1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
6 #define V8_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
7
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips64/assembler-mips64.h"
11 #include "src/turbo-assembler.h"
12
13 namespace v8 {
14 namespace internal {
15
16 // Give alias names to registers for calling conventions.
17 constexpr Register kReturnRegister0 = v0;
18 constexpr Register kReturnRegister1 = v1;
19 constexpr Register kReturnRegister2 = a0;
20 constexpr Register kJSFunctionRegister = a1;
21 constexpr Register kContextRegister = s7;
22 constexpr Register kAllocateSizeRegister = a0;
23 constexpr Register kSpeculationPoisonRegister = a7;
24 constexpr Register kInterpreterAccumulatorRegister = v0;
25 constexpr Register kInterpreterBytecodeOffsetRegister = t0;
26 constexpr Register kInterpreterBytecodeArrayRegister = t1;
27 constexpr Register kInterpreterDispatchTableRegister = t2;
28
29 constexpr Register kJavaScriptCallArgCountRegister = a0;
30 constexpr Register kJavaScriptCallCodeStartRegister = a2;
31 constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
32 constexpr Register kJavaScriptCallNewTargetRegister = a3;
33 constexpr Register kJavaScriptCallExtraArg1Register = a2;
34
35 constexpr Register kOffHeapTrampolineRegister = at;
36 constexpr Register kRuntimeCallFunctionRegister = a1;
37 constexpr Register kRuntimeCallArgCountRegister = a0;
38 constexpr Register kRuntimeCallArgvRegister = a2;
39 constexpr Register kWasmInstanceRegister = a0;
40
41 // Forward declarations.
42 enum class AbortReason : uint8_t;
43
44 // Reserved Register Usage Summary.
45 //
46 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
47 //
48 // The programmer should know that the MacroAssembler may clobber these three,
49 // but won't touch other registers except in special cases.
50 //
51 // Per the MIPS ABI, register t9 must be used for indirect function call
52 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
53 // trying to update gp register for position-independent-code. Whenever
54 // MIPS generated code calls C code, it must be via t9 register.
55
56
57 // Flags used for LeaveExitFrame function.
58 enum LeaveExitFrameMode {
59 EMIT_RETURN = true,
60 NO_EMIT_RETURN = false
61 };
62
63 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
64 enum BranchDelaySlot {
65 USE_DELAY_SLOT,
66 PROTECT
67 };
68
69 // Flags used for the li macro-assembler function.
70 enum LiFlags {
71 // If the constant value can be represented in just 16 bits, then
72 // optimize the li to use a single instruction, rather than lui/ori/dsll
73 // sequence. A number of other optimizations that emits less than
74 // maximum number of instructions exists.
75 OPTIMIZE_SIZE = 0,
76 // Always use 6 instructions (lui/ori/dsll sequence) for release 2 or 4
77 // instructions for release 6 (lui/ori/dahi/dati), even if the constant
78 // could be loaded with just one, so that this value is patchable later.
79 CONSTANT_SIZE = 1,
80 // For address loads only 4 instruction are required. Used to mark
81 // constant load that will be used as address without relocation
82 // information. It ensures predictable code size, so specific sites
83 // in code are patchable.
84 ADDRESS_LOAD = 2
85 };
86
87 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
88 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
89 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
90
91 Register GetRegisterThatIsNotOneOf(Register reg1,
92 Register reg2 = no_reg,
93 Register reg3 = no_reg,
94 Register reg4 = no_reg,
95 Register reg5 = no_reg,
96 Register reg6 = no_reg);
97
98 // -----------------------------------------------------------------------------
99 // Static helper functions.
100
101 #if defined(V8_TARGET_LITTLE_ENDIAN)
102 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
103 #else
104 #define SmiWordOffset(offset) offset
105 #endif
106
107
ContextMemOperand(Register context,int index)108 inline MemOperand ContextMemOperand(Register context, int index) {
109 return MemOperand(context, Context::SlotOffset(index));
110 }
111
112
NativeContextMemOperand()113 inline MemOperand NativeContextMemOperand() {
114 return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
115 }
116
117
118 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)119 inline MemOperand FieldMemOperand(Register object, int offset) {
120 return MemOperand(object, offset - kHeapObjectTag);
121 }
122
123
124 // Generate a MemOperand for storing arguments 5..N on the stack
125 // when calling CallCFunction().
126 // TODO(plind): Currently ONLY used for O32. Should be fixed for
127 // n64, and used in RegExp code, and other places
128 // with more than 8 arguments.
CFunctionArgumentOperand(int index)129 inline MemOperand CFunctionArgumentOperand(int index) {
130 DCHECK_GT(index, kCArgSlotCount);
131 // Argument 5 takes the slot just past the four Arg-slots.
132 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
133 return MemOperand(sp, offset);
134 }
135
136 class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
137 public:
TurboAssembler(Isolate * isolate,const AssemblerOptions & options,void * buffer,int buffer_size,CodeObjectRequired create_code_object)138 TurboAssembler(Isolate* isolate, const AssemblerOptions& options,
139 void* buffer, int buffer_size,
140 CodeObjectRequired create_code_object)
141 : TurboAssemblerBase(isolate, options, buffer, buffer_size,
142 create_code_object) {}
143
144 // Activation support.
145 void EnterFrame(StackFrame::Type type);
EnterFrame(StackFrame::Type type,bool load_constant_pool_pointer_reg)146 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
147 // Out-of-line constant pool not implemented on mips.
148 UNREACHABLE();
149 }
150 void LeaveFrame(StackFrame::Type type);
151
152 // Generates function and stub prologue code.
153 void StubPrologue(StackFrame::Type type);
154 void Prologue();
155
InitializeRootRegister()156 void InitializeRootRegister() {
157 ExternalReference roots_array_start =
158 ExternalReference::roots_array_start(isolate());
159 li(kRootRegister, Operand(roots_array_start));
160 daddiu(kRootRegister, kRootRegister, kRootRegisterBias);
161 }
162
163 // Jump unconditionally to given label.
164 // We NEED a nop in the branch delay slot, as it used by v8, for example in
165 // CodeGenerator::ProcessDeferred().
166 // Currently the branch delay slot is filled by the MacroAssembler.
167 // Use rather b(Label) for code generation.
jmp(Label * L)168 void jmp(Label* L) { Branch(L); }
169
170 // -------------------------------------------------------------------------
171 // Debugging.
172
173 // Calls Abort(msg) if the condition cc is not satisfied.
174 // Use --debug_code to enable.
175 void Assert(Condition cc, AbortReason reason, Register rs, Operand rt);
176
177 // Like Assert(), but always enabled.
178 void Check(Condition cc, AbortReason reason, Register rs, Operand rt);
179
180 // Print a message to stdout and abort execution.
181 void Abort(AbortReason msg);
182
183 inline bool AllowThisStubCall(CodeStub* stub);
184
185 // Arguments macros.
186 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
187 #define COND_ARGS cond, r1, r2
188
189 // Cases when relocation is not needed.
190 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
191 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
192 inline void Name(BranchDelaySlot bd, target_type target) { \
193 Name(target, bd); \
194 } \
195 void Name(target_type target, \
196 COND_TYPED_ARGS, \
197 BranchDelaySlot bd = PROTECT); \
198 inline void Name(BranchDelaySlot bd, \
199 target_type target, \
200 COND_TYPED_ARGS) { \
201 Name(target, COND_ARGS, bd); \
202 }
203
204 #define DECLARE_BRANCH_PROTOTYPES(Name) \
205 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
206 DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
207
208 DECLARE_BRANCH_PROTOTYPES(Branch)
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)209 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
210 DECLARE_BRANCH_PROTOTYPES(BranchShort)
211
212 #undef DECLARE_BRANCH_PROTOTYPES
213 #undef COND_TYPED_ARGS
214 #undef COND_ARGS
215
216 // Floating point branches
217 void CompareF32(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
218 CompareF(S, cc, cmp1, cmp2);
219 }
220
CompareIsNanF32(FPURegister cmp1,FPURegister cmp2)221 void CompareIsNanF32(FPURegister cmp1, FPURegister cmp2) {
222 CompareIsNanF(S, cmp1, cmp2);
223 }
224
CompareF64(FPUCondition cc,FPURegister cmp1,FPURegister cmp2)225 void CompareF64(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
226 CompareF(D, cc, cmp1, cmp2);
227 }
228
CompareIsNanF64(FPURegister cmp1,FPURegister cmp2)229 void CompareIsNanF64(FPURegister cmp1, FPURegister cmp2) {
230 CompareIsNanF(D, cmp1, cmp2);
231 }
232
233 void BranchTrueShortF(Label* target, BranchDelaySlot bd = PROTECT);
234 void BranchFalseShortF(Label* target, BranchDelaySlot bd = PROTECT);
235
236 void BranchTrueF(Label* target, BranchDelaySlot bd = PROTECT);
237 void BranchFalseF(Label* target, BranchDelaySlot bd = PROTECT);
238
239 // MSA branches
240 void BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond,
241 MSARegister wt, BranchDelaySlot bd = PROTECT);
242
243 void Branch(Label* L, Condition cond, Register rs, Heap::RootListIndex index,
244 BranchDelaySlot bdslot = PROTECT);
245
246 static int InstrCountForLi64Bit(int64_t value);
247 inline void LiLower32BitHelper(Register rd, Operand j);
248 void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
249 // Load int32 in the rd register.
250 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
251 inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
252 li(rd, Operand(j), mode);
253 }
254 void li(Register dst, Handle<HeapObject> value, LiFlags mode = OPTIMIZE_SIZE);
255 void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE);
256
257 void LoadFromConstantsTable(Register destination,
258 int constant_index) override;
259 void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
260 void LoadRootRelative(Register destination, int32_t offset) override;
261
262 // Jump, Call, and Ret pseudo instructions implementing inter-working.
263 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
264 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
265
266 void Jump(Register target, COND_ARGS);
267 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
268 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
269 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
270 void Call(Register target, COND_ARGS);
271 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
272 void Call(Handle<Code> code,
273 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
274 COND_ARGS);
275 void Call(Label* target);
276
CallForDeoptimization(Address target,int deopt_id,RelocInfo::Mode rmode)277 void CallForDeoptimization(Address target, int deopt_id,
278 RelocInfo::Mode rmode) {
279 USE(deopt_id);
280 Call(target, rmode);
281 }
282
283 void Ret(COND_ARGS);
284 inline void Ret(BranchDelaySlot bd, Condition cond = al,
285 Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
286 Ret(cond, rs, rt, bd);
287 }
288
289 // Emit code to discard a non-negative number of pointer-sized elements
290 // from the stack, clobbering only the sp register.
291 void Drop(int count,
292 Condition cond = cc_always,
293 Register reg = no_reg,
294 const Operand& op = Operand(no_reg));
295
296 // Trivial case of DropAndRet that utilizes the delay slot and only emits
297 // 2 instructions.
298 void DropAndRet(int drop);
299
300 void DropAndRet(int drop,
301 Condition cond,
302 Register reg,
303 const Operand& op);
304
305 void Ld(Register rd, const MemOperand& rs);
306 void Sd(Register rd, const MemOperand& rs);
307
push(Register src)308 void push(Register src) {
309 Daddu(sp, sp, Operand(-kPointerSize));
310 Sd(src, MemOperand(sp, 0));
311 }
Push(Register src)312 void Push(Register src) { push(src); }
313 void Push(Handle<HeapObject> handle);
314 void Push(Smi* smi);
315
316 // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)317 void Push(Register src1, Register src2) {
318 Dsubu(sp, sp, Operand(2 * kPointerSize));
319 Sd(src1, MemOperand(sp, 1 * kPointerSize));
320 Sd(src2, MemOperand(sp, 0 * kPointerSize));
321 }
322
323 // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)324 void Push(Register src1, Register src2, Register src3) {
325 Dsubu(sp, sp, Operand(3 * kPointerSize));
326 Sd(src1, MemOperand(sp, 2 * kPointerSize));
327 Sd(src2, MemOperand(sp, 1 * kPointerSize));
328 Sd(src3, MemOperand(sp, 0 * kPointerSize));
329 }
330
331 // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)332 void Push(Register src1, Register src2, Register src3, Register src4) {
333 Dsubu(sp, sp, Operand(4 * kPointerSize));
334 Sd(src1, MemOperand(sp, 3 * kPointerSize));
335 Sd(src2, MemOperand(sp, 2 * kPointerSize));
336 Sd(src3, MemOperand(sp, 1 * kPointerSize));
337 Sd(src4, MemOperand(sp, 0 * kPointerSize));
338 }
339
340 // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)341 void Push(Register src1, Register src2, Register src3, Register src4,
342 Register src5) {
343 Dsubu(sp, sp, Operand(5 * kPointerSize));
344 Sd(src1, MemOperand(sp, 4 * kPointerSize));
345 Sd(src2, MemOperand(sp, 3 * kPointerSize));
346 Sd(src3, MemOperand(sp, 2 * kPointerSize));
347 Sd(src4, MemOperand(sp, 1 * kPointerSize));
348 Sd(src5, MemOperand(sp, 0 * kPointerSize));
349 }
350
Push(Register src,Condition cond,Register tst1,Register tst2)351 void Push(Register src, Condition cond, Register tst1, Register tst2) {
352 // Since we don't have conditional execution we use a Branch.
353 Branch(3, cond, tst1, Operand(tst2));
354 Dsubu(sp, sp, Operand(kPointerSize));
355 Sd(src, MemOperand(sp, 0));
356 }
357
358 void SaveRegisters(RegList registers);
359 void RestoreRegisters(RegList registers);
360
361 void CallRecordWriteStub(Register object, Register address,
362 RememberedSetAction remembered_set_action,
363 SaveFPRegsMode fp_mode);
364
365 // Push multiple registers on the stack.
366 // Registers are saved in numerical order, with higher numbered registers
367 // saved in higher memory addresses.
368 void MultiPush(RegList regs);
369 void MultiPushFPU(RegList regs);
370
371 // Calculate how much stack space (in bytes) are required to store caller
372 // registers excluding those specified in the arguments.
373 int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
374 Register exclusion1 = no_reg,
375 Register exclusion2 = no_reg,
376 Register exclusion3 = no_reg) const;
377
378 // Push caller saved registers on the stack, and return the number of bytes
379 // stack pointer is adjusted.
380 int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
381 Register exclusion2 = no_reg,
382 Register exclusion3 = no_reg);
383 // Restore caller saved registers from the stack, and return the number of
384 // bytes stack pointer is adjusted.
385 int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
386 Register exclusion2 = no_reg,
387 Register exclusion3 = no_reg);
388
pop(Register dst)389 void pop(Register dst) {
390 Ld(dst, MemOperand(sp, 0));
391 Daddu(sp, sp, Operand(kPointerSize));
392 }
Pop(Register dst)393 void Pop(Register dst) { pop(dst); }
394
395 // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)396 void Pop(Register src1, Register src2) {
397 DCHECK(src1 != src2);
398 Ld(src2, MemOperand(sp, 0 * kPointerSize));
399 Ld(src1, MemOperand(sp, 1 * kPointerSize));
400 Daddu(sp, sp, 2 * kPointerSize);
401 }
402
403 // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)404 void Pop(Register src1, Register src2, Register src3) {
405 Ld(src3, MemOperand(sp, 0 * kPointerSize));
406 Ld(src2, MemOperand(sp, 1 * kPointerSize));
407 Ld(src1, MemOperand(sp, 2 * kPointerSize));
408 Daddu(sp, sp, 3 * kPointerSize);
409 }
410
411 void Pop(uint32_t count = 1) { Daddu(sp, sp, Operand(count * kPointerSize)); }
412
413 // Pops multiple values from the stack and load them in the
414 // registers specified in regs. Pop order is the opposite as in MultiPush.
415 void MultiPop(RegList regs);
416 void MultiPopFPU(RegList regs);
417
418 #define DEFINE_INSTRUCTION(instr) \
419 void instr(Register rd, Register rs, const Operand& rt); \
420 void instr(Register rd, Register rs, Register rt) { \
421 instr(rd, rs, Operand(rt)); \
422 } \
423 void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); }
424
425 #define DEFINE_INSTRUCTION2(instr) \
426 void instr(Register rs, const Operand& rt); \
427 void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \
428 void instr(Register rs, int32_t j) { instr(rs, Operand(j)); }
429
430 DEFINE_INSTRUCTION(Addu);
431 DEFINE_INSTRUCTION(Daddu);
432 DEFINE_INSTRUCTION(Div);
433 DEFINE_INSTRUCTION(Divu);
434 DEFINE_INSTRUCTION(Ddivu);
435 DEFINE_INSTRUCTION(Mod);
436 DEFINE_INSTRUCTION(Modu);
437 DEFINE_INSTRUCTION(Ddiv);
438 DEFINE_INSTRUCTION(Subu);
439 DEFINE_INSTRUCTION(Dsubu);
440 DEFINE_INSTRUCTION(Dmod);
441 DEFINE_INSTRUCTION(Dmodu);
442 DEFINE_INSTRUCTION(Mul);
443 DEFINE_INSTRUCTION(Mulh);
444 DEFINE_INSTRUCTION(Mulhu);
445 DEFINE_INSTRUCTION(Dmul);
446 DEFINE_INSTRUCTION(Dmulh);
447 DEFINE_INSTRUCTION2(Mult);
448 DEFINE_INSTRUCTION2(Dmult);
449 DEFINE_INSTRUCTION2(Multu);
450 DEFINE_INSTRUCTION2(Dmultu);
451 DEFINE_INSTRUCTION2(Div);
452 DEFINE_INSTRUCTION2(Ddiv);
453 DEFINE_INSTRUCTION2(Divu);
454 DEFINE_INSTRUCTION2(Ddivu);
455
456 DEFINE_INSTRUCTION(And);
457 DEFINE_INSTRUCTION(Or);
458 DEFINE_INSTRUCTION(Xor);
459 DEFINE_INSTRUCTION(Nor);
460 DEFINE_INSTRUCTION2(Neg);
461
462 DEFINE_INSTRUCTION(Slt);
463 DEFINE_INSTRUCTION(Sltu);
464 DEFINE_INSTRUCTION(Sle);
465 DEFINE_INSTRUCTION(Sleu);
466 DEFINE_INSTRUCTION(Sgt);
467 DEFINE_INSTRUCTION(Sgtu);
468 DEFINE_INSTRUCTION(Sge);
469 DEFINE_INSTRUCTION(Sgeu);
470
471 // MIPS32 R2 instruction macro.
472 DEFINE_INSTRUCTION(Ror);
473 DEFINE_INSTRUCTION(Dror);
474
475 #undef DEFINE_INSTRUCTION
476 #undef DEFINE_INSTRUCTION2
477 #undef DEFINE_INSTRUCTION3
478
479 void SmiUntag(Register dst, const MemOperand& src);
SmiUntag(Register dst,Register src)480 void SmiUntag(Register dst, Register src) {
481 if (SmiValuesAre32Bits()) {
482 dsra32(dst, src, kSmiShift - 32);
483 } else {
484 DCHECK(SmiValuesAre31Bits());
485 sra(dst, src, kSmiShift);
486 }
487 }
488
SmiUntag(Register reg)489 void SmiUntag(Register reg) { SmiUntag(reg, reg); }
490
491 // Removes current frame and its arguments from the stack preserving
492 // the arguments and a return address pushed to the stack for the next call.
493 // Both |callee_args_count| and |caller_args_count_reg| do not include
494 // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
495 // is trashed.
496 void PrepareForTailCall(const ParameterCount& callee_args_count,
497 Register caller_args_count_reg, Register scratch0,
498 Register scratch1);
499
500 int CalculateStackPassedWords(int num_reg_arguments,
501 int num_double_arguments);
502
503 // Before calling a C-function from generated code, align arguments on stack
504 // and add space for the four mips argument slots.
505 // After aligning the frame, non-register arguments must be stored on the
506 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
507 // The argument count assumes all arguments are word sized.
508 // Some compilers/platforms require the stack to be aligned when calling
509 // C++ code.
510 // Needs a scratch register to do some arithmetic. This register will be
511 // trashed.
512 void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
513 Register scratch);
514 void PrepareCallCFunction(int num_reg_arguments, Register scratch);
515
516 // Arguments 1-4 are placed in registers a0 through a3 respectively.
517 // Arguments 5..n are stored to stack using following:
518 // Sw(a4, CFunctionArgumentOperand(5));
519
520 // Calls a C function and cleans up the space for arguments allocated
521 // by PrepareCallCFunction. The called function is not allowed to trigger a
522 // garbage collection, since that might move the code and invalidate the
523 // return address (unless this is somehow accounted for by the called
524 // function).
525 void CallCFunction(ExternalReference function, int num_arguments);
526 void CallCFunction(Register function, int num_arguments);
527 void CallCFunction(ExternalReference function, int num_reg_arguments,
528 int num_double_arguments);
529 void CallCFunction(Register function, int num_reg_arguments,
530 int num_double_arguments);
531 void MovFromFloatResult(DoubleRegister dst);
532 void MovFromFloatParameter(DoubleRegister dst);
533
534 // There are two ways of passing double arguments on MIPS, depending on
535 // whether soft or hard floating point ABI is used. These functions
536 // abstract parameter passing for the three different ways we call
537 // C functions from generated code.
538 void MovToFloatParameter(DoubleRegister src);
539 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
540 void MovToFloatResult(DoubleRegister src);
541
542 // See comments at the beginning of Builtins::Generate_CEntry.
PrepareCEntryArgs(int num_args)543 inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
PrepareCEntryFunction(const ExternalReference & ref)544 inline void PrepareCEntryFunction(const ExternalReference& ref) {
545 li(a1, ref);
546 }
547
548 void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
549 Label* condition_met);
550
551 void CallStubDelayed(CodeStub* stub, COND_ARGS);
552 #undef COND_ARGS
553
554 // Call a runtime routine. This expects {centry} to contain a fitting CEntry
555 // builtin for the target runtime function and uses an indirect call.
556 void CallRuntimeWithCEntry(Runtime::FunctionId fid, Register centry);
557
558 // Performs a truncating conversion of a floating point number as used by
559 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
560 // succeeds, otherwise falls through if result is saturated. On return
561 // 'result' either holds answer, or is clobbered on fall through.
562 //
563 // Only public for the test code in test-code-stubs-arm.cc.
564 void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
565 Label* done);
566
567 // Performs a truncating conversion of a floating point number as used by
568 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
569 // Exits with 'result' holding the answer.
570 void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
571 DoubleRegister double_input, StubCallMode stub_mode);
572
573 // Conditional move.
574 void Movz(Register rd, Register rs, Register rt);
575 void Movn(Register rd, Register rs, Register rt);
576 void Movt(Register rd, Register rs, uint16_t cc = 0);
577 void Movf(Register rd, Register rs, uint16_t cc = 0);
578
579 void LoadZeroIfFPUCondition(Register dest);
580 void LoadZeroIfNotFPUCondition(Register dest);
581
582 void LoadZeroIfConditionNotZero(Register dest, Register condition);
583 void LoadZeroIfConditionZero(Register dest, Register condition);
584 void LoadZeroOnCondition(Register rd, Register rs, const Operand& rt,
585 Condition cond);
586
587 void Clz(Register rd, Register rs);
588 void Ctz(Register rd, Register rs);
589 void Dctz(Register rd, Register rs);
590 void Popcnt(Register rd, Register rs);
591 void Dpopcnt(Register rd, Register rs);
592
593 // MIPS64 R2 instruction macro.
594 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
595 void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
596 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
597 void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
598 void ExtractBits(Register dest, Register source, Register pos, int size,
599 bool sign_extend = false);
600 void InsertBits(Register dest, Register source, Register pos, int size);
601 void Neg_s(FPURegister fd, FPURegister fs);
602 void Neg_d(FPURegister fd, FPURegister fs);
603
604 // MIPS64 R6 instruction macros.
605 void Bovc(Register rt, Register rs, Label* L);
606 void Bnvc(Register rt, Register rs, Label* L);
607
608 // Convert single to unsigned word.
609 void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
610 void Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch);
611
612 // Change endianness
613 void ByteSwapSigned(Register dest, Register src, int operand_size);
614 void ByteSwapUnsigned(Register dest, Register src, int operand_size);
615
616 void Ulh(Register rd, const MemOperand& rs);
617 void Ulhu(Register rd, const MemOperand& rs);
618 void Ush(Register rd, const MemOperand& rs, Register scratch);
619
620 void Ulw(Register rd, const MemOperand& rs);
621 void Ulwu(Register rd, const MemOperand& rs);
622 void Usw(Register rd, const MemOperand& rs);
623
624 void Uld(Register rd, const MemOperand& rs);
625 void Usd(Register rd, const MemOperand& rs);
626
627 void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
628 void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
629
630 void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
631 void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
632
633 void Lb(Register rd, const MemOperand& rs);
634 void Lbu(Register rd, const MemOperand& rs);
635 void Sb(Register rd, const MemOperand& rs);
636
637 void Lh(Register rd, const MemOperand& rs);
638 void Lhu(Register rd, const MemOperand& rs);
639 void Sh(Register rd, const MemOperand& rs);
640
641 void Lw(Register rd, const MemOperand& rs);
642 void Lwu(Register rd, const MemOperand& rs);
643 void Sw(Register rd, const MemOperand& rs);
644
645 void Lwc1(FPURegister fd, const MemOperand& src);
646 void Swc1(FPURegister fs, const MemOperand& dst);
647
648 void Ldc1(FPURegister fd, const MemOperand& src);
649 void Sdc1(FPURegister fs, const MemOperand& dst);
650
651 void Ll(Register rd, const MemOperand& rs);
652 void Sc(Register rd, const MemOperand& rs);
653
654 void Lld(Register rd, const MemOperand& rs);
655 void Scd(Register rd, const MemOperand& rs);
656
657 // Perform a floating-point min or max operation with the
658 // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
659 // Some cases, typically NaNs or +/-0.0, are expected to be rare and are
660 // handled in out-of-line code. The specific behaviour depends on supported
661 // instructions.
662 //
663 // These functions assume (and assert) that src1!=src2. It is permitted
664 // for the result to alias either input register.
665 void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
666 Label* out_of_line);
667 void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
668 Label* out_of_line);
669 void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2,
670 Label* out_of_line);
671 void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2,
672 Label* out_of_line);
673
674 // Generate out-of-line cases for the macros above.
675 void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
676 void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
677 void Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
678 void Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
679
IsDoubleZeroRegSet()680 bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
681
mov(Register rd,Register rt)682 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
683
Move(Register dst,Handle<HeapObject> handle)684 inline void Move(Register dst, Handle<HeapObject> handle) { li(dst, handle); }
Move(Register dst,Smi * smi)685 inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); }
686
Move(Register dst,Register src)687 inline void Move(Register dst, Register src) {
688 if (dst != src) {
689 mov(dst, src);
690 }
691 }
692
Move(FPURegister dst,FPURegister src)693 inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
694
Move(Register dst_low,Register dst_high,FPURegister src)695 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
696 mfc1(dst_low, src);
697 mfhc1(dst_high, src);
698 }
699
Move(Register dst,FPURegister src)700 inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }
701
Move(FPURegister dst,Register src)702 inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }
703
FmoveHigh(Register dst_high,FPURegister src)704 inline void FmoveHigh(Register dst_high, FPURegister src) {
705 mfhc1(dst_high, src);
706 }
707
FmoveHigh(FPURegister dst,Register src_high)708 inline void FmoveHigh(FPURegister dst, Register src_high) {
709 mthc1(src_high, dst);
710 }
711
FmoveLow(Register dst_low,FPURegister src)712 inline void FmoveLow(Register dst_low, FPURegister src) {
713 mfc1(dst_low, src);
714 }
715
716 void FmoveLow(FPURegister dst, Register src_low);
717
Move(FPURegister dst,Register src_low,Register src_high)718 inline void Move(FPURegister dst, Register src_low, Register src_high) {
719 mtc1(src_low, dst);
720 mthc1(src_high, dst);
721 }
722
Move_d(FPURegister dst,FPURegister src)723 inline void Move_d(FPURegister dst, FPURegister src) {
724 if (dst != src) {
725 mov_d(dst, src);
726 }
727 }
728
Move_s(FPURegister dst,FPURegister src)729 inline void Move_s(FPURegister dst, FPURegister src) {
730 if (dst != src) {
731 mov_s(dst, src);
732 }
733 }
734
Move(FPURegister dst,float imm)735 void Move(FPURegister dst, float imm) { Move(dst, bit_cast<uint32_t>(imm)); }
Move(FPURegister dst,double imm)736 void Move(FPURegister dst, double imm) { Move(dst, bit_cast<uint64_t>(imm)); }
737 void Move(FPURegister dst, uint32_t src);
738 void Move(FPURegister dst, uint64_t src);
739
740 // DaddOverflow sets overflow register to a negative value if
741 // overflow occured, otherwise it is zero or positive
742 void DaddOverflow(Register dst, Register left, const Operand& right,
743 Register overflow);
744 // DsubOverflow sets overflow register to a negative value if
745 // overflow occured, otherwise it is zero or positive
746 void DsubOverflow(Register dst, Register left, const Operand& right,
747 Register overflow);
748 // MulOverflow sets overflow register to zero if no overflow occured
749 void MulOverflow(Register dst, Register left, const Operand& right,
750 Register overflow);
751
752 // Number of instructions needed for calculation of switch table entry address
753 #ifdef _MIPS_ARCH_MIPS64R6
754 static const int kSwitchTablePrologueSize = 6;
755 #else
756 static const int kSwitchTablePrologueSize = 11;
757 #endif
758
759 // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
760 // functor/function with 'Label *func(size_t index)' declaration.
761 template <typename Func>
762 void GenerateSwitchTable(Register index, size_t case_count,
763 Func GetLabelFunction);
764
765 // Load an object from the root table.
766 void LoadRoot(Register destination, Heap::RootListIndex index) override;
767 void LoadRoot(Register destination, Heap::RootListIndex index, Condition cond,
768 Register src1, const Operand& src2);
769
770 // If the value is a NaN, canonicalize the value else, do nothing.
771 void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
772
773 // ---------------------------------------------------------------------------
774 // FPU macros. These do not handle special cases like NaN or +- inf.
775
776 // Convert unsigned word to double.
777 void Cvt_d_uw(FPURegister fd, FPURegister fs);
778 void Cvt_d_uw(FPURegister fd, Register rs);
779
780 // Convert unsigned long to double.
781 void Cvt_d_ul(FPURegister fd, FPURegister fs);
782 void Cvt_d_ul(FPURegister fd, Register rs);
783
784 // Convert unsigned word to float.
785 void Cvt_s_uw(FPURegister fd, FPURegister fs);
786 void Cvt_s_uw(FPURegister fd, Register rs);
787
788 // Convert unsigned long to float.
789 void Cvt_s_ul(FPURegister fd, FPURegister fs);
790 void Cvt_s_ul(FPURegister fd, Register rs);
791
792 // Convert double to unsigned word.
793 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
794 void Trunc_uw_d(Register rd, FPURegister fs, FPURegister scratch);
795
796 // Convert double to unsigned long.
797 void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
798 Register result = no_reg);
799 void Trunc_ul_d(Register rd, FPURegister fs, FPURegister scratch,
800 Register result = no_reg);
801
802 // Convert single to unsigned long.
803 void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
804 Register result = no_reg);
805 void Trunc_ul_s(Register rd, FPURegister fs, FPURegister scratch,
806 Register result = no_reg);
807
808 // Round double functions
809 void Trunc_d_d(FPURegister fd, FPURegister fs);
810 void Round_d_d(FPURegister fd, FPURegister fs);
811 void Floor_d_d(FPURegister fd, FPURegister fs);
812 void Ceil_d_d(FPURegister fd, FPURegister fs);
813
814 // Round float functions
815 void Trunc_s_s(FPURegister fd, FPURegister fs);
816 void Round_s_s(FPURegister fd, FPURegister fs);
817 void Floor_s_s(FPURegister fd, FPURegister fs);
818 void Ceil_s_s(FPURegister fd, FPURegister fs);
819
820 // Jump the register contains a smi.
821 void JumpIfSmi(Register value, Label* smi_label, Register scratch = at,
822 BranchDelaySlot bd = PROTECT);
823
JumpIfEqual(Register a,int32_t b,Label * dest)824 void JumpIfEqual(Register a, int32_t b, Label* dest) {
825 li(kScratchReg, Operand(b));
826 Branch(dest, eq, a, Operand(kScratchReg));
827 }
828
JumpIfLessThan(Register a,int32_t b,Label * dest)829 void JumpIfLessThan(Register a, int32_t b, Label* dest) {
830 li(kScratchReg, Operand(b));
831 Branch(dest, lt, a, Operand(kScratchReg));
832 }
833
834 // Push a standard frame, consisting of ra, fp, context and JS function.
835 void PushStandardFrame(Register function_reg);
836
837 // Get the actual activation frame alignment for target environment.
838 static int ActivationFrameAlignment();
839
840 // Load Scaled Address instructions. Parameter sa (shift argument) must be
841 // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
842 // may be clobbered.
843 void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
844 Register scratch = at);
845 void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
846 Register scratch = at);
847
848 // Compute the start of the generated instruction stream from the current PC.
849 // This is an alternative to embedding the {CodeObject} handle as a reference.
850 void ComputeCodeStartAddress(Register dst);
851
852 void ResetSpeculationPoisonRegister();
853
854 protected:
855 inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
856 inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
857
858 private:
859 bool has_double_zero_reg_set_ = false;
860
861 void CompareF(SecondaryField sizeField, FPUCondition cc, FPURegister cmp1,
862 FPURegister cmp2);
863
864 void CompareIsNanF(SecondaryField sizeField, FPURegister cmp1,
865 FPURegister cmp2);
866
867 void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
868 MSARegister wt, BranchDelaySlot bd = PROTECT);
869
870 void CallCFunctionHelper(Register function, int num_reg_arguments,
871 int num_double_arguments);
872
873 bool CalculateOffset(Label* L, int32_t& offset, OffsetSize bits);
874 bool CalculateOffset(Label* L, int32_t& offset, OffsetSize bits,
875 Register& scratch, const Operand& rt);
876
877 void BranchShortHelperR6(int32_t offset, Label* L);
878 void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
879 bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
880 Register rs, const Operand& rt);
881 bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
882 const Operand& rt, BranchDelaySlot bdslot);
883 bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
884 const Operand& rt, BranchDelaySlot bdslot);
885
886 void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
887 void BranchAndLinkShortHelper(int16_t offset, Label* L,
888 BranchDelaySlot bdslot);
889 void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
890 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
891 bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
892 Register rs, const Operand& rt);
893 bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
894 Register rs, const Operand& rt,
895 BranchDelaySlot bdslot);
896 bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
897 Register rs, const Operand& rt,
898 BranchDelaySlot bdslot);
899 void BranchLong(Label* L, BranchDelaySlot bdslot);
900 void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
901
902 template <typename RoundFunc>
903 void RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode,
904 RoundFunc round);
905
906 template <typename RoundFunc>
907 void RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode,
908 RoundFunc round);
909
910 // Push a fixed frame, consisting of ra, fp.
911 void PushCommonFrame(Register marker_reg = no_reg);
912 };
913
914 // MacroAssembler implements a collection of frequently used macros.
915 class MacroAssembler : public TurboAssembler {
916 public:
MacroAssembler(Isolate * isolate,void * buffer,int size,CodeObjectRequired create_code_object)917 MacroAssembler(Isolate* isolate, void* buffer, int size,
918 CodeObjectRequired create_code_object)
919 : MacroAssembler(isolate, AssemblerOptions::Default(isolate), buffer,
920 size, create_code_object) {}
921 MacroAssembler(Isolate* isolate, const AssemblerOptions& options,
922 void* buffer, int size, CodeObjectRequired create_code_object);
923
924 bool IsNear(Label* L, Condition cond, int rs_reg);
925
926 // Swap two registers. If the scratch register is omitted then a slightly
927 // less efficient form using xor instead of mov is emitted.
928 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
929
PushRoot(Heap::RootListIndex index)930 void PushRoot(Heap::RootListIndex index) {
931 UseScratchRegisterScope temps(this);
932 Register scratch = temps.Acquire();
933 LoadRoot(scratch, index);
934 Push(scratch);
935 }
936
937 // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)938 void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
939 UseScratchRegisterScope temps(this);
940 Register scratch = temps.Acquire();
941 LoadRoot(scratch, index);
942 Branch(if_equal, eq, with, Operand(scratch));
943 }
944
945 // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)946 void JumpIfNotRoot(Register with, Heap::RootListIndex index,
947 Label* if_not_equal) {
948 UseScratchRegisterScope temps(this);
949 Register scratch = temps.Acquire();
950 LoadRoot(scratch, index);
951 Branch(if_not_equal, ne, with, Operand(scratch));
952 }
953
954 // ---------------------------------------------------------------------------
955 // GC Support
956
957 // Notify the garbage collector that we wrote a pointer into an object.
958 // |object| is the object being stored into, |value| is the object being
959 // stored. value and scratch registers are clobbered by the operation.
960 // The offset is the offset from the start of the object, not the offset from
961 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
962 void RecordWriteField(
963 Register object, int offset, Register value, Register scratch,
964 RAStatus ra_status, SaveFPRegsMode save_fp,
965 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
966 SmiCheck smi_check = INLINE_SMI_CHECK);
967
968 // For a given |object| notify the garbage collector that the slot |address|
969 // has been written. |value| is the object being stored. The value and
970 // address registers are clobbered by the operation.
971 void RecordWrite(
972 Register object, Register address, Register value, RAStatus ra_status,
973 SaveFPRegsMode save_fp,
974 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
975 SmiCheck smi_check = INLINE_SMI_CHECK);
976
977 void Pref(int32_t hint, const MemOperand& rs);
978
979 // ---------------------------------------------------------------------------
980 // Pseudo-instructions.
981
982 void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
983 void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
984
985 // Push and pop the registers that can hold pointers, as defined by the
986 // RegList constant kSafepointSavedRegisters.
987 void PushSafepointRegisters();
988 void PopSafepointRegisters();
989
990 // Convert double to unsigned long.
991 void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
992
993 void Trunc_l_d(FPURegister fd, FPURegister fs);
994 void Round_l_d(FPURegister fd, FPURegister fs);
995 void Floor_l_d(FPURegister fd, FPURegister fs);
996 void Ceil_l_d(FPURegister fd, FPURegister fs);
997
998 void Trunc_w_d(FPURegister fd, FPURegister fs);
999 void Round_w_d(FPURegister fd, FPURegister fs);
1000 void Floor_w_d(FPURegister fd, FPURegister fs);
1001 void Ceil_w_d(FPURegister fd, FPURegister fs);
1002
1003 void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1004 FPURegister scratch);
1005 void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1006 FPURegister scratch);
1007 void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1008 FPURegister scratch);
1009 void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1010 FPURegister scratch);
1011
1012 void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
1013 MSARegister wt, BranchDelaySlot bd = PROTECT);
1014
1015 // Truncates a double using a specific rounding mode, and writes the value
1016 // to the result register.
1017 // The except_flag will contain any exceptions caused by the instruction.
1018 // If check_inexact is kDontCheckForInexactConversion, then the inexact
1019 // exception is masked.
1020 void EmitFPUTruncate(
1021 FPURoundingMode rounding_mode, Register result,
1022 DoubleRegister double_input, Register scratch,
1023 DoubleRegister double_scratch, Register except_flag,
1024 CheckForInexactConversion check_inexact = kDontCheckForInexactConversion);
1025
1026 // Enter exit frame.
1027 // argc - argument count to be dropped by LeaveExitFrame.
1028 // save_doubles - saves FPU registers on stack, currently disabled.
1029 // stack_space - extra stack space.
1030 void EnterExitFrame(bool save_doubles, int stack_space = 0,
1031 StackFrame::Type frame_type = StackFrame::EXIT);
1032
1033 // Leave the current exit frame.
1034 void LeaveExitFrame(bool save_doubles, Register arg_count,
1035 bool do_return = NO_EMIT_RETURN,
1036 bool argument_count_is_length = false);
1037
1038 // Make sure the stack is aligned. Only emits code in debug mode.
1039 void AssertStackIsAligned();
1040
1041 // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1042 void LoadGlobalProxy(Register dst) {
1043 LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1044 }
1045
1046 void LoadNativeContextSlot(int index, Register dst);
1047
1048 // Load the initial map from the global function. The registers
1049 // function and map can be the same, function is then overwritten.
1050 void LoadGlobalFunctionInitialMap(Register function,
1051 Register map,
1052 Register scratch);
1053
1054 // -------------------------------------------------------------------------
1055 // JavaScript invokes.
1056
1057 // Invoke the JavaScript function code by either calling or jumping.
1058 void InvokeFunctionCode(Register function, Register new_target,
1059 const ParameterCount& expected,
1060 const ParameterCount& actual, InvokeFlag flag);
1061
1062 // On function call, call into the debugger if necessary.
1063 void CheckDebugHook(Register fun, Register new_target,
1064 const ParameterCount& expected,
1065 const ParameterCount& actual);
1066
1067 // Invoke the JavaScript function in the given register. Changes the
1068 // current context to the context in the function before invoking.
1069 void InvokeFunction(Register function, Register new_target,
1070 const ParameterCount& actual, InvokeFlag flag);
1071
1072 void InvokeFunction(Register function, const ParameterCount& expected,
1073 const ParameterCount& actual, InvokeFlag flag);
1074
1075 // Frame restart support.
1076 void MaybeDropFrames();
1077
1078 // Exception handling.
1079
1080 // Push a new stack handler and link into stack handler chain.
1081 void PushStackHandler();
1082
1083 // Unlink the stack handler on top of the stack from the stack handler chain.
1084 // Must preserve the result register.
1085 void PopStackHandler();
1086
1087 // -------------------------------------------------------------------------
1088 // Support functions.
1089
1090 void GetObjectType(Register function,
1091 Register map,
1092 Register type_reg);
1093
1094 // -------------------------------------------------------------------------
1095 // Runtime calls.
1096
1097 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1098 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1099
1100 // Call a code stub.
1101 void CallStub(CodeStub* stub, COND_ARGS);
1102
1103 // Tail call a code stub (jump).
1104 void TailCallStub(CodeStub* stub, COND_ARGS);
1105
1106 #undef COND_ARGS
1107
1108 // Call a runtime routine.
1109 void CallRuntime(const Runtime::Function* f, int num_arguments,
1110 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1111
1112 // Convenience function: Same as above, but takes the fid instead.
1113 void CallRuntime(Runtime::FunctionId fid,
1114 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1115 const Runtime::Function* function = Runtime::FunctionForId(fid);
1116 CallRuntime(function, function->nargs, save_doubles);
1117 }
1118
1119 // Convenience function: Same as above, but takes the fid instead.
1120 void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1121 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1122 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1123 }
1124
1125 // Convenience function: tail call a runtime routine (jump).
1126 void TailCallRuntime(Runtime::FunctionId fid);
1127
1128 // Jump to the builtin routine.
1129 void JumpToExternalReference(const ExternalReference& builtin,
1130 BranchDelaySlot bd = PROTECT,
1131 bool builtin_exit_frame = false);
1132
1133 // Generates a trampoline to jump to the off-heap instruction stream.
1134 void JumpToInstructionStream(Address entry);
1135
1136 // ---------------------------------------------------------------------------
1137 // In-place weak references.
1138 void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
1139
1140 // -------------------------------------------------------------------------
1141 // StatsCounter support.
1142
1143 void IncrementCounter(StatsCounter* counter, int value,
1144 Register scratch1, Register scratch2);
1145 void DecrementCounter(StatsCounter* counter, int value,
1146 Register scratch1, Register scratch2);
1147
1148 // -------------------------------------------------------------------------
1149 // Smi utilities.
1150
SmiTag(Register dst,Register src)1151 void SmiTag(Register dst, Register src) {
1152 STATIC_ASSERT(kSmiTag == 0);
1153 if (SmiValuesAre32Bits()) {
1154 dsll32(dst, src, 0);
1155 } else {
1156 DCHECK(SmiValuesAre31Bits());
1157 Addu(dst, src, src);
1158 }
1159 }
1160
SmiTag(Register reg)1161 void SmiTag(Register reg) {
1162 SmiTag(reg, reg);
1163 }
1164
1165 // Left-shifted from int32 equivalent of Smi.
SmiScale(Register dst,Register src,int scale)1166 void SmiScale(Register dst, Register src, int scale) {
1167 if (SmiValuesAre32Bits()) {
1168 // The int portion is upper 32-bits of 64-bit word.
1169 dsra(dst, src, kSmiShift - scale);
1170 } else {
1171 DCHECK(SmiValuesAre31Bits());
1172 DCHECK_GE(scale, kSmiTagSize);
1173 sll(dst, src, scale - kSmiTagSize);
1174 }
1175 }
1176
1177 // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1178 inline void SmiTst(Register value, Register scratch) {
1179 And(scratch, value, Operand(kSmiTagMask));
1180 }
1181 // Untag the source value into destination and jump if source is a smi.
1182 // Source and destination can be the same register.
1183 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1184
1185 // Jump if the register contains a non-smi.
1186 void JumpIfNotSmi(Register value,
1187 Label* not_smi_label,
1188 Register scratch = at,
1189 BranchDelaySlot bd = PROTECT);
1190
1191 // Jump if either of the registers contain a smi.
1192 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1193
1194 // Abort execution if argument is a smi, enabled via --debug-code.
1195 void AssertNotSmi(Register object);
1196 void AssertSmi(Register object);
1197
1198 // Abort execution if argument is not a Constructor, enabled via --debug-code.
1199 void AssertConstructor(Register object);
1200
1201 // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1202 void AssertFunction(Register object);
1203
1204 // Abort execution if argument is not a JSBoundFunction,
1205 // enabled via --debug-code.
1206 void AssertBoundFunction(Register object);
1207
1208 // Abort execution if argument is not a JSGeneratorObject (or subclass),
1209 // enabled via --debug-code.
1210 void AssertGeneratorObject(Register object);
1211
1212 // Abort execution if argument is not undefined or an AllocationSite, enabled
1213 // via --debug-code.
1214 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1215
1216 template<typename Field>
DecodeField(Register dst,Register src)1217 void DecodeField(Register dst, Register src) {
1218 Ext(dst, src, Field::kShift, Field::kSize);
1219 }
1220
1221 template<typename Field>
DecodeField(Register reg)1222 void DecodeField(Register reg) {
1223 DecodeField<Field>(reg, reg);
1224 }
1225
1226 void EnterBuiltinFrame(Register context, Register target, Register argc);
1227 void LeaveBuiltinFrame(Register context, Register target, Register argc);
1228
1229 private:
1230 // Helper functions for generating invokes.
1231 void InvokePrologue(const ParameterCount& expected,
1232 const ParameterCount& actual, Label* done,
1233 bool* definitely_mismatches, InvokeFlag flag);
1234
1235 // Compute memory operands for safepoint stack slots.
1236 static int SafepointRegisterStackIndex(int reg_code);
1237
1238 // Needs access to SafepointRegisterStackIndex for compiled frame
1239 // traversal.
1240 friend class StandardFrame;
1241 };
1242
1243 template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)1244 void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count,
1245 Func GetLabelFunction) {
1246 // Ensure that dd-ed labels following this instruction use 8 bytes aligned
1247 // addresses.
1248 BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
1249 kSwitchTablePrologueSize);
1250 UseScratchRegisterScope temps(this);
1251 Register scratch = temps.Acquire();
1252 if (kArchVariant >= kMips64r6) {
1253 // Opposite of Align(8) as we have odd number of instructions in this case.
1254 if ((pc_offset() & 7) == 0) {
1255 nop();
1256 }
1257 addiupc(scratch, 5);
1258 Dlsa(scratch, scratch, index, kPointerSizeLog2);
1259 Ld(scratch, MemOperand(scratch));
1260 } else {
1261 Label here;
1262 Align(8);
1263 push(ra);
1264 bal(&here);
1265 dsll(scratch, index, kPointerSizeLog2); // Branch delay slot.
1266 bind(&here);
1267 daddu(scratch, scratch, ra);
1268 pop(ra);
1269 Ld(scratch, MemOperand(scratch, 6 * v8::internal::kInstrSize));
1270 }
1271 jr(scratch);
1272 nop(); // Branch delay slot nop.
1273 for (size_t index = 0; index < case_count; ++index) {
1274 dd(GetLabelFunction(index));
1275 }
1276 }
1277
1278 #define ACCESS_MASM(masm) masm->
1279
1280 } // namespace internal
1281 } // namespace v8
1282
1283 #endif // V8_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
1284