1066    if (format_expands_to_float_soa(format_desc)) {
1067       /* always use ordinary floats for blending */
1068       type->floating = true;
1069       type->fixed = false;
1070       type->sign = true;
1071       type->norm = false;
1072       type->width = 32;
1073       type->length = 4;
1074       return;
1075    }
1076 
1077    for (i = 0; i < 4; i++)
1078       if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1079          break;
1080    chan = i;
1081 
1082    memset(type, 0, sizeof(struct lp_type));
1083    type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1084    type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1085    type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1086    type->norm     = format_desc->channel[chan].normalized;
1087    type->width    = format_desc->channel[chan].size;
1088    type->length   = format_desc->nr_channels;
1089 
1090    for (i = 1; i < format_desc->nr_channels; ++i) {
1091       if (format_desc->channel[i].size > type->width)
1092          type->width = format_desc->channel[i].size;
1093    }
1094 
1095    if (type->floating) {
1096       type->width = 32;
1097    } else {
1098       if (type->width <= 8) {
1099          type->width = 8;
1100       } else if (type->width <= 16) {
1101          type->width = 16;
1102       } else {
1103          type->width = 32;
1104       }
1105    }
1106 
1107    if (is_arithmetic_format(format_desc) && type->length == 3) {
1108       type->length = 4;
1109    }
1110 }
1111 
1112 
1113 /**
1114  * Scale a normalized value from src_bits to dst_bits.
1115  *
1116  * The exact calculation is
1117  *
1118  *    dst = iround(src * dst_mask / src_mask)
1119  *
1120  *  or with integer rounding
1121  *
1122  *    dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1123  *
1124  *  where
1125  *
1126  *    src_mask = (1 << src_bits) - 1
1127  *    dst_mask = (1 << dst_bits) - 1
1128  *
1129  * but we try to avoid division and multiplication through shifts.
1130  */
1131 static inline LLVMValueRef
scale_bits(struct gallivm_state * gallivm,int src_bits,int dst_bits,LLVMValueRef src,struct lp_type src_type)1132 scale_bits(struct gallivm_state *gallivm,
1133            int src_bits,
1134            int dst_bits,
1135            LLVMValueRef src,
1136            struct lp_type src_type)
1137 {
1138    LLVMBuilderRef builder = gallivm->builder;
1139    LLVMValueRef result = src;
1140 
1141    if (dst_bits < src_bits) {
1142       int delta_bits = src_bits - dst_bits;
1143 
1144       if (delta_bits <= dst_bits) {
1145          /*
1146           * Approximate the rescaling with a single shift.
1147           *
1148           * This gives the wrong rounding.
1149           */
1150 
1151          result = LLVMBuildLShr(builder,
1152                                 src,
1153                                 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1154                                 "");
1155 
1156       } else {
1157          /*
1158           * Try more accurate rescaling.
1159           */
1160 
1161          /*
1162           * Drop the least significant bits to make space for the multiplication.
1163           *
1164           * XXX: A better approach would be to use a wider integer type as intermediate.  But
1165           * this is enough to convert alpha from 16bits -> 2 when rendering to
1166           * PIPE_FORMAT_R10G10B10A2_UNORM.
1167           */
1168          result = LLVMBuildLShr(builder,
1169                                 src,
1170                                 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1171                                 "");
1172 
1173 
1174          result = LLVMBuildMul(builder,
1175                                result,
1176                                lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1177                                "");
1178 
1179          /*
1180           * Add a rounding term before the division.
1181           *
1182           * TODO: Handle signed integers too.
1183           */
1184          if (!src_type.sign) {
1185             result = LLVMBuildAdd(builder,
1186                                   result,
1187                                   lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1188                                   "");
1189          }
1190 
1191          /*
1192           * Approximate the division by src_mask with a src_bits shift.
1193           *
1194           * Given the src has already been shifted by dst_bits, all we need
1195           * to do is to shift by the difference.
1196           */
1197 
1198          result = LLVMBuildLShr(builder,
1199                                 result,
1200                                 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1201                                 "");
1202       }
1203 
1204    } else if (dst_bits > src_bits) {
1205       /* Scale up bits */
1206       int db = dst_bits - src_bits;
1207 
1208       /* Shift left by difference in bits */
1209       result = LLVMBuildShl(builder,
1210                             src,
1211                             lp_build_const_int_vec(gallivm, src_type, db),
1212                             "");
1213 
1214       if (db <= src_bits) {
1215          /* Enough bits in src to fill the remainder */
1216          LLVMValueRef lower = LLVMBuildLShr(builder,
1217                                             src,
1218                                             lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1219                                             "");
1220 
1221          result = LLVMBuildOr(builder, result, lower, "");
1222       } else if (db > src_bits) {
1223          /* Need to repeatedly copy src bits to fill remainder in dst */
1224          unsigned n;
1225 
1226          for (n = src_bits; n < dst_bits; n *= 2) {
1227             LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1228 
1229             result = LLVMBuildOr(builder,
1230                                  result,
1231                                  LLVMBuildLShr(builder, result, shuv, ""),
1232                                  "");
1233          }
1234       }
1235    }
1236 
1237    return result;
1238 }
1239 
1240 /**
1241  * If RT is a smallfloat (needing denorms) format
1242  */
1243 static inline int
have_smallfloat_format(struct lp_type dst_type,enum pipe_format format)1244 have_smallfloat_format(struct lp_type dst_type,
1245                        enum pipe_format format)
1246 {
1247    return ((dst_type.floating && dst_type.width != 32) ||
1248     /* due to format handling hacks this format doesn't have floating set
1249      * here (and actually has width set to 32 too) so special case this. */
1250     (format == PIPE_FORMAT_R11G11B10_FLOAT));
1251 }
1252 
1253 
1254 /**
1255  * Convert from memory format to blending format
1256  *
1257  * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1258  */
1259 static void
convert_to_blend_type(struct gallivm_state * gallivm,unsigned block_size,const struct util_format_description * src_fmt,struct lp_type src_type,struct lp_type dst_type,LLVMValueRef * src,unsigned num_srcs)1260 convert_to_blend_type(struct gallivm_state *gallivm,
1261                       unsigned block_size,
1262                       const struct util_format_description *src_fmt,
1263                       struct lp_type src_type,
1264                       struct lp_type dst_type,
1265                       LLVMValueRef* src, // and dst
1266                       unsigned num_srcs)
1267 {
1268    LLVMValueRef *dst = src;
1269    LLVMBuilderRef builder = gallivm->builder;
1270    struct lp_type blend_type;
1271    struct lp_type mem_type;
1272    unsigned i, j;
1273    unsigned pixels = block_size / num_srcs;
1274    bool is_arith;
1275 
1276    /*
1277     * full custom path for packed floats and srgb formats - none of the later
1278     * functions would do anything useful, and given the lp_type representation they
1279     * can't be fixed. Should really have some SoA blend path for these kind of
1280     * formats rather than hacking them in here.
1281     */
1282    if (format_expands_to_float_soa(src_fmt)) {
1283       LLVMValueRef tmpsrc[4];
1284       /*
1285        * This is pretty suboptimal for this case blending in SoA would be much
1286        * better, since conversion gets us SoA values so need to convert back.
1287        */
1288       assert(src_type.width == 32 || src_type.width == 16);
1289       assert(dst_type.floating);
1290       assert(dst_type.width == 32);
1291       assert(dst_type.length % 4 == 0);
1292       assert(num_srcs % 4 == 0);
1293 
1294       if (src_type.width == 16) {
1295          /* expand 4x16bit values to 4x32bit */
1296          struct lp_type type32x4 = src_type;
1297          LLVMTypeRef ltype32x4;
1298          unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1299          type32x4.width = 32;
1300          ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1301          for (i = 0; i < num_fetch; i++) {
1302             src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1303          }
1304          src_type.width = 32;
1305       }
1306       for (i = 0; i < 4; i++) {
1307          tmpsrc[i] = src[i];
1308       }
1309       for (i = 0; i < num_srcs / 4; i++) {
1310          LLVMValueRef tmpsoa[4];
1311          LLVMValueRef tmps = tmpsrc[i];
1312          if (dst_type.length == 8) {
1313             LLVMValueRef shuffles[8];
1314             unsigned j;
1315             /* fetch was 4 values but need 8-wide output values */
1316             tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1317             /*
1318              * for 8-wide aos transpose would give us wrong order not matching
1319              * incoming converted fs values and mask. ARGH.
1320              */
1321             for (j = 0; j < 4; j++) {
1322                shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1323                shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1324             }
1325             tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1326                                           LLVMConstVector(shuffles, 8), "");
1327          }
1328          if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1329             lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1330          }
1331          else {
1332             lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1333          }
1334          lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1335       }
1336       return;
1337    }
1338 
1339    lp_mem_type_from_format_desc(src_fmt, &mem_type);
1340    lp_blend_type_from_format_desc(src_fmt, &blend_type);
1341 
1342    /* Is the format arithmetic */
1343    is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1344    is_arith &= !(mem_type.width == 16 && mem_type.floating);
1345 
1346    /* Pad if necessary */
1347    if (!is_arith && src_type.length < dst_type.length) {
1348       for (i = 0; i < num_srcs; ++i) {
1349          dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1350       }
1351 
1352       src_type.length = dst_type.length;
1353    }
1354 
1355    /* Special case for half-floats */
1356    if (mem_type.width == 16 && mem_type.floating) {
1357       assert(blend_type.width == 32 && blend_type.floating);
1358       lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1359       is_arith = false;
1360    }
1361 
1362    if (!is_arith) {
1363       return;
1364    }
1365 
1366    src_type.width = blend_type.width * blend_type.length;
1367    blend_type.length *= pixels;
1368    src_type.length *= pixels / (src_type.length / mem_type.length);
1369 
1370    for (i = 0; i < num_srcs; ++i) {
1371       LLVMValueRef chans[4];
1372       LLVMValueRef res = NULL;
1373 
1374       dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1375 
1376       for (j = 0; j < src_fmt->nr_channels; ++j) {
1377          unsigned mask = 0;
1378          unsigned sa = src_fmt->channel[j].shift;
1379 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1380          unsigned from_lsb = j;
1381 #else
1382          unsigned from_lsb = src_fmt->nr_channels - j - 1;
1383 #endif
1384 
1385          mask = (1 << src_fmt->channel[j].size) - 1;
1386 
1387          /* Extract bits from source */
1388          chans[j] = LLVMBuildLShr(builder,
1389                                   dst[i],
1390                                   lp_build_const_int_vec(gallivm, src_type, sa),
1391                                   "");
1392 
1393          chans[j] = LLVMBuildAnd(builder,
1394                                  chans[j],
1395                                  lp_build_const_int_vec(gallivm, src_type, mask),
1396                                  "");
1397 
1398          /* Scale bits */
1399          if (src_type.norm) {
1400             chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1401                                   blend_type.width, chans[j], src_type);
1402          }
1403 
1404          /* Insert bits into correct position */
1405          chans[j] = LLVMBuildShl(builder,
1406                                  chans[j],
1407                                  lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1408                                  "");
1409 
1410          if (j == 0) {
1411             res = chans[j];
1412          } else {
1413             res = LLVMBuildOr(builder, res, chans[j], "");
1414          }
1415       }
1416 
1417       dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1418    }
1419 }
1420 
1421 
1422 /**
1423  * Convert from blending format to memory format
1424  *
1425  * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1426  */
1427 static void
convert_from_blend_type(struct gallivm_state * gallivm,unsigned block_size,const struct util_format_description * src_fmt,struct lp_type src_type,struct lp_type dst_type,LLVMValueRef * src,unsigned num_srcs)1428 convert_from_blend_type(struct gallivm_state *gallivm,
1429                         unsigned block_size,
1430                         const struct util_format_description *src_fmt,
1431                         struct lp_type src_type,
1432                         struct lp_type dst_type,
1433                         LLVMValueRef* src, // and dst
1434                         unsigned num_srcs)
1435 {
1436    LLVMValueRef* dst = src;
1437    unsigned i, j, k;
1438    struct lp_type mem_type;
1439    struct lp_type blend_type;
1440    LLVMBuilderRef builder = gallivm->builder;
1441    unsigned pixels = block_size / num_srcs;
1442    bool is_arith;
1443 
1444    /*
1445     * full custom path for packed floats and srgb formats - none of the later
1446     * functions would do anything useful, and given the lp_type representation they
1447     * can't be fixed. Should really have some SoA blend path for these kind of
1448     * formats rather than hacking them in here.
1449     */
1450    if (format_expands_to_float_soa(src_fmt)) {
1451       /*
1452        * This is pretty suboptimal for this case blending in SoA would be much
1453        * better - we need to transpose the AoS values back to SoA values for
1454        * conversion/packing.
1455        */
1456       assert(src_type.floating);
1457       assert(src_type.width == 32);
1458       assert(src_type.length % 4 == 0);
1459       assert(dst_type.width == 32 || dst_type.width == 16);
1460 
1461       for (i = 0; i < num_srcs / 4; i++) {
1462          LLVMValueRef tmpsoa[4], tmpdst;
1463          lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1464          /* really really need SoA here */
1465 
1466          if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1467             tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1468          }
1469          else {
1470             tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1471                                                    src_type, tmpsoa);
1472          }
1473 
1474          if (src_type.length == 8) {
1475             LLVMValueRef tmpaos, shuffles[8];
1476             unsigned j;
1477             /*
1478              * for 8-wide aos transpose has given us wrong order not matching
1479              * output order. HMPF. Also need to split the output values manually.
1480              */
1481             for (j = 0; j < 4; j++) {
1482                shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1483                shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1484             }
1485             tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1486                                             LLVMConstVector(shuffles, 8), "");
1487             src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1488             src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1489          }
1490          else {
1491             src[i] = tmpdst;
1492          }
1493       }
1494       if (dst_type.width == 16) {
1495          struct lp_type type16x8 = dst_type;
1496          struct lp_type type32x4 = dst_type;
1497          LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1498          unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1499          type16x8.length = 8;
1500          type32x4.width = 32;
1501          ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1502          ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1503          ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1504          /* We could do vector truncation but it doesn't generate very good code */
1505          for (i = 0; i < num_fetch; i++) {
1506             src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1507                                     src[i], lp_build_zero(gallivm, type32x4));
1508             src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1509             src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1510             src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1511          }
1512       }
1513       return;
1514    }
1515 
1516    lp_mem_type_from_format_desc(src_fmt, &mem_type);
1517    lp_blend_type_from_format_desc(src_fmt, &blend_type);
1518 
1519    is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1520 
1521    /* Special case for half-floats */
1522    if (mem_type.width == 16 && mem_type.floating) {
1523       int length = dst_type.length;
1524       assert(blend_type.width == 32 && blend_type.floating);
1525 
1526       dst_type.length = src_type.length;
1527 
1528       lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1529 
1530       dst_type.length = length;
1531       is_arith = false;
1532    }
1533 
1534    /* Remove any padding */
1535    if (!is_arith && (src_type.length % mem_type.length)) {
1536       src_type.length -= (src_type.length % mem_type.length);
1537 
1538       for (i = 0; i < num_srcs; ++i) {
1539          dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1540       }
1541    }
1542 
1543    /* No bit arithmetic to do */
1544    if (!is_arith) {
1545       return;
1546    }
1547 
1548    src_type.length = pixels;
1549    src_type.width = blend_type.length * blend_type.width;
1550    dst_type.length = pixels;
1551 
1552    for (i = 0; i < num_srcs; ++i) {
1553       LLVMValueRef chans[4];
1554       LLVMValueRef res = NULL;
1555 
1556       dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1557 
1558       for (j = 0; j < src_fmt->nr_channels; ++j) {
1559          unsigned mask = 0;
1560          unsigned sa = src_fmt->channel[j].shift;
1561 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1562          unsigned from_lsb = j;
1563 #else
1564          unsigned from_lsb = src_fmt->nr_channels - j - 1;
1565 #endif
1566 
1567          assert(blend_type.width > src_fmt->channel[j].size);
1568 
1569          for (k = 0; k < blend_type.width; ++k) {
1570             mask |= 1 << k;
1571          }
1572 
1573          /* Extract bits */
1574          chans[j] = LLVMBuildLShr(builder,
1575                                   dst[i],
1576                                   lp_build_const_int_vec(gallivm, src_type,
1577                                                          from_lsb * blend_type.width),
1578                                   "");
1579 
1580          chans[j] = LLVMBuildAnd(builder,
1581                                  chans[j],
1582                                  lp_build_const_int_vec(gallivm, src_type, mask),
1583                                  "");
1584 
1585          /* Scale down bits */
1586          if (src_type.norm) {
1587             chans[j] = scale_bits(gallivm, blend_type.width,
1588                                   src_fmt->channel[j].size, chans[j], src_type);
1589          }
1590 
1591          /* Insert bits */
1592          chans[j] = LLVMBuildShl(builder,
1593                                  chans[j],
1594                                  lp_build_const_int_vec(gallivm, src_type, sa),
1595                                  "");
1596 
1597          sa += src_fmt->channel[j].size;
1598 
1599          if (j == 0) {
1600             res = chans[j];
1601          } else {
1602             res = LLVMBuildOr(builder, res, chans[j], "");
1603          }
1604       }
1605 
1606       assert (dst_type.width != 24);
1607 
1608       dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1609    }
1610 }
1611 
1612 
1613 /**
1614  * Convert alpha to same blend type as src
1615  */
1616 static void
convert_alpha(struct gallivm_state * gallivm,struct lp_type row_type,struct lp_type alpha_type,const unsigned block_size,const unsigned block_height,const unsigned src_count,const unsigned dst_channels,const bool pad_inline,LLVMValueRef * src_alpha)1617 convert_alpha(struct gallivm_state *gallivm,
1618               struct lp_type row_type,
1619               struct lp_type alpha_type,
1620               const unsigned block_size,
1621               const unsigned block_height,
1622               const unsigned src_count,
1623               const unsigned dst_channels,
1624               const bool pad_inline,
1625               LLVMValueRef* src_alpha)
1626 {
1627    LLVMBuilderRef builder = gallivm->builder;
1628    unsigned i, j;
1629    unsigned length = row_type.length;
1630    row_type.length = alpha_type.length;
1631 
1632    /* Twiddle the alpha to match pixels */
1633    lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1634 
1635    /*
1636     * TODO this should use single lp_build_conv call for
1637     * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1638     */
1639    for (i = 0; i < block_height; ++i) {
1640       lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1641    }
1642 
1643    alpha_type = row_type;
1644    row_type.length = length;
1645 
1646    /* If only one channel we can only need the single alpha value per pixel */
1647    if (src_count == 1 && dst_channels == 1) {
1648 
1649       lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1650    } else {
1651       /* If there are more srcs than rows then we need to split alpha up */
1652       if (src_count > block_height) {
1653          for (i = src_count; i > 0; --i) {
1654             unsigned pixels = block_size / src_count;
1655             unsigned idx = i - 1;
1656 
1657             src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1658                                                     (idx * pixels) % 4, pixels);
1659          }
1660       }
1661 
1662       /* If there is a src for each pixel broadcast the alpha across whole row */
1663       if (src_count == block_size) {
1664          for (i = 0; i < src_count; ++i) {
1665             src_alpha[i] = lp_build_broadcast(gallivm,
1666                               lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1667          }
1668       } else {
1669          unsigned pixels = block_size / src_count;
1670          unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1671          unsigned alpha_span = 1;
1672          LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1673 
1674          /* Check if we need 2 src_alphas for our shuffles */
1675          if (pixels > alpha_type.length) {
1676             alpha_span = 2;
1677          }
1678 
1679          /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1680          for (j = 0; j < row_type.length; ++j) {
1681             if (j < pixels * channels) {
1682                shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1683             } else {
1684                shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1685             }
1686          }
1687 
1688          for (i = 0; i < src_count; ++i) {
1689             unsigned idx1 = i, idx2 = i;
1690 
1691             if (alpha_span > 1){
1692                idx1 *= alpha_span;
1693                idx2 = idx1 + 1;
1694             }
1695 
1696             src_alpha[i] = LLVMBuildShuffleVector(builder,
1697                                                   src_alpha[idx1],
1698                                                   src_alpha[idx2],
1699                                                   LLVMConstVector(shuffles, row_type.length),
1700                                                   "");
1701          }
1702       }
1703    }
1704 }
1705 
1706 
1707 /**
1708  * Generates the blend function for unswizzled colour buffers
1709  * Also generates the read & write from colour buffer
1710  */
1711 static void
generate_unswizzled_blend(struct gallivm_state * gallivm,unsigned rt,struct lp_fragment_shader_variant * variant,enum pipe_format out_format,unsigned int num_fs,struct lp_type fs_type,LLVMValueRef * fs_mask,LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],LLVMValueRef context_ptr,LLVMValueRef color_ptr,LLVMValueRef stride,unsigned partial_mask,boolean do_branch)1712 generate_unswizzled_blend(struct gallivm_state *gallivm,
1713                           unsigned rt,
1714                           struct lp_fragment_shader_variant *variant,
1715                           enum pipe_format out_format,
1716                           unsigned int num_fs,
1717                           struct lp_type fs_type,
1718                           LLVMValueRef* fs_mask,
1719                           LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1720                           LLVMValueRef context_ptr,
1721                           LLVMValueRef color_ptr,
1722                           LLVMValueRef stride,
1723                           unsigned partial_mask,
1724                           boolean do_branch)
1725 {
1726    const unsigned alpha_channel = 3;
1727    const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1728    const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1729    const unsigned block_size = block_width * block_height;
1730    const unsigned lp_integer_vector_width = 128;
1731 
1732    LLVMBuilderRef builder = gallivm->builder;
1733    LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1734    LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1735    LLVMValueRef src_alpha[4 * 4];
1736    LLVMValueRef src1_alpha[4 * 4] = { NULL };
1737    LLVMValueRef src_mask[4 * 4];
1738    LLVMValueRef src[4 * 4];
1739    LLVMValueRef src1[4 * 4];
1740    LLVMValueRef dst[4 * 4];
1741    LLVMValueRef blend_color;
1742    LLVMValueRef blend_alpha;
1743    LLVMValueRef i32_zero;
1744    LLVMValueRef check_mask;
1745    LLVMValueRef undef_src_val;
1746 
1747    struct lp_build_mask_context mask_ctx;
1748    struct lp_type mask_type;
1749    struct lp_type blend_type;
1750    struct lp_type row_type;
1751    struct lp_type dst_type;
1752    struct lp_type ls_type;
1753 
1754    unsigned char swizzle[TGSI_NUM_CHANNELS];
1755    unsigned vector_width;
1756    unsigned src_channels = TGSI_NUM_CHANNELS;
1757    unsigned dst_channels;
1758    unsigned dst_count;
1759    unsigned src_count;
1760    unsigned i, j;
1761 
1762    const struct util_format_description* out_format_desc = util_format_description(out_format);
1763 
1764    unsigned dst_alignment;
1765 
1766    bool pad_inline = is_arithmetic_format(out_format_desc);
1767    bool has_alpha = false;
1768    const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1769                                      util_blend_state_is_dual(&variant->key.blend, 0);
1770 
1771    const boolean is_1d = variant->key.resource_1d;
1772    boolean twiddle_after_convert = FALSE;
1773    unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1774    LLVMValueRef fpstate = 0;
1775 
1776    /* Get type from output format */
1777    lp_blend_type_from_format_desc(out_format_desc, &row_type);
1778    lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1779 
1780    /*
1781     * Technically this code should go into lp_build_smallfloat_to_float
1782     * and lp_build_float_to_smallfloat but due to the
1783     * http://llvm.org/bugs/show_bug.cgi?id=6393
1784     * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1785     * So the ordering is important here and there shouldn't be any
1786     * llvm ir instrunctions in this function before
1787     * this, otherwise half-float format conversions won't work
1788     * (again due to llvm bug #6393).
1789     */
1790    if (have_smallfloat_format(dst_type, out_format)) {
1791       /* We need to make sure that denorms are ok for half float
1792          conversions */
1793       fpstate = lp_build_fpstate_get(gallivm);
1794       lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1795    }
1796 
1797    mask_type = lp_int32_vec4_type();
1798    mask_type.length = fs_type.length;
1799 
1800    for (i = num_fs; i < num_fullblock_fs; i++) {
1801       fs_mask[i] = lp_build_zero(gallivm, mask_type);
1802    }
1803 
1804    /* Do not bother executing code when mask is empty.. */
1805    if (do_branch) {
1806       check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1807 
1808       for (i = 0; i < num_fullblock_fs; ++i) {
1809          check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1810       }
1811 
1812       lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1813       lp_build_mask_check(&mask_ctx);
1814    }
1815 
1816    partial_mask |= !variant->opaque;
1817    i32_zero = lp_build_const_int32(gallivm, 0);
1818 
1819    undef_src_val = lp_build_undef(gallivm, fs_type);
1820 
1821    row_type.length = fs_type.length;
1822    vector_width    = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1823 
1824    /* Compute correct swizzle and count channels */
1825    memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1826    dst_channels = 0;
1827 
1828    for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1829       /* Ensure channel is used */
1830       if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1831          continue;
1832       }
1833 
1834       /* Ensure not already written to (happens in case with GL_ALPHA) */
1835       if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1836          continue;
1837       }
1838 
1839       /* Ensure we havn't already found all channels */
1840       if (dst_channels >= out_format_desc->nr_channels) {
1841          continue;
1842       }
1843 
1844       swizzle[out_format_desc->swizzle[i]] = i;
1845       ++dst_channels;
1846 
1847       if (i == alpha_channel) {
1848          has_alpha = true;
1849       }
1850    }
1851 
1852    if (format_expands_to_float_soa(out_format_desc)) {
1853       /*
1854        * the code above can't work for layout_other
1855        * for srgb it would sort of work but we short-circuit swizzles, etc.
1856        * as that is done as part of unpack / pack.
1857        */
1858       dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1859       has_alpha = true;
1860       swizzle[0] = 0;
1861       swizzle[1] = 1;
1862       swizzle[2] = 2;
1863       swizzle[3] = 3;
1864       pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1865    }
1866 
1867    /* If 3 channels then pad to include alpha for 4 element transpose */
1868    if (dst_channels == 3) {
1869       assert (!has_alpha);
1870       for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1871          if (swizzle[i] > TGSI_NUM_CHANNELS)
1872             swizzle[i] = 3;
1873       }
1874       if (out_format_desc->nr_channels == 4) {
1875          dst_channels = 4;
1876          /*
1877           * We use alpha from the color conversion, not separate one.
1878           * We had to include it for transpose, hence it will get converted
1879           * too (albeit when doing transpose after conversion, that would
1880           * no longer be the case necessarily).
1881           * (It works only with 4 channel dsts, e.g. rgbx formats, because
1882           * otherwise we really have padding, not alpha, included.)
1883           */
1884          has_alpha = true;
1885       }
1886    }
1887 
1888    /*
1889     * Load shader output
1890     */
1891    for (i = 0; i < num_fullblock_fs; ++i) {
1892       /* Always load alpha for use in blending */
1893       LLVMValueRef alpha;
1894       if (i < num_fs) {
1895          alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1896       }
1897       else {
1898          alpha = undef_src_val;
1899       }
1900 
1901       /* Load each channel */
1902       for (j = 0; j < dst_channels; ++j) {
1903          assert(swizzle[j] < 4);
1904          if (i < num_fs) {
1905             fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1906          }
1907          else {
1908             fs_src[i][j] = undef_src_val;
1909          }
1910       }
1911 
1912       /* If 3 channels then pad to include alpha for 4 element transpose */
1913       /*
1914        * XXX If we include that here maybe could actually use it instead of
1915        * separate alpha for blending?
1916        * (Difficult though we actually convert pad channels, not alpha.)
1917        */
1918       if (dst_channels == 3 && !has_alpha) {
1919          fs_src[i][3] = alpha;
1920       }
1921 
1922       /* We split the row_mask and row_alpha as we want 128bit interleave */
1923       if (fs_type.length == 8) {
1924          src_mask[i*2 + 0]  = lp_build_extract_range(gallivm, fs_mask[i],
1925                                                      0, src_channels);
1926          src_mask[i*2 + 1]  = lp_build_extract_range(gallivm, fs_mask[i],
1927                                                      src_channels, src_channels);
1928 
1929          src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1930          src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1931                                                      src_channels, src_channels);
1932       } else {
1933          src_mask[i] = fs_mask[i];
1934          src_alpha[i] = alpha;
1935       }
1936    }
1937    if (dual_source_blend) {
1938       /* same as above except different src/dst, skip masks and comments... */
1939       for (i = 0; i < num_fullblock_fs; ++i) {
1940          LLVMValueRef alpha;
1941          if (i < num_fs) {
1942             alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1943          }
1944          else {
1945             alpha = undef_src_val;
1946          }
1947 
1948          for (j = 0; j < dst_channels; ++j) {
1949             assert(swizzle[j] < 4);
1950             if (i < num_fs) {
1951                fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1952             }
1953             else {
1954                fs_src1[i][j] = undef_src_val;
1955             }
1956          }
1957          if (dst_channels == 3 && !has_alpha) {
1958             fs_src1[i][3] = alpha;
1959          }
1960          if (fs_type.length == 8) {
1961             src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1962             src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1963                                                          src_channels, src_channels);
1964          } else {
1965             src1_alpha[i] = alpha;
1966          }
1967       }
1968    }
1969 
1970    if (util_format_is_pure_integer(out_format)) {
1971       /*
1972        * In this case fs_type was really ints or uints disguised as floats,
1973        * fix that up now.
1974        */
1975       fs_type.floating = 0;
1976       fs_type.sign = dst_type.sign;
1977       for (i = 0; i < num_fullblock_fs; ++i) {
1978          for (j = 0; j < dst_channels; ++j) {
1979             fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1980                                             lp_build_vec_type(gallivm, fs_type), "");
1981          }
1982          if (dst_channels == 3 && !has_alpha) {
1983             fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1984                                             lp_build_vec_type(gallivm, fs_type), "");
1985          }
1986       }
1987    }
1988 
1989    /*
1990     * We actually should generally do conversion first (for non-1d cases)
1991     * when the blend format is 8 or 16 bits. The reason is obvious,
1992     * there's 2 or 4 times less vectors to deal with for the interleave...
1993     * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
1994     * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
1995     * unpack only with 128bit vectors).
1996     * Note: for 16bit sizes really need matching pack conversion code
1997     */
1998    if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
1999       twiddle_after_convert = TRUE;
2000    }
2001 
2002    /*
2003     * Pixel twiddle from fragment shader order to memory order
2004     */
2005    if (!twiddle_after_convert) {
2006       src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2007                                       dst_channels, fs_src, src, pad_inline);
2008       if (dual_source_blend) {
2009          generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2010                              fs_src1, src1, pad_inline);
2011       }
2012    } else {
2013       src_count = num_fullblock_fs * dst_channels;
2014       /*
2015        * We reorder things a bit here, so the cases for 4-wide and 8-wide
2016        * (AVX) turn out the same later when untwiddling/transpose (albeit
2017        * for true AVX2 path untwiddle needs to be different).
2018        * For now just order by colors first (so we can use unpack later).
2019        */
2020       for (j = 0; j < num_fullblock_fs; j++) {
2021          for (i = 0; i < dst_channels; i++) {
2022             src[i*num_fullblock_fs + j] = fs_src[j][i];
2023             if (dual_source_blend) {
2024                src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2025             }
2026          }
2027       }
2028    }
2029 
2030    src_channels = dst_channels < 3 ? dst_channels : 4;
2031    if (src_count != num_fullblock_fs * src_channels) {
2032       unsigned ds = src_count / (num_fullblock_fs * src_channels);
2033       row_type.length /= ds;
2034       fs_type.length = row_type.length;
2035    }
2036 
2037    blend_type = row_type;
2038    mask_type.length = 4;
2039 
2040    /* Convert src to row_type */
2041    if (dual_source_blend) {
2042       struct lp_type old_row_type = row_type;
2043       lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2044       src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2045    }
2046    else {
2047       src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2048    }
2049 
2050    /* If the rows are not an SSE vector, combine them to become SSE size! */
2051    if ((row_type.width * row_type.length) % 128) {
2052       unsigned bits = row_type.width * row_type.length;
2053       unsigned combined;
2054 
2055       assert(src_count >= (vector_width / bits));
2056 
2057       dst_count = src_count / (vector_width / bits);
2058 
2059       combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2060       if (dual_source_blend) {
2061          lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2062       }
2063 
2064       row_type.length *= combined;
2065       src_count /= combined;
2066 
2067       bits = row_type.width * row_type.length;
2068       assert(bits == 128 || bits == 256);
2069    }
2070 
2071    if (twiddle_after_convert) {
2072       fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2073       if (dual_source_blend) {
2074          fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2075       }
2076    }
2077 
2078    /*
2079     * Blend Colour conversion
2080     */
2081    blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2082    blend_color = LLVMBuildPointerCast(builder, blend_color,
2083                     LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2084    blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2085                                &i32_zero, 1, ""), "");
2086 
2087    /* Convert */
2088    lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2089 
2090    if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2091       /*
2092        * since blending is done with floats, there was no conversion.
2093        * However, the rules according to fixed point renderbuffers still
2094        * apply, that is we must clamp inputs to 0.0/1.0.
2095        * (This would apply to separate alpha conversion too but we currently
2096        * force has_alpha to be true.)
2097        * TODO: should skip this with "fake" blend, since post-blend conversion
2098        * will clamp anyway.
2099        * TODO: could also skip this if fragment color clamping is enabled. We
2100        * don't support it natively so it gets baked into the shader however, so
2101        * can't really tell here.
2102        */
2103       struct lp_build_context f32_bld;
2104       assert(row_type.floating);
2105       lp_build_context_init(&f32_bld, gallivm, row_type);
2106       for (i = 0; i < src_count; i++) {
2107          src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2108       }
2109       if (dual_source_blend) {
2110          for (i = 0; i < src_count; i++) {
2111             src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2112          }
2113       }
2114       /* probably can't be different than row_type but better safe than sorry... */
2115       lp_build_context_init(&f32_bld, gallivm, blend_type);
2116       blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2117    }
2118 
2119    /* Extract alpha */
2120    blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2121 
2122    /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2123    pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2124    if (pad_inline) {
2125       /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2126       blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2127    } else {
2128       /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2129       blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2130    }
2131 
2132    /*
2133     * Mask conversion
2134     */
2135    lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2136 
2137    if (src_count < block_height) {
2138       lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2139    } else if (src_count > block_height) {
2140       for (i = src_count; i > 0; --i) {
2141          unsigned pixels = block_size / src_count;
2142          unsigned idx = i - 1;
2143 
2144          src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2145                                                 (idx * pixels) % 4, pixels);
2146       }
2147    }
2148 
2149    assert(mask_type.width == 32);
2150 
2151    for (i = 0; i < src_count; ++i) {
2152       unsigned pixels = block_size / src_count;
2153       unsigned pixel_width = row_type.width * dst_channels;
2154 
2155       if (pixel_width == 24) {
2156          mask_type.width = 8;
2157          mask_type.length = vector_width / mask_type.width;
2158       } else {
2159          mask_type.length = pixels;
2160          mask_type.width = row_type.width * dst_channels;
2161 
2162          /*
2163           * If mask_type width is smaller than 32bit, this doesn't quite
2164           * generate the most efficient code (could use some pack).
2165           */
2166          src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2167                                         lp_build_int_vec_type(gallivm, mask_type), "");
2168 
2169          mask_type.length *= dst_channels;
2170          mask_type.width /= dst_channels;
2171       }
2172 
2173       src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2174                                      lp_build_int_vec_type(gallivm, mask_type), "");
2175       src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2176    }
2177 
2178    /*
2179     * Alpha conversion
2180     */
2181    if (!has_alpha) {
2182       struct lp_type alpha_type = fs_type;
2183       alpha_type.length = 4;
2184       convert_alpha(gallivm, row_type, alpha_type,
2185                     block_size, block_height,
2186                     src_count, dst_channels,
2187                     pad_inline, src_alpha);
2188       if (dual_source_blend) {
2189          convert_alpha(gallivm, row_type, alpha_type,
2190                        block_size, block_height,
2191                        src_count, dst_channels,
2192                        pad_inline, src1_alpha);
2193       }
2194    }
2195 
2196 
2197    /*
2198     * Load dst from memory
2199     */
2200    if (src_count < block_height) {
2201       dst_count = block_height;
2202    } else {
2203       dst_count = src_count;
2204    }
2205 
2206    dst_type.length *= block_size / dst_count;
2207 
2208    if (format_expands_to_float_soa(out_format_desc)) {
2209       /*
2210        * we need multiple values at once for the conversion, so can as well
2211        * load them vectorized here too instead of concatenating later.
2212        * (Still need concatenation later for 8-wide vectors).
2213        */
2214       dst_count = block_height;
2215       dst_type.length = block_width;
2216    }
2217 
2218    /*
2219     * Compute the alignment of the destination pointer in bytes
2220     * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2221     * are always aligned by MIN2(16, fetch_width) except for buffers (not
2222     * 1d tex but can't distinguish here) so need to stick with per-pixel
2223     * alignment in this case.
2224     */
2225    if (is_1d) {
2226       dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2227    }
2228    else {
2229       dst_alignment = dst_type.length * dst_type.width / 8;
2230    }
2231    /* Force power-of-two alignment by extracting only the least-significant-bit */
2232    dst_alignment = 1 << (ffs(dst_alignment) - 1);
2233    /*
2234     * Resource base and stride pointers are aligned to 16 bytes, so that's
2235     * the maximum alignment we can guarantee
2236     */
2237    dst_alignment = MIN2(16, dst_alignment);
2238 
2239    ls_type = dst_type;
2240 
2241    if (dst_count > src_count) {
2242       if ((dst_type.width == 8 || dst_type.width == 16) &&
2243           util_is_power_of_two(dst_type.length) &&
2244           dst_type.length * dst_type.width < 128) {
2245          /*
2246           * Never try to load values as 4xi8 which we will then
2247           * concatenate to larger vectors. This gives llvm a real
2248           * headache (the problem is the type legalizer (?) will
2249           * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2250           * then the shuffles to concatenate are more or less impossible
2251           * - llvm is easily capable of generating a sequence of 32
2252           * pextrb/pinsrb instructions for that. Albeit it appears to
2253           * be fixed in llvm 4.0. So, load and concatenate with 32bit
2254           * width to avoid the trouble (16bit seems not as bad, llvm
2255           * probably recognizes the load+shuffle as only one shuffle
2256           * is necessary, but we can do just the same anyway).
2257           */
2258          ls_type.length = dst_type.length * dst_type.width / 32;
2259          ls_type.width = 32;
2260       }
2261    }
2262 
2263    if (is_1d) {
2264       load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2265                             dst, ls_type, dst_count / 4, dst_alignment);
2266       for (i = dst_count / 4; i < dst_count; i++) {
2267          dst[i] = lp_build_undef(gallivm, ls_type);
2268       }
2269 
2270    }
2271    else {
2272       load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2273                             dst, ls_type, dst_count, dst_alignment);
2274    }
2275 
2276 
2277    /*
2278     * Convert from dst/output format to src/blending format.
2279     *
2280     * This is necessary as we can only read 1 row from memory at a time,
2281     * so the minimum dst_count will ever be at this point is 4.
2282     *
2283     * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2284     * this will take the 4 dsts and combine them into 1 src so we can perform blending
2285     * on all 16 pixels in that single vector at once.
2286     */
2287    if (dst_count > src_count) {
2288       if (ls_type.length != dst_type.length && ls_type.length == 1) {
2289          LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2290          LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2291          for (i = 0; i < dst_count; i++) {
2292             dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2293          }
2294       }
2295 
2296       lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2297 
2298       if (ls_type.length != dst_type.length) {
2299          struct lp_type tmp_type = dst_type;
2300          tmp_type.length = dst_type.length * 4 / src_count;
2301          for (i = 0; i < src_count; i++) {
2302             dst[i] = LLVMBuildBitCast(builder, dst[i],
2303                                       lp_build_vec_type(gallivm, tmp_type), "");
2304          }
2305       }
2306    }
2307 
2308    /*
2309     * Blending
2310     */
2311    /* XXX this is broken for RGB8 formats -
2312     * they get expanded from 12 to 16 elements (to include alpha)
2313     * by convert_to_blend_type then reduced to 15 instead of 12
2314     * by convert_from_blend_type (a simple fix though breaks A8...).
2315     * R16G16B16 also crashes differently however something going wrong
2316     * inside llvm handling npot vector sizes seemingly.
2317     * It seems some cleanup could be done here (like skipping conversion/blend
2318     * when not needed).
2319     */
2320    convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2321                          row_type, dst, src_count);
2322 
2323    /*
2324     * FIXME: Really should get logic ops / masks out of generic blend / row
2325     * format. Logic ops will definitely not work on the blend float format
2326     * used for SRGB here and I think OpenGL expects this to work as expected
2327     * (that is incoming values converted to srgb then logic op applied).
2328     */
2329    for (i = 0; i < src_count; ++i) {
2330       dst[i] = lp_build_blend_aos(gallivm,
2331                                   &variant->key.blend,
2332                                   out_format,
2333                                   row_type,
2334                                   rt,
2335                                   src[i],
2336                                   has_alpha ? NULL : src_alpha[i],
2337                                   src1[i],
2338                                   has_alpha ? NULL : src1_alpha[i],
2339                                   dst[i],
2340                                   partial_mask ? src_mask[i] : NULL,
2341                                   blend_color,
2342                                   has_alpha ? NULL : blend_alpha,
2343                                   swizzle,
2344                                   pad_inline ? 4 : dst_channels);
2345    }
2346 
2347    convert_from_blend_type(gallivm, block_size, out_format_desc,
2348                            row_type, dst_type, dst, src_count);
2349 
2350    /* Split the blend rows back to memory rows */
2351    if (dst_count > src_count) {
2352       row_type.length = dst_type.length * (dst_count / src_count);
2353 
2354       if (src_count == 1) {
2355          dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2356          dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2357 
2358          row_type.length /= 2;
2359          src_count *= 2;
2360       }
2361 
2362       dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2363       dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2364       dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2365       dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2366 
2367       row_type.length /= 2;
2368       src_count *= 2;
2369    }
2370 
2371    /*
2372     * Store blend result to memory
2373     */
2374    if (is_1d) {
2375       store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2376                              dst, dst_type, dst_count / 4, dst_alignment);
2377    }
2378    else {
2379       store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2380                              dst, dst_type, dst_count, dst_alignment);
2381    }
2382 
2383    if (have_smallfloat_format(dst_type, out_format)) {
2384       lp_build_fpstate_set(gallivm, fpstate);
2385    }
2386 
2387    if (do_branch) {
2388       lp_build_mask_end(&mask_ctx);
2389    }
2390 }
2391 
2392 
2393 /**
2394  * Generate the runtime callable function for the whole fragment pipeline.
2395  * Note that the function which we generate operates on a block of 16
2396  * pixels at at time.  The block contains 2x2 quads.  Each quad contains
2397  * 2x2 pixels.
2398  */
2399 static void
generate_fragment(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,struct lp_fragment_shader_variant * variant,unsigned partial_mask)2400 generate_fragment(struct llvmpipe_context *lp,
2401                   struct lp_fragment_shader *shader,
2402                   struct lp_fragment_shader_variant *variant,
2403                   unsigned partial_mask)
2404 {
2405    struct gallivm_state *gallivm = variant->gallivm;
2406    const struct lp_fragment_shader_variant_key *key = &variant->key;
2407    struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2408    char func_name[64];
2409    struct lp_type fs_type;
2410    struct lp_type blend_type;
2411    LLVMTypeRef fs_elem_type;
2412    LLVMTypeRef blend_vec_type;
2413    LLVMTypeRef arg_types[13];
2414    LLVMTypeRef func_type;
2415    LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2416    LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2417    LLVMValueRef context_ptr;
2418    LLVMValueRef x;
2419    LLVMValueRef y;
2420    LLVMValueRef a0_ptr;
2421    LLVMValueRef dadx_ptr;
2422    LLVMValueRef dady_ptr;
2423    LLVMValueRef color_ptr_ptr;
2424    LLVMValueRef stride_ptr;
2425    LLVMValueRef depth_ptr;
2426    LLVMValueRef depth_stride;
2427    LLVMValueRef mask_input;
2428    LLVMValueRef thread_data_ptr;
2429    LLVMBasicBlockRef block;
2430    LLVMBuilderRef builder;
2431    struct lp_build_sampler_soa *sampler;
2432    struct lp_build_interp_soa_context interp;
2433    LLVMValueRef fs_mask[16 / 4];
2434    LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2435    LLVMValueRef function;
2436    LLVMValueRef facing;
2437    unsigned num_fs;
2438    unsigned i;
2439    unsigned chan;
2440    unsigned cbuf;
2441    boolean cbuf0_write_all;
2442    const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2443                                      util_blend_state_is_dual(&key->blend, 0);
2444 
2445    assert(lp_native_vector_width / 32 >= 4);
2446 
2447    /* Adjust color input interpolation according to flatshade state:
2448     */
2449    memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2450    for (i = 0; i < shader->info.base.num_inputs; i++) {
2451       if (inputs[i].interp == LP_INTERP_COLOR) {
2452 	 if (key->flatshade)
2453 	    inputs[i].interp = LP_INTERP_CONSTANT;
2454 	 else
2455 	    inputs[i].interp = LP_INTERP_PERSPECTIVE;
2456       }
2457    }
2458 
2459    /* check if writes to cbuf[0] are to be copied to all cbufs */
2460    cbuf0_write_all =
2461      shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2462 
2463    /* TODO: actually pick these based on the fs and color buffer
2464     * characteristics. */
2465 
2466    memset(&fs_type, 0, sizeof fs_type);
2467    fs_type.floating = TRUE;      /* floating point values */
2468    fs_type.sign = TRUE;          /* values are signed */
2469    fs_type.norm = FALSE;         /* values are not limited to [0,1] or [-1,1] */
2470    fs_type.width = 32;           /* 32-bit float */
2471    fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2472 
2473    memset(&blend_type, 0, sizeof blend_type);
2474    blend_type.floating = FALSE; /* values are integers */
2475    blend_type.sign = FALSE;     /* values are unsigned */
2476    blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
2477    blend_type.width = 8;        /* 8-bit ubyte values */
2478    blend_type.length = 16;      /* 16 elements per vector */
2479 
2480    /*
2481     * Generate the function prototype. Any change here must be reflected in
2482     * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2483     */
2484 
2485    fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2486 
2487    blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2488 
2489    util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2490                  shader->no, variant->no, partial_mask ? "partial" : "whole");
2491 
2492    arg_types[0] = variant->jit_context_ptr_type;       /* context */
2493    arg_types[1] = int32_type;                          /* x */
2494    arg_types[2] = int32_type;                          /* y */
2495    arg_types[3] = int32_type;                          /* facing */
2496    arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
2497    arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
2498    arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
2499    arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
2500    arg_types[8] = LLVMPointerType(int8_type, 0);       /* depth */
2501    arg_types[9] = int32_type;                          /* mask_input */
2502    arg_types[10] = variant->jit_thread_data_ptr_type;  /* per thread data */
2503    arg_types[11] = LLVMPointerType(int32_type, 0);     /* stride */
2504    arg_types[12] = int32_type;                         /* depth_stride */
2505 
2506    func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2507                                 arg_types, ARRAY_SIZE(arg_types), 0);
2508 
2509    function = LLVMAddFunction(gallivm->module, func_name, func_type);
2510    LLVMSetFunctionCallConv(function, LLVMCCallConv);
2511 
2512    variant->function[partial_mask] = function;
2513 
2514    /* XXX: need to propagate noalias down into color param now we are
2515     * passing a pointer-to-pointer?
2516     */
2517    for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2518       if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2519          lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2520 
2521    context_ptr  = LLVMGetParam(function, 0);
2522    x            = LLVMGetParam(function, 1);
2523    y            = LLVMGetParam(function, 2);
2524    facing       = LLVMGetParam(function, 3);
2525    a0_ptr       = LLVMGetParam(function, 4);
2526    dadx_ptr     = LLVMGetParam(function, 5);
2527    dady_ptr     = LLVMGetParam(function, 6);
2528    color_ptr_ptr = LLVMGetParam(function, 7);
2529    depth_ptr    = LLVMGetParam(function, 8);
2530    mask_input   = LLVMGetParam(function, 9);
2531    thread_data_ptr  = LLVMGetParam(function, 10);
2532    stride_ptr   = LLVMGetParam(function, 11);
2533    depth_stride = LLVMGetParam(function, 12);
2534 
2535    lp_build_name(context_ptr, "context");
2536    lp_build_name(x, "x");
2537    lp_build_name(y, "y");
2538    lp_build_name(a0_ptr, "a0");
2539    lp_build_name(dadx_ptr, "dadx");
2540    lp_build_name(dady_ptr, "dady");
2541    lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2542    lp_build_name(depth_ptr, "depth");
2543    lp_build_name(mask_input, "mask_input");
2544    lp_build_name(thread_data_ptr, "thread_data");
2545    lp_build_name(stride_ptr, "stride_ptr");
2546    lp_build_name(depth_stride, "depth_stride");
2547 
2548    /*
2549     * Function body
2550     */
2551 
2552    block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2553    builder = gallivm->builder;
2554    assert(builder);
2555    LLVMPositionBuilderAtEnd(builder, block);
2556 
2557    /* code generated texture sampling */
2558    sampler = lp_llvm_sampler_soa_create(key->state);
2559 
2560    num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2561    /* for 1d resources only run "upper half" of stamp */
2562    if (key->resource_1d)
2563       num_fs /= 2;
2564 
2565    {
2566       LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2567       LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2568       LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2569                                                       num_loop, "mask_store");
2570       LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2571       boolean pixel_center_integer =
2572          shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2573 
2574       /*
2575        * The shader input interpolation info is not explicitely baked in the
2576        * shader key, but everything it derives from (TGSI, and flatshade) is
2577        * already included in the shader key.
2578        */
2579       lp_build_interp_soa_init(&interp,
2580                                gallivm,
2581                                shader->info.base.num_inputs,
2582                                inputs,
2583                                pixel_center_integer,
2584                                key->depth_clamp,
2585                                builder, fs_type,
2586                                a0_ptr, dadx_ptr, dady_ptr,
2587                                x, y);
2588 
2589       for (i = 0; i < num_fs; i++) {
2590          LLVMValueRef mask;
2591          LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2592          LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2593                                               &indexi, 1, "mask_ptr");
2594 
2595          if (partial_mask) {
2596             mask = generate_quad_mask(gallivm, fs_type,
2597                                       i*fs_type.length/4, mask_input);
2598          }
2599          else {
2600             mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2601          }
2602          LLVMBuildStore(builder, mask, mask_ptr);
2603       }
2604 
2605       generate_fs_loop(gallivm,
2606                        shader, key,
2607                        builder,
2608                        fs_type,
2609                        context_ptr,
2610                        num_loop,
2611                        &interp,
2612                        sampler,
2613                        mask_store, /* output */
2614                        color_store,
2615                        depth_ptr,
2616                        depth_stride,
2617                        facing,
2618                        thread_data_ptr);
2619 
2620       for (i = 0; i < num_fs; i++) {
2621          LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2622          LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2623                                          &indexi, 1, "");
2624          fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2625          /* This is fucked up need to reorganize things */
2626          for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2627             for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2628                ptr = LLVMBuildGEP(builder,
2629                                   color_store[cbuf * !cbuf0_write_all][chan],
2630                                   &indexi, 1, "");
2631                fs_out_color[cbuf][chan][i] = ptr;
2632             }
2633          }
2634          if (dual_source_blend) {
2635             /* only support one dual source blend target hence always use output 1 */
2636             for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2637                ptr = LLVMBuildGEP(builder,
2638                                   color_store[1][chan],
2639                                   &indexi, 1, "");
2640                fs_out_color[1][chan][i] = ptr;
2641             }
2642          }
2643       }
2644    }
2645 
2646    sampler->destroy(sampler);
2647 
2648    /* Loop over color outputs / color buffers to do blending.
2649     */
2650    for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2651       if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2652          LLVMValueRef color_ptr;
2653          LLVMValueRef stride;
2654          LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2655 
2656          boolean do_branch = ((key->depth.enabled
2657                                || key->stencil[0].enabled
2658                                || key->alpha.enabled)
2659                               && !shader->info.base.uses_kill);
2660 
2661          color_ptr = LLVMBuildLoad(builder,
2662                                    LLVMBuildGEP(builder, color_ptr_ptr,
2663                                                 &index, 1, ""),
2664                                    "");
2665 
2666          lp_build_name(color_ptr, "color_ptr%d", cbuf);
2667 
2668          stride = LLVMBuildLoad(builder,
2669                                 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2670                                 "");
2671 
2672          generate_unswizzled_blend(gallivm, cbuf, variant,
2673                                    key->cbuf_format[cbuf],
2674                                    num_fs, fs_type, fs_mask, fs_out_color,
2675                                    context_ptr, color_ptr, stride,
2676                                    partial_mask, do_branch);
2677       }
2678    }
2679 
2680    LLVMBuildRetVoid(builder);
2681 
2682    gallivm_verify_function(gallivm, function);
2683 }
2684 
2685 
2686 static void
dump_fs_variant_key(const struct lp_fragment_shader_variant_key * key)2687 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2688 {
2689    unsigned i;
2690 
2691    debug_printf("fs variant %p:\n", (void *) key);
2692 
2693    if (key->flatshade) {
2694       debug_printf("flatshade = 1\n");
2695    }
2696    for (i = 0; i < key->nr_cbufs; ++i) {
2697       debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2698    }
2699    if (key->depth.enabled || key->stencil[0].enabled) {
2700       debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2701    }
2702    if (key->depth.enabled) {
2703       debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2704       debug_printf("depth.writemask = %u\n", key->depth.writemask);
2705    }
2706 
2707    for (i = 0; i < 2; ++i) {
2708       if (key->stencil[i].enabled) {
2709          debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2710          debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2711          debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2712          debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2713          debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2714          debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2715       }
2716    }
2717 
2718    if (key->alpha.enabled) {
2719       debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2720    }
2721 
2722    if (key->occlusion_count) {
2723       debug_printf("occlusion_count = 1\n");
2724    }
2725 
2726    if (key->blend.logicop_enable) {
2727       debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2728    }
2729    else if (key->blend.rt[0].blend_enable) {
2730       debug_printf("blend.rgb_func = %s\n",   util_str_blend_func  (key->blend.rt[0].rgb_func, TRUE));
2731       debug_printf("blend.rgb_src_factor = %s\n",   util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2732       debug_printf("blend.rgb_dst_factor = %s\n",   util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2733       debug_printf("blend.alpha_func = %s\n",       util_str_blend_func  (key->blend.rt[0].alpha_func, TRUE));
2734       debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2735       debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2736    }
2737    debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2738    if (key->blend.alpha_to_coverage) {
2739       debug_printf("blend.alpha_to_coverage is enabled\n");
2740    }
2741    for (i = 0; i < key->nr_samplers; ++i) {
2742       const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2743       debug_printf("sampler[%u] = \n", i);
2744       debug_printf("  .wrap = %s %s %s\n",
2745                    util_str_tex_wrap(sampler->wrap_s, TRUE),
2746                    util_str_tex_wrap(sampler->wrap_t, TRUE),
2747                    util_str_tex_wrap(sampler->wrap_r, TRUE));
2748       debug_printf("  .min_img_filter = %s\n",
2749                    util_str_tex_filter(sampler->min_img_filter, TRUE));
2750       debug_printf("  .min_mip_filter = %s\n",
2751                    util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2752       debug_printf("  .mag_img_filter = %s\n",
2753                    util_str_tex_filter(sampler->mag_img_filter, TRUE));
2754       if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2755          debug_printf("  .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2756       debug_printf("  .normalized_coords = %u\n", sampler->normalized_coords);
2757       debug_printf("  .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2758       debug_printf("  .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2759       debug_printf("  .apply_min_lod = %u\n", sampler->apply_min_lod);
2760       debug_printf("  .apply_max_lod = %u\n", sampler->apply_max_lod);
2761    }
2762    for (i = 0; i < key->nr_sampler_views; ++i) {
2763       const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2764       debug_printf("texture[%u] = \n", i);
2765       debug_printf("  .format = %s\n",
2766                    util_format_name(texture->format));
2767       debug_printf("  .target = %s\n",
2768                    util_str_tex_target(texture->target, TRUE));
2769       debug_printf("  .level_zero_only = %u\n",
2770                    texture->level_zero_only);
2771       debug_printf("  .pot = %u %u %u\n",
2772                    texture->pot_width,
2773                    texture->pot_height,
2774                    texture->pot_depth);
2775    }
2776 }
2777 
2778 
2779 void
lp_debug_fs_variant(const struct lp_fragment_shader_variant * variant)2780 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2781 {
2782    debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2783                 variant->shader->no, variant->no);
2784    tgsi_dump(variant->shader->base.tokens, 0);
2785    dump_fs_variant_key(&variant->key);
2786    debug_printf("variant->opaque = %u\n", variant->opaque);
2787    debug_printf("\n");
2788 }
2789 
2790 
2791 /**
2792  * Generate a new fragment shader variant from the shader code and
2793  * other state indicated by the key.
2794  */
2795 static struct lp_fragment_shader_variant *
generate_variant(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,const struct lp_fragment_shader_variant_key * key)2796 generate_variant(struct llvmpipe_context *lp,
2797                  struct lp_fragment_shader *shader,
2798                  const struct lp_fragment_shader_variant_key *key)
2799 {
2800    struct lp_fragment_shader_variant *variant;
2801    const struct util_format_description *cbuf0_format_desc = NULL;
2802    boolean fullcolormask;
2803    char module_name[64];
2804 
2805    variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2806    if (!variant)
2807       return NULL;
2808 
2809    util_snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2810                  shader->no, shader->variants_created);
2811 
2812    variant->gallivm = gallivm_create(module_name, lp->context);
2813    if (!variant->gallivm) {
2814       FREE(variant);
2815       return NULL;
2816    }
2817 
2818    variant->shader = shader;
2819    variant->list_item_global.base = variant;
2820    variant->list_item_local.base = variant;
2821    variant->no = shader->variants_created++;
2822 
2823    memcpy(&variant->key, key, shader->variant_key_size);
2824 
2825    /*
2826     * Determine whether we are touching all channels in the color buffer.
2827     */
2828    fullcolormask = FALSE;
2829    if (key->nr_cbufs == 1) {
2830       cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2831       fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2832    }
2833 
2834    variant->opaque =
2835          !key->blend.logicop_enable &&
2836          !key->blend.rt[0].blend_enable &&
2837          fullcolormask &&
2838          !key->stencil[0].enabled &&
2839          !key->alpha.enabled &&
2840          !key->blend.alpha_to_coverage &&
2841          !key->depth.enabled &&
2842          !shader->info.base.uses_kill &&
2843          !shader->info.base.writes_samplemask
2844       ? TRUE : FALSE;
2845 
2846    if ((shader->info.base.num_tokens <= 1) &&
2847        !key->depth.enabled && !key->stencil[0].enabled) {
2848       variant->ps_inv_multiplier = 0;
2849    } else {
2850       variant->ps_inv_multiplier = 1;
2851    }
2852 
2853    if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2854       lp_debug_fs_variant(variant);
2855    }
2856 
2857    lp_jit_init_types(variant);
2858 
2859    if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2860       generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2861 
2862    if (variant->jit_function[RAST_WHOLE] == NULL) {
2863       if (variant->opaque) {
2864          /* Specialized shader, which doesn't need to read the color buffer. */
2865          generate_fragment(lp, shader, variant, RAST_WHOLE);
2866       }
2867    }
2868 
2869    /*
2870     * Compile everything
2871     */
2872 
2873    gallivm_compile_module(variant->gallivm);
2874 
2875    variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2876 
2877    if (variant->function[RAST_EDGE_TEST]) {
2878       variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2879             gallivm_jit_function(variant->gallivm,
2880                                  variant->function[RAST_EDGE_TEST]);
2881    }
2882 
2883    if (variant->function[RAST_WHOLE]) {
2884          variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2885                gallivm_jit_function(variant->gallivm,
2886                                     variant->function[RAST_WHOLE]);
2887    } else if (!variant->jit_function[RAST_WHOLE]) {
2888       variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2889    }
2890 
2891    gallivm_free_ir(variant->gallivm);
2892 
2893    return variant;
2894 }
2895 
2896 
2897 static void *
llvmpipe_create_fs_state(struct pipe_context * pipe,const struct pipe_shader_state * templ)2898 llvmpipe_create_fs_state(struct pipe_context *pipe,
2899                          const struct pipe_shader_state *templ)
2900 {
2901    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2902    struct lp_fragment_shader *shader;
2903    int nr_samplers;
2904    int nr_sampler_views;
2905    int i;
2906 
2907    shader = CALLOC_STRUCT(lp_fragment_shader);
2908    if (!shader)
2909       return NULL;
2910 
2911    shader->no = fs_no++;
2912    make_empty_list(&shader->variants);
2913 
2914    /* get/save the summary info for this shader */
2915    lp_build_tgsi_info(templ->tokens, &shader->info);
2916 
2917    /* we need to keep a local copy of the tokens */
2918    shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2919 
2920    shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2921    if (shader->draw_data == NULL) {
2922       FREE((void *) shader->base.tokens);
2923       FREE(shader);
2924       return NULL;
2925    }
2926 
2927    nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2928    nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2929 
2930    shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2931                                      state[MAX2(nr_samplers, nr_sampler_views)]);
2932 
2933    for (i = 0; i < shader->info.base.num_inputs; i++) {
2934       shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2935       shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2936 
2937       switch (shader->info.base.input_interpolate[i]) {
2938       case TGSI_INTERPOLATE_CONSTANT:
2939          shader->inputs[i].interp = LP_INTERP_CONSTANT;
2940          break;
2941       case TGSI_INTERPOLATE_LINEAR:
2942          shader->inputs[i].interp = LP_INTERP_LINEAR;
2943          break;
2944       case TGSI_INTERPOLATE_PERSPECTIVE:
2945          shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2946          break;
2947       case TGSI_INTERPOLATE_COLOR:
2948          shader->inputs[i].interp = LP_INTERP_COLOR;
2949          break;
2950       default:
2951          assert(0);
2952          break;
2953       }
2954 
2955       switch (shader->info.base.input_semantic_name[i]) {
2956       case TGSI_SEMANTIC_FACE:
2957          shader->inputs[i].interp = LP_INTERP_FACING;
2958          break;
2959       case TGSI_SEMANTIC_POSITION:
2960          /* Position was already emitted above
2961           */
2962          shader->inputs[i].interp = LP_INTERP_POSITION;
2963          shader->inputs[i].src_index = 0;
2964          continue;
2965       }
2966 
2967       /* XXX this is a completely pointless index map... */
2968       shader->inputs[i].src_index = i+1;
2969    }
2970 
2971    if (LP_DEBUG & DEBUG_TGSI) {
2972       unsigned attrib;
2973       debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2974                    shader->no, (void *) shader);
2975       tgsi_dump(templ->tokens, 0);
2976       debug_printf("usage masks:\n");
2977       for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2978          unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2979          debug_printf("  IN[%u].%s%s%s%s\n",
2980                       attrib,
2981                       usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2982                       usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2983                       usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
2984                       usage_mask & TGSI_WRITEMASK_W ? "w" : "");
2985       }
2986       debug_printf("\n");
2987    }
2988 
2989    return shader;
2990 }
2991 
2992 
2993 static void
llvmpipe_bind_fs_state(struct pipe_context * pipe,void * fs)2994 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
2995 {
2996    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2997 
2998    if (llvmpipe->fs == fs)
2999       return;
3000 
3001    llvmpipe->fs = (struct lp_fragment_shader *) fs;
3002 
3003    draw_bind_fragment_shader(llvmpipe->draw,
3004                              (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
3005 
3006    llvmpipe->dirty |= LP_NEW_FS;
3007 }
3008 
3009 
3010 /**
3011  * Remove shader variant from two lists: the shader's variant list
3012  * and the context's variant list.
3013  */
3014 void
llvmpipe_remove_shader_variant(struct llvmpipe_context * lp,struct lp_fragment_shader_variant * variant)3015 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3016                                struct lp_fragment_shader_variant *variant)
3017 {
3018    if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3019       debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3020                    "v total cached %u inst %u total inst %u\n",
3021                    variant->shader->no, variant->no,
3022                    variant->shader->variants_created,
3023                    variant->shader->variants_cached,
3024                    lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3025    }
3026 
3027    gallivm_destroy(variant->gallivm);
3028 
3029    /* remove from shader's list */
3030    remove_from_list(&variant->list_item_local);
3031    variant->shader->variants_cached--;
3032 
3033    /* remove from context's list */
3034    remove_from_list(&variant->list_item_global);
3035    lp->nr_fs_variants--;
3036    lp->nr_fs_instrs -= variant->nr_instrs;
3037 
3038    FREE(variant);
3039 }
3040 
3041 
3042 static void
llvmpipe_delete_fs_state(struct pipe_context * pipe,void * fs)3043 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3044 {
3045    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3046    struct lp_fragment_shader *shader = fs;
3047    struct lp_fs_variant_list_item *li;
3048 
3049    assert(fs != llvmpipe->fs);
3050 
3051    /*
3052     * XXX: we need to flush the context until we have some sort of reference
3053     * counting in fragment shaders as they may still be binned
3054     * Flushing alone might not sufficient we need to wait on it too.
3055     */
3056    llvmpipe_finish(pipe, __FUNCTION__);
3057 
3058    /* Delete all the variants */
3059    li = first_elem(&shader->variants);
3060    while(!at_end(&shader->variants, li)) {
3061       struct lp_fs_variant_list_item *next = next_elem(li);
3062       llvmpipe_remove_shader_variant(llvmpipe, li->base);
3063       li = next;
3064    }
3065 
3066    /* Delete draw module's data */
3067    draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3068 
3069    assert(shader->variants_cached == 0);
3070    FREE((void *) shader->base.tokens);
3071    FREE(shader);
3072 }
3073 
3074 
3075 
3076 static void
llvmpipe_set_constant_buffer(struct pipe_context * pipe,enum pipe_shader_type shader,uint index,const struct pipe_constant_buffer * cb)3077 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3078                              enum pipe_shader_type shader, uint index,
3079                              const struct pipe_constant_buffer *cb)
3080 {
3081    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3082    struct pipe_resource *constants = cb ? cb->buffer : NULL;
3083 
3084    assert(shader < PIPE_SHADER_TYPES);
3085    assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3086 
3087    /* note: reference counting */
3088    util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3089 
3090    if (constants) {
3091        if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3092          debug_printf("Illegal set constant without bind flag\n");
3093          constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3094       }
3095    }
3096 
3097    if (shader == PIPE_SHADER_VERTEX ||
3098        shader == PIPE_SHADER_GEOMETRY) {
3099       /* Pass the constants to the 'draw' module */
3100       const unsigned size = cb ? cb->buffer_size : 0;
3101       const ubyte *data;
3102 
3103       if (constants) {
3104          data = (ubyte *) llvmpipe_resource_data(constants);
3105       }
3106       else if (cb && cb->user_buffer) {
3107          data = (ubyte *) cb->user_buffer;
3108       }
3109       else {
3110          data = NULL;
3111       }
3112 
3113       if (data)
3114          data += cb->buffer_offset;
3115 
3116       draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3117                                       index, data, size);
3118    }
3119    else {
3120       llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3121    }
3122 
3123    if (cb && cb->user_buffer) {
3124       pipe_resource_reference(&constants, NULL);
3125    }
3126 }
3127 
3128 
3129 /**
3130  * Return the blend factor equivalent to a destination alpha of one.
3131  */
3132 static inline unsigned
force_dst_alpha_one(unsigned factor,boolean clamped_zero)3133 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3134 {
3135    switch(factor) {
3136    case PIPE_BLENDFACTOR_DST_ALPHA:
3137       return PIPE_BLENDFACTOR_ONE;
3138    case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3139       return PIPE_BLENDFACTOR_ZERO;
3140    case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3141       if (clamped_zero)
3142          return PIPE_BLENDFACTOR_ZERO;
3143       else
3144          return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3145    }
3146 
3147    return factor;
3148 }
3149 
3150 
3151 /**
3152  * We need to generate several variants of the fragment pipeline to match
3153  * all the combinations of the contributing state atoms.
3154  *
3155  * TODO: there is actually no reason to tie this to context state -- the
3156  * generated code could be cached globally in the screen.
3157  */
3158 static void
make_variant_key(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,struct lp_fragment_shader_variant_key * key)3159 make_variant_key(struct llvmpipe_context *lp,
3160                  struct lp_fragment_shader *shader,
3161                  struct lp_fragment_shader_variant_key *key)
3162 {
3163    unsigned i;
3164 
3165    memset(key, 0, shader->variant_key_size);
3166 
3167    if (lp->framebuffer.zsbuf) {
3168       enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3169       const struct util_format_description *zsbuf_desc =
3170          util_format_description(zsbuf_format);
3171 
3172       if (lp->depth_stencil->depth.enabled &&
3173           util_format_has_depth(zsbuf_desc)) {
3174          key->zsbuf_format = zsbuf_format;
3175          memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3176       }
3177       if (lp->depth_stencil->stencil[0].enabled &&
3178           util_format_has_stencil(zsbuf_desc)) {
3179          key->zsbuf_format = zsbuf_format;
3180          memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3181       }
3182       if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3183          key->resource_1d = TRUE;
3184       }
3185    }
3186 
3187    /*
3188     * Propagate the depth clamp setting from the rasterizer state.
3189     * depth_clip == 0 implies depth clamping is enabled.
3190     *
3191     * When clip_halfz is enabled, then always clamp the depth values.
3192     *
3193     * XXX: This is incorrect for GL, but correct for d3d10 (depth
3194     * clamp is always active in d3d10, regardless if depth clip is
3195     * enabled or not).
3196     * (GL has an always-on [0,1] clamp on fs depth output instead
3197     * to ensure the depth values stay in range. Doesn't look like
3198     * we do that, though...)
3199     */
3200    if (lp->rasterizer->clip_halfz) {
3201       key->depth_clamp = 1;
3202    } else {
3203       key->depth_clamp = (lp->rasterizer->depth_clip == 0) ? 1 : 0;
3204    }
3205 
3206    /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3207    if (!lp->framebuffer.nr_cbufs ||
3208        !lp->framebuffer.cbufs[0] ||
3209        !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3210       key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3211    }
3212    if(key->alpha.enabled)
3213       key->alpha.func = lp->depth_stencil->alpha.func;
3214    /* alpha.ref_value is passed in jit_context */
3215 
3216    key->flatshade = lp->rasterizer->flatshade;
3217    if (lp->active_occlusion_queries) {
3218       key->occlusion_count = TRUE;
3219    }
3220 
3221    if (lp->framebuffer.nr_cbufs) {
3222       memcpy(&key->blend, lp->blend, sizeof key->blend);
3223    }
3224 
3225    key->nr_cbufs = lp->framebuffer.nr_cbufs;
3226 
3227    if (!key->blend.independent_blend_enable) {
3228       /* we always need independent blend otherwise the fixups below won't work */
3229       for (i = 1; i < key->nr_cbufs; i++) {
3230          memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3231       }
3232       key->blend.independent_blend_enable = 1;
3233    }
3234 
3235    for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3236       struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3237 
3238       if (lp->framebuffer.cbufs[i]) {
3239          enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3240          const struct util_format_description *format_desc;
3241 
3242          key->cbuf_format[i] = format;
3243 
3244          /*
3245           * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3246           * mixing of 2d textures with height 1 and 1d textures, so make sure
3247           * we pick 1d if any cbuf or zsbuf is 1d.
3248           */
3249          if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3250             key->resource_1d = TRUE;
3251          }
3252 
3253          format_desc = util_format_description(format);
3254          assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3255                 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3256 
3257          /*
3258           * Mask out color channels not present in the color buffer.
3259           */
3260          blend_rt->colormask &= util_format_colormask(format_desc);
3261 
3262          /*
3263           * Disable blend for integer formats.
3264           */
3265          if (util_format_is_pure_integer(format)) {
3266             blend_rt->blend_enable = 0;
3267          }
3268 
3269          /*
3270           * Our swizzled render tiles always have an alpha channel, but the
3271           * linear render target format often does not, so force here the dst
3272           * alpha to be one.
3273           *
3274           * This is not a mere optimization. Wrong results will be produced if
3275           * the dst alpha is used, the dst format does not have alpha, and the
3276           * previous rendering was not flushed from the swizzled to linear
3277           * buffer. For example, NonPowTwo DCT.
3278           *
3279           * TODO: This should be generalized to all channels for better
3280           * performance, but only alpha causes correctness issues.
3281           *
3282           * Also, force rgb/alpha func/factors match, to make AoS blending
3283           * easier.
3284           */
3285          if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3286              format_desc->swizzle[3] == format_desc->swizzle[0]) {
3287             /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3288             boolean clamped_zero = !util_format_is_float(format) &&
3289                                    !util_format_is_snorm(format);
3290             blend_rt->rgb_src_factor =
3291                force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3292             blend_rt->rgb_dst_factor =
3293                force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3294             blend_rt->alpha_func       = blend_rt->rgb_func;
3295             blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3296             blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3297          }
3298       }
3299       else {
3300          /* no color buffer for this fragment output */
3301          key->cbuf_format[i] = PIPE_FORMAT_NONE;
3302          blend_rt->colormask = 0x0;
3303          blend_rt->blend_enable = 0;
3304       }
3305    }
3306 
3307    /* This value will be the same for all the variants of a given shader:
3308     */
3309    key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3310 
3311    for(i = 0; i < key->nr_samplers; ++i) {
3312       if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3313          lp_sampler_static_sampler_state(&key->state[i].sampler_state,
3314                                          lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3315       }
3316    }
3317 
3318    /*
3319     * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3320     * are dx10-style? Can't really have mixed opcodes, at least not
3321     * if we want to skip the holes here (without rescanning tgsi).
3322     */
3323    if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3324       key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3325       for(i = 0; i < key->nr_sampler_views; ++i) {
3326          if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
3327             lp_sampler_static_texture_state(&key->state[i].texture_state,
3328                                             lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3329          }
3330       }
3331    }
3332    else {
3333       key->nr_sampler_views = key->nr_samplers;
3334       for(i = 0; i < key->nr_sampler_views; ++i) {
3335          if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3336             lp_sampler_static_texture_state(&key->state[i].texture_state,
3337                                             lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3338          }
3339       }
3340    }
3341 }
3342 
3343 
3344 
3345 /**
3346  * Update fragment shader state.  This is called just prior to drawing
3347  * something when some fragment-related state has changed.
3348  */
3349 void
llvmpipe_update_fs(struct llvmpipe_context * lp)3350 llvmpipe_update_fs(struct llvmpipe_context *lp)
3351 {
3352    struct lp_fragment_shader *shader = lp->fs;
3353    struct lp_fragment_shader_variant_key key;
3354    struct lp_fragment_shader_variant *variant = NULL;
3355    struct lp_fs_variant_list_item *li;
3356 
3357    make_variant_key(lp, shader, &key);
3358 
3359    /* Search the variants for one which matches the key */
3360    li = first_elem(&shader->variants);
3361    while(!at_end(&shader->variants, li)) {
3362       if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3363          variant = li->base;
3364          break;
3365       }
3366       li = next_elem(li);
3367    }
3368 
3369    if (variant) {
3370       /* Move this variant to the head of the list to implement LRU
3371        * deletion of shader's when we have too many.
3372        */
3373       move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3374    }
3375    else {
3376       /* variant not found, create it now */
3377       int64_t t0, t1, dt;
3378       unsigned i;
3379       unsigned variants_to_cull;
3380 
3381       if (LP_DEBUG & DEBUG_FS) {
3382          debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3383                       lp->nr_fs_variants,
3384                       lp->nr_fs_instrs,
3385                       lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3386       }
3387 
3388       /* First, check if we've exceeded the max number of shader variants.
3389        * If so, free 6.25% of them (the least recently used ones).
3390        */
3391       variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3392 
3393       if (variants_to_cull ||
3394           lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3395          struct pipe_context *pipe = &lp->pipe;
3396 
3397          if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3398             debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3399                          "\t%u instrs,\t%u instrs/variant\n",
3400                          shader->variants_cached,
3401                          lp->nr_fs_variants, lp->nr_fs_instrs,
3402                          lp->nr_fs_instrs / lp->nr_fs_variants);
3403          }
3404 
3405          /*
3406           * XXX: we need to flush the context until we have some sort of
3407           * reference counting in fragment shaders as they may still be binned
3408           * Flushing alone might not be sufficient we need to wait on it too.
3409           */
3410          llvmpipe_finish(pipe, __FUNCTION__);
3411 
3412          /*
3413           * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3414           * number of shader variants (potentially all of them) could be
3415           * pending for destruction on flush.
3416           */
3417 
3418          for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3419             struct lp_fs_variant_list_item *item;
3420             if (is_empty_list(&lp->fs_variants_list)) {
3421                break;
3422             }
3423             item = last_elem(&lp->fs_variants_list);
3424             assert(item);
3425             assert(item->base);
3426             llvmpipe_remove_shader_variant(lp, item->base);
3427          }
3428       }
3429 
3430       /*
3431        * Generate the new variant.
3432        */
3433       t0 = os_time_get();
3434       variant = generate_variant(lp, shader, &key);
3435       t1 = os_time_get();
3436       dt = t1 - t0;
3437       LP_COUNT_ADD(llvm_compile_time, dt);
3438       LP_COUNT_ADD(nr_llvm_compiles, 2);  /* emit vs. omit in/out test */
3439 
3440       /* Put the new variant into the list */
3441       if (variant) {
3442          insert_at_head(&shader->variants, &variant->list_item_local);
3443          insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3444          lp->nr_fs_variants++;
3445          lp->nr_fs_instrs += variant->nr_instrs;
3446          shader->variants_cached++;
3447       }
3448    }
3449 
3450    /* Bind this variant */
3451    lp_setup_set_fs_variant(lp->setup, variant);
3452 }
3453 
3454 
3455 
3456 
3457 
3458 void
llvmpipe_init_fs_funcs(struct llvmpipe_context * llvmpipe)3459 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3460 {
3461    llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3462    llvmpipe->pipe.bind_fs_state   = llvmpipe_bind_fs_state;
3463    llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3464 
3465    llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3466 }
3467 
3468 /*
3469  * Rasterization is disabled if there is no pixel shader and
3470  * both depth and stencil testing are disabled:
3471  * http://msdn.microsoft.com/en-us/library/windows/desktop/bb205125
3472  */
3473 boolean
llvmpipe_rasterization_disabled(struct llvmpipe_context * lp)3474 llvmpipe_rasterization_disabled(struct llvmpipe_context *lp)
3475 {
3476    boolean null_fs = !lp->fs || lp->fs->info.base.num_tokens <= 1;
3477 
3478    return (null_fs &&
3479            !lp->depth_stencil->depth.enabled &&
3480            !lp->depth_stencil->stencil[0].enabled);
3481 }
3482