1 // Copyright 2017 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Parts of the implementation below:
6
7 // Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file [1]
8 // for details. All rights reserved. Use of this source code is governed by a
9 // BSD-style license that can be found in the LICENSE file [2].
10 //
11 // [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS
12 // [2] https://github.com/dart-lang/sdk/blob/master/LICENSE
13
14 // Copyright 2009 The Go Authors. All rights reserved.
15 // Use of this source code is governed by a BSD-style
16 // license that can be found in the LICENSE file [3].
17 //
18 // [3] https://golang.org/LICENSE
19
20 #include "src/objects/bigint.h"
21
22 #include "src/double.h"
23 #include "src/objects-inl.h"
24
25 namespace v8 {
26 namespace internal {
27
28 // The MutableBigInt class is an implementation detail designed to prevent
29 // accidental mutation of a BigInt after its construction. Step-by-step
30 // construction of a BigInt must happen in terms of MutableBigInt, the
31 // final result is then passed through MutableBigInt::MakeImmutable and not
32 // modified further afterwards.
33 // Many of the functions in this class use arguments of type {BigIntBase},
34 // indicating that they will be used in a read-only capacity, and both
35 // {BigInt} and {MutableBigInt} objects can be passed in.
36 class MutableBigInt : public FreshlyAllocatedBigInt,
37 public NeverReadOnlySpaceObject {
38 public:
39 using NeverReadOnlySpaceObject::GetHeap;
40 using NeverReadOnlySpaceObject::GetIsolate;
41
42 // Bottleneck for converting MutableBigInts to BigInts.
43 static MaybeHandle<BigInt> MakeImmutable(MaybeHandle<MutableBigInt> maybe);
44 static Handle<BigInt> MakeImmutable(Handle<MutableBigInt> result);
45
46 // Allocation helpers.
47 static MaybeHandle<MutableBigInt> New(Isolate* isolate, int length,
48 PretenureFlag pretenure = NOT_TENURED);
49 static Handle<BigInt> NewFromInt(Isolate* isolate, int value);
50 static Handle<BigInt> NewFromDouble(Isolate* isolate, double value);
51 void InitializeDigits(int length, byte value = 0);
52 static Handle<MutableBigInt> Copy(Isolate* isolate,
53 Handle<BigIntBase> source);
Zero(Isolate * isolate)54 static Handle<BigInt> Zero(Isolate* isolate) {
55 // TODO(jkummerow): Consider caching a canonical zero-BigInt.
56 return MakeImmutable(New(isolate, 0)).ToHandleChecked();
57 }
58
Cast(Handle<FreshlyAllocatedBigInt> bigint)59 static Handle<MutableBigInt> Cast(Handle<FreshlyAllocatedBigInt> bigint) {
60 SLOW_DCHECK(bigint->IsBigInt());
61 return Handle<MutableBigInt>::cast(bigint);
62 }
63
64 // Internal helpers.
65 static MaybeHandle<MutableBigInt> BitwiseAnd(Isolate* isolate,
66 Handle<BigInt> x,
67 Handle<BigInt> y);
68 static MaybeHandle<MutableBigInt> BitwiseXor(Isolate* isolate,
69 Handle<BigInt> x,
70 Handle<BigInt> y);
71 static MaybeHandle<MutableBigInt> BitwiseOr(Isolate* isolate,
72 Handle<BigInt> x,
73 Handle<BigInt> y);
74
75 static Handle<BigInt> TruncateToNBits(Isolate* isolate, int n,
76 Handle<BigInt> x);
77 static Handle<BigInt> TruncateAndSubFromPowerOfTwo(Isolate* isolate, int n,
78 Handle<BigInt> x,
79 bool result_sign);
80
81 static MaybeHandle<BigInt> AbsoluteAdd(Isolate* isolate, Handle<BigInt> x,
82 Handle<BigInt> y, bool result_sign);
83 static Handle<BigInt> AbsoluteSub(Isolate* isolate, Handle<BigInt> x,
84 Handle<BigInt> y, bool result_sign);
85 static MaybeHandle<MutableBigInt> AbsoluteAddOne(
86 Isolate* isolate, Handle<BigIntBase> x, bool sign,
87 MutableBigInt* result_storage = nullptr);
88 static Handle<MutableBigInt> AbsoluteSubOne(Isolate* isolate,
89 Handle<BigIntBase> x);
90 static MaybeHandle<MutableBigInt> AbsoluteSubOne(Isolate* isolate,
91 Handle<BigIntBase> x,
92 int result_length);
93
94 enum ExtraDigitsHandling { kCopy, kSkip };
95 enum SymmetricOp { kSymmetric, kNotSymmetric };
96 static inline Handle<MutableBigInt> AbsoluteBitwiseOp(
97 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
98 MutableBigInt* result_storage, ExtraDigitsHandling extra_digits,
99 SymmetricOp symmetric, std::function<digit_t(digit_t, digit_t)> op);
100 static Handle<MutableBigInt> AbsoluteAnd(
101 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
102 MutableBigInt* result_storage = nullptr);
103 static Handle<MutableBigInt> AbsoluteAndNot(
104 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
105 MutableBigInt* result_storage = nullptr);
106 static Handle<MutableBigInt> AbsoluteOr(
107 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
108 MutableBigInt* result_storage = nullptr);
109 static Handle<MutableBigInt> AbsoluteXor(
110 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
111 MutableBigInt* result_storage = nullptr);
112
113 static int AbsoluteCompare(Handle<BigIntBase> x, Handle<BigIntBase> y);
114
115 static void MultiplyAccumulate(Handle<BigIntBase> multiplicand,
116 digit_t multiplier,
117 Handle<MutableBigInt> accumulator,
118 int accumulator_index);
119 static void InternalMultiplyAdd(BigIntBase* source, digit_t factor,
120 digit_t summand, int n,
121 MutableBigInt* result);
122 void InplaceMultiplyAdd(uintptr_t factor, uintptr_t summand);
123
124 // Specialized helpers for Divide/Remainder.
125 static void AbsoluteDivSmall(Isolate* isolate, Handle<BigIntBase> x,
126 digit_t divisor, Handle<MutableBigInt>* quotient,
127 digit_t* remainder);
128 static bool AbsoluteDivLarge(Isolate* isolate, Handle<BigIntBase> dividend,
129 Handle<BigIntBase> divisor,
130 Handle<MutableBigInt>* quotient,
131 Handle<MutableBigInt>* remainder);
132 static bool ProductGreaterThan(digit_t factor1, digit_t factor2, digit_t high,
133 digit_t low);
134 digit_t InplaceAdd(Handle<BigIntBase> summand, int start_index);
135 digit_t InplaceSub(Handle<BigIntBase> subtrahend, int start_index);
136 void InplaceRightShift(int shift);
137 enum SpecialLeftShiftMode {
138 kSameSizeResult,
139 kAlwaysAddOneDigit,
140 };
141 static MaybeHandle<MutableBigInt> SpecialLeftShift(Isolate* isolate,
142 Handle<BigIntBase> x,
143 int shift,
144 SpecialLeftShiftMode mode);
145
146 // Specialized helpers for shift operations.
147 static MaybeHandle<BigInt> LeftShiftByAbsolute(Isolate* isolate,
148 Handle<BigIntBase> x,
149 Handle<BigIntBase> y);
150 static Handle<BigInt> RightShiftByAbsolute(Isolate* isolate,
151 Handle<BigIntBase> x,
152 Handle<BigIntBase> y);
153 static Handle<BigInt> RightShiftByMaximum(Isolate* isolate, bool sign);
154 static Maybe<digit_t> ToShiftAmount(Handle<BigIntBase> x);
155
156 static MaybeHandle<String> ToStringBasePowerOfTwo(Isolate* isolate,
157 Handle<BigIntBase> x,
158 int radix);
159 static MaybeHandle<String> ToStringGeneric(Isolate* isolate,
160 Handle<BigIntBase> x, int radix);
161
162 static double ToDouble(Handle<BigIntBase> x);
163 enum Rounding { kRoundDown, kTie, kRoundUp };
164 static Rounding DecideRounding(Handle<BigIntBase> x, int mantissa_bits_unset,
165 int digit_index, uint64_t current_digit);
166
167 // Returns the least significant 64 bits, simulating two's complement
168 // representation.
169 static uint64_t GetRawBits(BigIntBase* x, bool* lossless);
170
171 // Digit arithmetic helpers.
172 static inline digit_t digit_add(digit_t a, digit_t b, digit_t* carry);
173 static inline digit_t digit_sub(digit_t a, digit_t b, digit_t* borrow);
174 static inline digit_t digit_mul(digit_t a, digit_t b, digit_t* high);
175 static inline digit_t digit_div(digit_t high, digit_t low, digit_t divisor,
176 digit_t* remainder);
177 static digit_t digit_pow(digit_t base, digit_t exponent);
digit_ismax(digit_t x)178 static inline bool digit_ismax(digit_t x) {
179 return static_cast<digit_t>(~x) == 0;
180 }
181
182 // Internal field setters. Non-mutable BigInts don't have these.
183 #include "src/objects/object-macros.h"
set_sign(bool new_sign)184 inline void set_sign(bool new_sign) {
185 intptr_t bitfield = READ_INTPTR_FIELD(this, kBitfieldOffset);
186 bitfield = SignBits::update(static_cast<uint32_t>(bitfield), new_sign);
187 WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield);
188 }
set_length(int new_length)189 inline void set_length(int new_length) {
190 intptr_t bitfield = READ_INTPTR_FIELD(this, kBitfieldOffset);
191 bitfield = LengthBits::update(static_cast<uint32_t>(bitfield), new_length);
192 WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield);
193 }
initialize_bitfield(bool sign,int length)194 inline void initialize_bitfield(bool sign, int length) {
195 intptr_t bitfield = LengthBits::encode(length) | SignBits::encode(sign);
196 WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield);
197 }
set_digit(int n,digit_t value)198 inline void set_digit(int n, digit_t value) {
199 SLOW_DCHECK(0 <= n && n < length());
200 Address address = FIELD_ADDR(this, kDigitsOffset + n * kDigitSize);
201 (*reinterpret_cast<digit_t*>(address)) = value;
202 }
203 #include "src/objects/object-macros-undef.h"
204
205 void set_64_bits(uint64_t bits);
206 };
207
New(Isolate * isolate,int length,PretenureFlag pretenure)208 MaybeHandle<MutableBigInt> MutableBigInt::New(Isolate* isolate, int length,
209 PretenureFlag pretenure) {
210 if (length > BigInt::kMaxLength) {
211 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
212 MutableBigInt);
213 }
214 Handle<MutableBigInt> result =
215 Cast(isolate->factory()->NewBigInt(length, pretenure));
216 result->initialize_bitfield(false, length);
217 #if DEBUG
218 result->InitializeDigits(length, 0xBF);
219 #endif
220 return result;
221 }
222
NewFromInt(Isolate * isolate,int value)223 Handle<BigInt> MutableBigInt::NewFromInt(Isolate* isolate, int value) {
224 if (value == 0) return Zero(isolate);
225 Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(1));
226 bool sign = value < 0;
227 result->initialize_bitfield(sign, 1);
228 if (!sign) {
229 result->set_digit(0, value);
230 } else {
231 if (value == kMinInt) {
232 STATIC_ASSERT(kMinInt == -kMaxInt - 1);
233 result->set_digit(0, static_cast<BigInt::digit_t>(kMaxInt) + 1);
234 } else {
235 result->set_digit(0, -value);
236 }
237 }
238 return MakeImmutable(result);
239 }
240
NewFromDouble(Isolate * isolate,double value)241 Handle<BigInt> MutableBigInt::NewFromDouble(Isolate* isolate, double value) {
242 DCHECK_EQ(value, std::floor(value));
243 if (value == 0) return Zero(isolate);
244
245 bool sign = value < 0; // -0 was already handled above.
246 uint64_t double_bits = bit_cast<uint64_t>(value);
247 int raw_exponent =
248 static_cast<int>(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF;
249 DCHECK_NE(raw_exponent, 0x7FF);
250 DCHECK_GE(raw_exponent, 0x3FF);
251 int exponent = raw_exponent - 0x3FF;
252 int digits = exponent / kDigitBits + 1;
253 Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(digits));
254 result->initialize_bitfield(sign, digits);
255
256 // We construct a BigInt from the double {value} by shifting its mantissa
257 // according to its exponent and mapping the bit pattern onto digits.
258 //
259 // <----------- bitlength = exponent + 1 ----------->
260 // <----- 52 ------> <------ trailing zeroes ------>
261 // mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000
262 // digits: 0001xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
263 // <--> <------>
264 // msd_topbit kDigitBits
265 //
266 uint64_t mantissa =
267 (double_bits & Double::kSignificandMask) | Double::kHiddenBit;
268 const int kMantissaTopBit = Double::kSignificandSize - 1; // 0-indexed.
269 // 0-indexed position of most significant bit in the most significant digit.
270 int msd_topbit = exponent % kDigitBits;
271 // Number of unused bits in {mantissa}. We'll keep them shifted to the
272 // left (i.e. most significant part) of the underlying uint64_t.
273 int remaining_mantissa_bits = 0;
274 // Next digit under construction.
275 digit_t digit;
276
277 // First, build the MSD by shifting the mantissa appropriately.
278 if (msd_topbit < kMantissaTopBit) {
279 remaining_mantissa_bits = kMantissaTopBit - msd_topbit;
280 digit = mantissa >> remaining_mantissa_bits;
281 mantissa = mantissa << (64 - remaining_mantissa_bits);
282 } else {
283 DCHECK_GE(msd_topbit, kMantissaTopBit);
284 digit = mantissa << (msd_topbit - kMantissaTopBit);
285 mantissa = 0;
286 }
287 result->set_digit(digits - 1, digit);
288 // Then fill in the rest of the digits.
289 for (int digit_index = digits - 2; digit_index >= 0; digit_index--) {
290 if (remaining_mantissa_bits > 0) {
291 remaining_mantissa_bits -= kDigitBits;
292 if (sizeof(digit) == 4) {
293 digit = mantissa >> 32;
294 mantissa = mantissa << 32;
295 } else {
296 DCHECK_EQ(sizeof(digit), 8);
297 digit = mantissa;
298 mantissa = 0;
299 }
300 } else {
301 digit = 0;
302 }
303 result->set_digit(digit_index, digit);
304 }
305 return MakeImmutable(result);
306 }
307
Copy(Isolate * isolate,Handle<BigIntBase> source)308 Handle<MutableBigInt> MutableBigInt::Copy(Isolate* isolate,
309 Handle<BigIntBase> source) {
310 int length = source->length();
311 // Allocating a BigInt of the same length as an existing BigInt cannot throw.
312 Handle<MutableBigInt> result = New(isolate, length).ToHandleChecked();
313 memcpy(reinterpret_cast<void*>(result->address() + BigIntBase::kHeaderSize),
314 reinterpret_cast<void*>(source->address() + BigIntBase::kHeaderSize),
315 BigInt::SizeFor(length) - BigIntBase::kHeaderSize);
316 return result;
317 }
318
InitializeDigits(int length,byte value)319 void MutableBigInt::InitializeDigits(int length, byte value) {
320 memset(reinterpret_cast<void*>(reinterpret_cast<Address>(this) +
321 kDigitsOffset - kHeapObjectTag),
322 value, length * kDigitSize);
323 }
324
MakeImmutable(MaybeHandle<MutableBigInt> maybe)325 MaybeHandle<BigInt> MutableBigInt::MakeImmutable(
326 MaybeHandle<MutableBigInt> maybe) {
327 Handle<MutableBigInt> result;
328 if (!maybe.ToHandle(&result)) return MaybeHandle<BigInt>();
329 return MakeImmutable(result);
330 }
331
MakeImmutable(Handle<MutableBigInt> result)332 Handle<BigInt> MutableBigInt::MakeImmutable(Handle<MutableBigInt> result) {
333 // Check if we need to right-trim any leading zero-digits.
334 int old_length = result->length();
335 int new_length = old_length;
336 while (new_length > 0 && result->digit(new_length - 1) == 0) new_length--;
337 int to_trim = old_length - new_length;
338 if (to_trim != 0) {
339 int size_delta = to_trim * kDigitSize;
340 Address new_end = result->address() + BigInt::SizeFor(new_length);
341 Heap* heap = result->GetHeap();
342 heap->CreateFillerObjectAt(new_end, size_delta, ClearRecordedSlots::kNo);
343 result->set_length(new_length);
344
345 // Canonicalize -0n.
346 if (new_length == 0) {
347 result->set_sign(false);
348 // TODO(jkummerow): If we cache a canonical 0n, return that here.
349 }
350 }
351 DCHECK_IMPLIES(result->length() > 0,
352 result->digit(result->length() - 1) != 0); // MSD is non-zero.
353 return Handle<BigInt>(reinterpret_cast<BigInt**>(result.location()));
354 }
355
Zero(Isolate * isolate)356 Handle<BigInt> BigInt::Zero(Isolate* isolate) {
357 return MutableBigInt::Zero(isolate);
358 }
359
UnaryMinus(Isolate * isolate,Handle<BigInt> x)360 Handle<BigInt> BigInt::UnaryMinus(Isolate* isolate, Handle<BigInt> x) {
361 // Special case: There is no -0n.
362 if (x->is_zero()) {
363 return x;
364 }
365 Handle<MutableBigInt> result = MutableBigInt::Copy(isolate, x);
366 result->set_sign(!x->sign());
367 return MutableBigInt::MakeImmutable(result);
368 }
369
BitwiseNot(Isolate * isolate,Handle<BigInt> x)370 MaybeHandle<BigInt> BigInt::BitwiseNot(Isolate* isolate, Handle<BigInt> x) {
371 MaybeHandle<MutableBigInt> result;
372 if (x->sign()) {
373 // ~(-x) == ~(~(x-1)) == x-1
374 result = MutableBigInt::AbsoluteSubOne(isolate, x, x->length());
375 } else {
376 // ~x == -x-1 == -(x+1)
377 result = MutableBigInt::AbsoluteAddOne(isolate, x, true);
378 }
379 return MutableBigInt::MakeImmutable(result);
380 }
381
Exponentiate(Isolate * isolate,Handle<BigInt> base,Handle<BigInt> exponent)382 MaybeHandle<BigInt> BigInt::Exponentiate(Isolate* isolate, Handle<BigInt> base,
383 Handle<BigInt> exponent) {
384 // 1. If exponent is < 0, throw a RangeError exception.
385 if (exponent->sign()) {
386 THROW_NEW_ERROR(isolate,
387 NewRangeError(MessageTemplate::kBigIntNegativeExponent),
388 BigInt);
389 }
390 // 2. If base is 0n and exponent is 0n, return 1n.
391 if (exponent->is_zero()) {
392 return MutableBigInt::NewFromInt(isolate, 1);
393 }
394 // 3. Return a BigInt representing the mathematical value of base raised
395 // to the power exponent.
396 if (base->is_zero()) return base;
397 if (base->length() == 1 && base->digit(0) == 1) {
398 // (-1) ** even_number == 1.
399 if (base->sign() && (exponent->digit(0) & 1) == 0) {
400 return UnaryMinus(isolate, base);
401 }
402 // (-1) ** odd_number == -1; 1 ** anything == 1.
403 return base;
404 }
405 // For all bases >= 2, very large exponents would lead to unrepresentable
406 // results.
407 STATIC_ASSERT(kMaxLengthBits < std::numeric_limits<digit_t>::max());
408 if (exponent->length() > 1) {
409 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
410 BigInt);
411 }
412 digit_t exp_value = exponent->digit(0);
413 if (exp_value == 1) return base;
414 if (exp_value >= kMaxLengthBits) {
415 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
416 BigInt);
417 }
418 STATIC_ASSERT(kMaxLengthBits <= kMaxInt);
419 int n = static_cast<int>(exp_value);
420 if (base->length() == 1 && base->digit(0) == 2) {
421 // Fast path for 2^n.
422 int needed_digits = 1 + (n / kDigitBits);
423 Handle<MutableBigInt> result;
424 if (!MutableBigInt::New(isolate, needed_digits).ToHandle(&result)) {
425 return MaybeHandle<BigInt>();
426 }
427 result->InitializeDigits(needed_digits);
428 // All bits are zero. Now set the n-th bit.
429 digit_t msd = static_cast<digit_t>(1) << (n % kDigitBits);
430 result->set_digit(needed_digits - 1, msd);
431 // Result is negative for odd powers of -2n.
432 if (base->sign()) result->set_sign((n & 1) != 0);
433 return MutableBigInt::MakeImmutable(result);
434 }
435 Handle<BigInt> result;
436 Handle<BigInt> running_square = base;
437 // This implicitly sets the result's sign correctly.
438 if (n & 1) result = base;
439 n >>= 1;
440 for (; n != 0; n >>= 1) {
441 MaybeHandle<BigInt> maybe_result =
442 Multiply(isolate, running_square, running_square);
443 if (!maybe_result.ToHandle(&running_square)) return maybe_result;
444 if (n & 1) {
445 if (result.is_null()) {
446 result = running_square;
447 } else {
448 maybe_result = Multiply(isolate, result, running_square);
449 if (!maybe_result.ToHandle(&result)) return maybe_result;
450 }
451 }
452 }
453 return result;
454 }
455
Multiply(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)456 MaybeHandle<BigInt> BigInt::Multiply(Isolate* isolate, Handle<BigInt> x,
457 Handle<BigInt> y) {
458 if (x->is_zero()) return x;
459 if (y->is_zero()) return y;
460 int result_length = x->length() + y->length();
461 Handle<MutableBigInt> result;
462 if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
463 return MaybeHandle<BigInt>();
464 }
465 result->InitializeDigits(result_length);
466 for (int i = 0; i < x->length(); i++) {
467 MutableBigInt::MultiplyAccumulate(y, x->digit(i), result, i);
468 }
469 result->set_sign(x->sign() != y->sign());
470 return MutableBigInt::MakeImmutable(result);
471 }
472
Divide(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)473 MaybeHandle<BigInt> BigInt::Divide(Isolate* isolate, Handle<BigInt> x,
474 Handle<BigInt> y) {
475 // 1. If y is 0n, throw a RangeError exception.
476 if (y->is_zero()) {
477 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero),
478 BigInt);
479 }
480 // 2. Let quotient be the mathematical value of x divided by y.
481 // 3. Return a BigInt representing quotient rounded towards 0 to the next
482 // integral value.
483 if (MutableBigInt::AbsoluteCompare(x, y) < 0) {
484 return Zero(isolate);
485 }
486 Handle<MutableBigInt> quotient;
487 bool result_sign = x->sign() != y->sign();
488 if (y->length() == 1) {
489 digit_t divisor = y->digit(0);
490 if (divisor == 1) {
491 return result_sign == x->sign() ? x : UnaryMinus(isolate, x);
492 }
493 digit_t remainder;
494 MutableBigInt::AbsoluteDivSmall(isolate, x, divisor, "ient, &remainder);
495 } else {
496 if (!MutableBigInt::AbsoluteDivLarge(isolate, x, y, "ient, nullptr)) {
497 return MaybeHandle<BigInt>();
498 }
499 }
500 quotient->set_sign(x->sign() != y->sign());
501 return MutableBigInt::MakeImmutable(quotient);
502 }
503
Remainder(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)504 MaybeHandle<BigInt> BigInt::Remainder(Isolate* isolate, Handle<BigInt> x,
505 Handle<BigInt> y) {
506 // 1. If y is 0n, throw a RangeError exception.
507 if (y->is_zero()) {
508 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero),
509 BigInt);
510 }
511 // 2. Return the BigInt representing x modulo y.
512 // See https://github.com/tc39/proposal-bigint/issues/84 though.
513 if (MutableBigInt::AbsoluteCompare(x, y) < 0) return x;
514 Handle<MutableBigInt> remainder;
515 if (y->length() == 1) {
516 digit_t divisor = y->digit(0);
517 if (divisor == 1) return Zero(isolate);
518 digit_t remainder_digit;
519 MutableBigInt::AbsoluteDivSmall(isolate, x, divisor, nullptr,
520 &remainder_digit);
521 if (remainder_digit == 0) {
522 return Zero(isolate);
523 }
524 remainder = MutableBigInt::New(isolate, 1).ToHandleChecked();
525 remainder->set_digit(0, remainder_digit);
526 } else {
527 if (!MutableBigInt::AbsoluteDivLarge(isolate, x, y, nullptr, &remainder)) {
528 return MaybeHandle<BigInt>();
529 }
530 }
531 remainder->set_sign(x->sign());
532 return MutableBigInt::MakeImmutable(remainder);
533 }
534
Add(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)535 MaybeHandle<BigInt> BigInt::Add(Isolate* isolate, Handle<BigInt> x,
536 Handle<BigInt> y) {
537 bool xsign = x->sign();
538 if (xsign == y->sign()) {
539 // x + y == x + y
540 // -x + -y == -(x + y)
541 return MutableBigInt::AbsoluteAdd(isolate, x, y, xsign);
542 }
543 // x + -y == x - y == -(y - x)
544 // -x + y == y - x == -(x - y)
545 if (MutableBigInt::AbsoluteCompare(x, y) >= 0) {
546 return MutableBigInt::AbsoluteSub(isolate, x, y, xsign);
547 }
548 return MutableBigInt::AbsoluteSub(isolate, y, x, !xsign);
549 }
550
Subtract(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)551 MaybeHandle<BigInt> BigInt::Subtract(Isolate* isolate, Handle<BigInt> x,
552 Handle<BigInt> y) {
553 bool xsign = x->sign();
554 if (xsign != y->sign()) {
555 // x - (-y) == x + y
556 // (-x) - y == -(x + y)
557 return MutableBigInt::AbsoluteAdd(isolate, x, y, xsign);
558 }
559 // x - y == -(y - x)
560 // (-x) - (-y) == y - x == -(x - y)
561 if (MutableBigInt::AbsoluteCompare(x, y) >= 0) {
562 return MutableBigInt::AbsoluteSub(isolate, x, y, xsign);
563 }
564 return MutableBigInt::AbsoluteSub(isolate, y, x, !xsign);
565 }
566
LeftShift(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)567 MaybeHandle<BigInt> BigInt::LeftShift(Isolate* isolate, Handle<BigInt> x,
568 Handle<BigInt> y) {
569 if (y->is_zero() || x->is_zero()) return x;
570 if (y->sign()) return MutableBigInt::RightShiftByAbsolute(isolate, x, y);
571 return MutableBigInt::LeftShiftByAbsolute(isolate, x, y);
572 }
573
SignedRightShift(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)574 MaybeHandle<BigInt> BigInt::SignedRightShift(Isolate* isolate, Handle<BigInt> x,
575 Handle<BigInt> y) {
576 if (y->is_zero() || x->is_zero()) return x;
577 if (y->sign()) return MutableBigInt::LeftShiftByAbsolute(isolate, x, y);
578 return MutableBigInt::RightShiftByAbsolute(isolate, x, y);
579 }
580
UnsignedRightShift(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)581 MaybeHandle<BigInt> BigInt::UnsignedRightShift(Isolate* isolate,
582 Handle<BigInt> x,
583 Handle<BigInt> y) {
584 THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kBigIntShr), BigInt);
585 }
586
587 namespace {
588
589 // Produces comparison result for {left_negative} == sign(x) != sign(y).
UnequalSign(bool left_negative)590 ComparisonResult UnequalSign(bool left_negative) {
591 return left_negative ? ComparisonResult::kLessThan
592 : ComparisonResult::kGreaterThan;
593 }
594
595 // Produces result for |x| > |y|, with {both_negative} == sign(x) == sign(y);
AbsoluteGreater(bool both_negative)596 ComparisonResult AbsoluteGreater(bool both_negative) {
597 return both_negative ? ComparisonResult::kLessThan
598 : ComparisonResult::kGreaterThan;
599 }
600
601 // Produces result for |x| < |y|, with {both_negative} == sign(x) == sign(y).
AbsoluteLess(bool both_negative)602 ComparisonResult AbsoluteLess(bool both_negative) {
603 return both_negative ? ComparisonResult::kGreaterThan
604 : ComparisonResult::kLessThan;
605 }
606
607 } // namespace
608
609 // (Never returns kUndefined.)
CompareToBigInt(Handle<BigInt> x,Handle<BigInt> y)610 ComparisonResult BigInt::CompareToBigInt(Handle<BigInt> x, Handle<BigInt> y) {
611 bool x_sign = x->sign();
612 if (x_sign != y->sign()) return UnequalSign(x_sign);
613
614 int result = MutableBigInt::AbsoluteCompare(x, y);
615 if (result > 0) return AbsoluteGreater(x_sign);
616 if (result < 0) return AbsoluteLess(x_sign);
617 return ComparisonResult::kEqual;
618 }
619
EqualToBigInt(BigInt * x,BigInt * y)620 bool BigInt::EqualToBigInt(BigInt* x, BigInt* y) {
621 if (x->sign() != y->sign()) return false;
622 if (x->length() != y->length()) return false;
623 for (int i = 0; i < x->length(); i++) {
624 if (x->digit(i) != y->digit(i)) return false;
625 }
626 return true;
627 }
628
BitwiseAnd(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)629 MaybeHandle<BigInt> BigInt::BitwiseAnd(Isolate* isolate, Handle<BigInt> x,
630 Handle<BigInt> y) {
631 return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseAnd(isolate, x, y));
632 }
633
BitwiseAnd(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)634 MaybeHandle<MutableBigInt> MutableBigInt::BitwiseAnd(Isolate* isolate,
635 Handle<BigInt> x,
636 Handle<BigInt> y) {
637 if (!x->sign() && !y->sign()) {
638 return AbsoluteAnd(isolate, x, y);
639 } else if (x->sign() && y->sign()) {
640 int result_length = Max(x->length(), y->length()) + 1;
641 // (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1))
642 // == -(((x-1) | (y-1)) + 1)
643 Handle<MutableBigInt> result;
644 if (!AbsoluteSubOne(isolate, x, result_length).ToHandle(&result)) {
645 return MaybeHandle<MutableBigInt>();
646 }
647 Handle<MutableBigInt> y_1 = AbsoluteSubOne(isolate, y);
648 result = AbsoluteOr(isolate, result, y_1, *result);
649 return AbsoluteAddOne(isolate, result, true, *result);
650 } else {
651 DCHECK(x->sign() != y->sign());
652 // Assume that x is the positive BigInt.
653 if (x->sign()) std::swap(x, y);
654 // x & (-y) == x & ~(y-1) == x &~ (y-1)
655 return AbsoluteAndNot(isolate, x, AbsoluteSubOne(isolate, y));
656 }
657 }
658
BitwiseXor(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)659 MaybeHandle<BigInt> BigInt::BitwiseXor(Isolate* isolate, Handle<BigInt> x,
660 Handle<BigInt> y) {
661 return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseXor(isolate, x, y));
662 }
663
BitwiseXor(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)664 MaybeHandle<MutableBigInt> MutableBigInt::BitwiseXor(Isolate* isolate,
665 Handle<BigInt> x,
666 Handle<BigInt> y) {
667 if (!x->sign() && !y->sign()) {
668 return AbsoluteXor(isolate, x, y);
669 } else if (x->sign() && y->sign()) {
670 int result_length = Max(x->length(), y->length());
671 // (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1)
672 Handle<MutableBigInt> result =
673 AbsoluteSubOne(isolate, x, result_length).ToHandleChecked();
674 Handle<MutableBigInt> y_1 = AbsoluteSubOne(isolate, y);
675 return AbsoluteXor(isolate, result, y_1, *result);
676 } else {
677 DCHECK(x->sign() != y->sign());
678 int result_length = Max(x->length(), y->length()) + 1;
679 // Assume that x is the positive BigInt.
680 if (x->sign()) std::swap(x, y);
681 // x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1)
682 Handle<MutableBigInt> result;
683 if (!AbsoluteSubOne(isolate, y, result_length).ToHandle(&result)) {
684 return MaybeHandle<MutableBigInt>();
685 }
686 result = AbsoluteXor(isolate, result, x, *result);
687 return AbsoluteAddOne(isolate, result, true, *result);
688 }
689 }
690
BitwiseOr(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)691 MaybeHandle<BigInt> BigInt::BitwiseOr(Isolate* isolate, Handle<BigInt> x,
692 Handle<BigInt> y) {
693 return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseOr(isolate, x, y));
694 }
695
BitwiseOr(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y)696 MaybeHandle<MutableBigInt> MutableBigInt::BitwiseOr(Isolate* isolate,
697 Handle<BigInt> x,
698 Handle<BigInt> y) {
699 int result_length = Max(x->length(), y->length());
700 if (!x->sign() && !y->sign()) {
701 return AbsoluteOr(isolate, x, y);
702 } else if (x->sign() && y->sign()) {
703 // (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1))
704 // == -(((x-1) & (y-1)) + 1)
705 Handle<MutableBigInt> result =
706 AbsoluteSubOne(isolate, x, result_length).ToHandleChecked();
707 Handle<MutableBigInt> y_1 = AbsoluteSubOne(isolate, y);
708 result = AbsoluteAnd(isolate, result, y_1, *result);
709 return AbsoluteAddOne(isolate, result, true, *result);
710 } else {
711 DCHECK(x->sign() != y->sign());
712 // Assume that x is the positive BigInt.
713 if (x->sign()) std::swap(x, y);
714 // x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) &~ x) + 1)
715 Handle<MutableBigInt> result =
716 AbsoluteSubOne(isolate, y, result_length).ToHandleChecked();
717 result = AbsoluteAndNot(isolate, result, x, *result);
718 return AbsoluteAddOne(isolate, result, true, *result);
719 }
720 }
721
Increment(Isolate * isolate,Handle<BigInt> x)722 MaybeHandle<BigInt> BigInt::Increment(Isolate* isolate, Handle<BigInt> x) {
723 if (x->sign()) {
724 Handle<MutableBigInt> result = MutableBigInt::AbsoluteSubOne(isolate, x);
725 result->set_sign(true);
726 return MutableBigInt::MakeImmutable(result);
727 } else {
728 return MutableBigInt::MakeImmutable(
729 MutableBigInt::AbsoluteAddOne(isolate, x, false));
730 }
731 }
732
Decrement(Isolate * isolate,Handle<BigInt> x)733 MaybeHandle<BigInt> BigInt::Decrement(Isolate* isolate, Handle<BigInt> x) {
734 MaybeHandle<MutableBigInt> result;
735 if (x->sign()) {
736 result = MutableBigInt::AbsoluteAddOne(isolate, x, true);
737 } else if (x->is_zero()) {
738 // TODO(jkummerow): Consider caching a canonical -1n BigInt.
739 return MutableBigInt::NewFromInt(isolate, -1);
740 } else {
741 result = MutableBigInt::AbsoluteSubOne(isolate, x);
742 }
743 return MutableBigInt::MakeImmutable(result);
744 }
745
CompareToString(Isolate * isolate,Handle<BigInt> x,Handle<String> y)746 ComparisonResult BigInt::CompareToString(Isolate* isolate, Handle<BigInt> x,
747 Handle<String> y) {
748 // a. Let ny be StringToBigInt(y);
749 MaybeHandle<BigInt> maybe_ny = StringToBigInt(isolate, y);
750 // b. If ny is NaN, return undefined.
751 Handle<BigInt> ny;
752 if (!maybe_ny.ToHandle(&ny)) {
753 DCHECK(!isolate->has_pending_exception());
754 return ComparisonResult::kUndefined;
755 }
756 // c. Return BigInt::lessThan(x, ny).
757 return CompareToBigInt(x, ny);
758 }
759
EqualToString(Isolate * isolate,Handle<BigInt> x,Handle<String> y)760 bool BigInt::EqualToString(Isolate* isolate, Handle<BigInt> x,
761 Handle<String> y) {
762 // a. Let n be StringToBigInt(y).
763 MaybeHandle<BigInt> maybe_n = StringToBigInt(isolate, y);
764 // b. If n is NaN, return false.
765 Handle<BigInt> n;
766 if (!maybe_n.ToHandle(&n)) {
767 DCHECK(!isolate->has_pending_exception());
768 return false;
769 }
770 // c. Return the result of x == n.
771 return EqualToBigInt(*x, *n);
772 }
773
EqualToNumber(Handle<BigInt> x,Handle<Object> y)774 bool BigInt::EqualToNumber(Handle<BigInt> x, Handle<Object> y) {
775 DCHECK(y->IsNumber());
776 // a. If x or y are any of NaN, +∞, or -∞, return false.
777 // b. If the mathematical value of x is equal to the mathematical value of y,
778 // return true, otherwise return false.
779 if (y->IsSmi()) {
780 int value = Smi::ToInt(*y);
781 if (value == 0) return x->is_zero();
782 // Any multi-digit BigInt is bigger than a Smi.
783 STATIC_ASSERT(sizeof(digit_t) >= sizeof(value));
784 return (x->length() == 1) && (x->sign() == (value < 0)) &&
785 (x->digit(0) ==
786 static_cast<digit_t>(std::abs(static_cast<int64_t>(value))));
787 }
788 DCHECK(y->IsHeapNumber());
789 double value = Handle<HeapNumber>::cast(y)->value();
790 return CompareToDouble(x, value) == ComparisonResult::kEqual;
791 }
792
CompareToNumber(Handle<BigInt> x,Handle<Object> y)793 ComparisonResult BigInt::CompareToNumber(Handle<BigInt> x, Handle<Object> y) {
794 DCHECK(y->IsNumber());
795 if (y->IsSmi()) {
796 bool x_sign = x->sign();
797 int y_value = Smi::ToInt(*y);
798 bool y_sign = (y_value < 0);
799 if (x_sign != y_sign) return UnequalSign(x_sign);
800
801 if (x->is_zero()) {
802 DCHECK(!y_sign);
803 return y_value == 0 ? ComparisonResult::kEqual
804 : ComparisonResult::kLessThan;
805 }
806 // Any multi-digit BigInt is bigger than a Smi.
807 STATIC_ASSERT(sizeof(digit_t) >= sizeof(y_value));
808 if (x->length() > 1) return AbsoluteGreater(x_sign);
809
810 digit_t abs_value = std::abs(static_cast<int64_t>(y_value));
811 digit_t x_digit = x->digit(0);
812 if (x_digit > abs_value) return AbsoluteGreater(x_sign);
813 if (x_digit < abs_value) return AbsoluteLess(x_sign);
814 return ComparisonResult::kEqual;
815 }
816 DCHECK(y->IsHeapNumber());
817 double value = Handle<HeapNumber>::cast(y)->value();
818 return CompareToDouble(x, value);
819 }
820
CompareToDouble(Handle<BigInt> x,double y)821 ComparisonResult BigInt::CompareToDouble(Handle<BigInt> x, double y) {
822 if (std::isnan(y)) return ComparisonResult::kUndefined;
823 if (y == V8_INFINITY) return ComparisonResult::kLessThan;
824 if (y == -V8_INFINITY) return ComparisonResult::kGreaterThan;
825 bool x_sign = x->sign();
826 // Note that this is different from the double's sign bit for -0. That's
827 // intentional because -0 must be treated like 0.
828 bool y_sign = (y < 0);
829 if (x_sign != y_sign) return UnequalSign(x_sign);
830 if (y == 0) {
831 DCHECK(!x_sign);
832 return x->is_zero() ? ComparisonResult::kEqual
833 : ComparisonResult::kGreaterThan;
834 }
835 if (x->is_zero()) {
836 DCHECK(!y_sign);
837 return ComparisonResult::kLessThan;
838 }
839 uint64_t double_bits = bit_cast<uint64_t>(y);
840 int raw_exponent =
841 static_cast<int>(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF;
842 uint64_t mantissa = double_bits & Double::kSignificandMask;
843 // Non-finite doubles are handled above.
844 DCHECK_NE(raw_exponent, 0x7FF);
845 int exponent = raw_exponent - 0x3FF;
846 if (exponent < 0) {
847 // The absolute value of the double is less than 1. Only 0n has an
848 // absolute value smaller than that, but we've already covered that case.
849 DCHECK(!x->is_zero());
850 return AbsoluteGreater(x_sign);
851 }
852 int x_length = x->length();
853 digit_t x_msd = x->digit(x_length - 1);
854 int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd);
855 int x_bitlength = x_length * kDigitBits - msd_leading_zeros;
856 int y_bitlength = exponent + 1;
857 if (x_bitlength < y_bitlength) return AbsoluteLess(x_sign);
858 if (x_bitlength > y_bitlength) return AbsoluteGreater(x_sign);
859
860 // At this point, we know that signs and bit lengths (i.e. position of
861 // the most significant bit in exponent-free representation) are identical.
862 // {x} is not zero, {y} is finite and not denormal.
863 // Now we virtually convert the double to an integer by shifting its
864 // mantissa according to its exponent, so it will align with the BigInt {x},
865 // and then we compare them bit for bit until we find a difference or the
866 // least significant bit.
867 // <----- 52 ------> <-- virtual trailing zeroes -->
868 // y / mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000
869 // x / digits: 0001xxxx xxxxxxxx xxxxxxxx ...
870 // <--> <------>
871 // msd_topbit kDigitBits
872 //
873 mantissa |= Double::kHiddenBit;
874 const int kMantissaTopBit = 52; // 0-indexed.
875 // 0-indexed position of {x}'s most significant bit within the {msd}.
876 int msd_topbit = kDigitBits - 1 - msd_leading_zeros;
877 DCHECK_EQ(msd_topbit, (x_bitlength - 1) % kDigitBits);
878 // Shifted chunk of {mantissa} for comparing with {digit}.
879 digit_t compare_mantissa;
880 // Number of unprocessed bits in {mantissa}. We'll keep them shifted to
881 // the left (i.e. most significant part) of the underlying uint64_t.
882 int remaining_mantissa_bits = 0;
883
884 // First, compare the most significant digit against the beginning of
885 // the mantissa.
886 if (msd_topbit < kMantissaTopBit) {
887 remaining_mantissa_bits = (kMantissaTopBit - msd_topbit);
888 compare_mantissa = mantissa >> remaining_mantissa_bits;
889 mantissa = mantissa << (64 - remaining_mantissa_bits);
890 } else {
891 DCHECK_GE(msd_topbit, kMantissaTopBit);
892 compare_mantissa = mantissa << (msd_topbit - kMantissaTopBit);
893 mantissa = 0;
894 }
895 if (x_msd > compare_mantissa) return AbsoluteGreater(x_sign);
896 if (x_msd < compare_mantissa) return AbsoluteLess(x_sign);
897
898 // Then, compare additional digits against any remaining mantissa bits.
899 for (int digit_index = x_length - 2; digit_index >= 0; digit_index--) {
900 if (remaining_mantissa_bits > 0) {
901 remaining_mantissa_bits -= kDigitBits;
902 if (sizeof(mantissa) != sizeof(x_msd)) {
903 compare_mantissa = mantissa >> (64 - kDigitBits);
904 // "& 63" to appease compilers. kDigitBits is 32 here anyway.
905 mantissa = mantissa << (kDigitBits & 63);
906 } else {
907 compare_mantissa = mantissa;
908 mantissa = 0;
909 }
910 } else {
911 compare_mantissa = 0;
912 }
913 digit_t digit = x->digit(digit_index);
914 if (digit > compare_mantissa) return AbsoluteGreater(x_sign);
915 if (digit < compare_mantissa) return AbsoluteLess(x_sign);
916 }
917
918 // Integer parts are equal; check whether {y} has a fractional part.
919 if (mantissa != 0) {
920 DCHECK_GT(remaining_mantissa_bits, 0);
921 return AbsoluteLess(x_sign);
922 }
923 return ComparisonResult::kEqual;
924 }
925
ToString(Isolate * isolate,Handle<BigInt> bigint,int radix)926 MaybeHandle<String> BigInt::ToString(Isolate* isolate, Handle<BigInt> bigint,
927 int radix) {
928 if (bigint->is_zero()) {
929 return isolate->factory()->NewStringFromStaticChars("0");
930 }
931 if (base::bits::IsPowerOfTwo(radix)) {
932 return MutableBigInt::ToStringBasePowerOfTwo(isolate, bigint, radix);
933 }
934 return MutableBigInt::ToStringGeneric(isolate, bigint, radix);
935 }
936
FromNumber(Isolate * isolate,Handle<Object> number)937 MaybeHandle<BigInt> BigInt::FromNumber(Isolate* isolate,
938 Handle<Object> number) {
939 DCHECK(number->IsNumber());
940 if (number->IsSmi()) {
941 return MutableBigInt::NewFromInt(isolate, Smi::ToInt(*number));
942 }
943 double value = HeapNumber::cast(*number)->value();
944 if (!std::isfinite(value) || (DoubleToInteger(value) != value)) {
945 THROW_NEW_ERROR(isolate,
946 NewRangeError(MessageTemplate::kBigIntFromNumber, number),
947 BigInt);
948 }
949 return MutableBigInt::NewFromDouble(isolate, value);
950 }
951
FromObject(Isolate * isolate,Handle<Object> obj)952 MaybeHandle<BigInt> BigInt::FromObject(Isolate* isolate, Handle<Object> obj) {
953 if (obj->IsJSReceiver()) {
954 ASSIGN_RETURN_ON_EXCEPTION(
955 isolate, obj,
956 JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(obj),
957 ToPrimitiveHint::kNumber),
958 BigInt);
959 }
960
961 if (obj->IsBoolean()) {
962 return MutableBigInt::NewFromInt(isolate, obj->BooleanValue(isolate));
963 }
964 if (obj->IsBigInt()) {
965 return Handle<BigInt>::cast(obj);
966 }
967 if (obj->IsString()) {
968 Handle<BigInt> n;
969 if (!StringToBigInt(isolate, Handle<String>::cast(obj)).ToHandle(&n)) {
970 THROW_NEW_ERROR(isolate,
971 NewSyntaxError(MessageTemplate::kBigIntFromObject, obj),
972 BigInt);
973 }
974 return n;
975 }
976
977 THROW_NEW_ERROR(
978 isolate, NewTypeError(MessageTemplate::kBigIntFromObject, obj), BigInt);
979 }
980
ToNumber(Isolate * isolate,Handle<BigInt> x)981 Handle<Object> BigInt::ToNumber(Isolate* isolate, Handle<BigInt> x) {
982 if (x->is_zero()) return Handle<Smi>(Smi::kZero, isolate);
983 if (x->length() == 1 && x->digit(0) < Smi::kMaxValue) {
984 int value = static_cast<int>(x->digit(0));
985 if (x->sign()) value = -value;
986 return Handle<Smi>(Smi::FromInt(value), isolate);
987 }
988 double result = MutableBigInt::ToDouble(x);
989 return isolate->factory()->NewHeapNumber(result);
990 }
991
ToDouble(Handle<BigIntBase> x)992 double MutableBigInt::ToDouble(Handle<BigIntBase> x) {
993 if (x->is_zero()) return 0.0;
994 int x_length = x->length();
995 digit_t x_msd = x->digit(x_length - 1);
996 int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd);
997 int x_bitlength = x_length * kDigitBits - msd_leading_zeros;
998 if (x_bitlength > 1024) return x->sign() ? -V8_INFINITY : V8_INFINITY;
999 uint64_t exponent = x_bitlength - 1;
1000 // We need the most significant bit shifted to the position of a double's
1001 // "hidden bit". We also need to hide that MSB, so we shift it out.
1002 uint64_t current_digit = x_msd;
1003 int digit_index = x_length - 1;
1004 int shift = msd_leading_zeros + 1 + (64 - kDigitBits);
1005 DCHECK_LE(1, shift);
1006 DCHECK_LE(shift, 64);
1007 uint64_t mantissa = (shift == 64) ? 0 : current_digit << shift;
1008 mantissa >>= 12;
1009 int mantissa_bits_unset = shift - 12;
1010 // If not all mantissa bits are defined yet, get more digits as needed.
1011 if (mantissa_bits_unset >= kDigitBits && digit_index > 0) {
1012 digit_index--;
1013 current_digit = static_cast<uint64_t>(x->digit(digit_index));
1014 mantissa |= (current_digit << (mantissa_bits_unset - kDigitBits));
1015 mantissa_bits_unset -= kDigitBits;
1016 }
1017 if (mantissa_bits_unset > 0 && digit_index > 0) {
1018 DCHECK_LT(mantissa_bits_unset, kDigitBits);
1019 digit_index--;
1020 current_digit = static_cast<uint64_t>(x->digit(digit_index));
1021 mantissa |= (current_digit >> (kDigitBits - mantissa_bits_unset));
1022 mantissa_bits_unset -= kDigitBits;
1023 }
1024 // If there are unconsumed digits left, we may have to round.
1025 Rounding rounding =
1026 DecideRounding(x, mantissa_bits_unset, digit_index, current_digit);
1027 if (rounding == kRoundUp || (rounding == kTie && (mantissa & 1) == 1)) {
1028 mantissa++;
1029 // Incrementing the mantissa can overflow the mantissa bits. In that case
1030 // the new mantissa will be all zero (plus hidden bit).
1031 if ((mantissa >> Double::kPhysicalSignificandSize) != 0) {
1032 mantissa = 0;
1033 exponent++;
1034 // Incrementing the exponent can overflow too.
1035 if (exponent > 1023) {
1036 return x->sign() ? -V8_INFINITY : V8_INFINITY;
1037 }
1038 }
1039 }
1040 // Assemble the result.
1041 uint64_t sign_bit = x->sign() ? (static_cast<uint64_t>(1) << 63) : 0;
1042 exponent = (exponent + 0x3FF) << Double::kPhysicalSignificandSize;
1043 uint64_t double_bits = sign_bit | exponent | mantissa;
1044 return bit_cast<double>(double_bits);
1045 }
1046
1047 // This is its own function to keep control flow sane. The meaning of the
1048 // parameters is defined by {ToDouble}'s local variable usage.
DecideRounding(Handle<BigIntBase> x,int mantissa_bits_unset,int digit_index,uint64_t current_digit)1049 MutableBigInt::Rounding MutableBigInt::DecideRounding(Handle<BigIntBase> x,
1050 int mantissa_bits_unset,
1051 int digit_index,
1052 uint64_t current_digit) {
1053 if (mantissa_bits_unset > 0) return kRoundDown;
1054 int top_unconsumed_bit;
1055 if (mantissa_bits_unset < 0) {
1056 // There are unconsumed bits in {current_digit}.
1057 top_unconsumed_bit = -mantissa_bits_unset - 1;
1058 } else {
1059 DCHECK_EQ(mantissa_bits_unset, 0);
1060 // {current_digit} fit the mantissa exactly; look at the next digit.
1061 if (digit_index == 0) return kRoundDown;
1062 digit_index--;
1063 current_digit = static_cast<uint64_t>(x->digit(digit_index));
1064 top_unconsumed_bit = kDigitBits - 1;
1065 }
1066 // If the most significant remaining bit is 0, round down.
1067 uint64_t bitmask = static_cast<uint64_t>(1) << top_unconsumed_bit;
1068 if ((current_digit & bitmask) == 0) {
1069 return kRoundDown;
1070 }
1071 // If any other remaining bit is set, round up.
1072 bitmask -= 1;
1073 if ((current_digit & bitmask) != 0) return kRoundUp;
1074 while (digit_index > 0) {
1075 digit_index--;
1076 if (x->digit(digit_index) != 0) return kRoundUp;
1077 }
1078 return kTie;
1079 }
1080
BigIntShortPrint(std::ostream & os)1081 void BigInt::BigIntShortPrint(std::ostream& os) {
1082 if (sign()) os << "-";
1083 int len = length();
1084 if (len == 0) {
1085 os << "0";
1086 return;
1087 }
1088 if (len > 1) os << "...";
1089 os << digit(0);
1090 }
1091
1092 // Internal helpers.
1093
AbsoluteAdd(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y,bool result_sign)1094 MaybeHandle<BigInt> MutableBigInt::AbsoluteAdd(Isolate* isolate,
1095 Handle<BigInt> x,
1096 Handle<BigInt> y,
1097 bool result_sign) {
1098 if (x->length() < y->length()) return AbsoluteAdd(isolate, y, x, result_sign);
1099 if (x->is_zero()) {
1100 DCHECK(y->is_zero());
1101 return x;
1102 }
1103 if (y->is_zero()) {
1104 return result_sign == x->sign() ? x : BigInt::UnaryMinus(isolate, x);
1105 }
1106 Handle<MutableBigInt> result;
1107 if (!New(isolate, x->length() + 1).ToHandle(&result)) {
1108 return MaybeHandle<BigInt>();
1109 }
1110 digit_t carry = 0;
1111 int i = 0;
1112 for (; i < y->length(); i++) {
1113 digit_t new_carry = 0;
1114 digit_t sum = digit_add(x->digit(i), y->digit(i), &new_carry);
1115 sum = digit_add(sum, carry, &new_carry);
1116 result->set_digit(i, sum);
1117 carry = new_carry;
1118 }
1119 for (; i < x->length(); i++) {
1120 digit_t new_carry = 0;
1121 digit_t sum = digit_add(x->digit(i), carry, &new_carry);
1122 result->set_digit(i, sum);
1123 carry = new_carry;
1124 }
1125 result->set_digit(i, carry);
1126 result->set_sign(result_sign);
1127 return MakeImmutable(result);
1128 }
1129
AbsoluteSub(Isolate * isolate,Handle<BigInt> x,Handle<BigInt> y,bool result_sign)1130 Handle<BigInt> MutableBigInt::AbsoluteSub(Isolate* isolate, Handle<BigInt> x,
1131 Handle<BigInt> y, bool result_sign) {
1132 DCHECK(x->length() >= y->length());
1133 SLOW_DCHECK(AbsoluteCompare(x, y) >= 0);
1134 if (x->is_zero()) {
1135 DCHECK(y->is_zero());
1136 return x;
1137 }
1138 if (y->is_zero()) {
1139 return result_sign == x->sign() ? x : BigInt::UnaryMinus(isolate, x);
1140 }
1141 Handle<MutableBigInt> result = New(isolate, x->length()).ToHandleChecked();
1142 digit_t borrow = 0;
1143 int i = 0;
1144 for (; i < y->length(); i++) {
1145 digit_t new_borrow = 0;
1146 digit_t difference = digit_sub(x->digit(i), y->digit(i), &new_borrow);
1147 difference = digit_sub(difference, borrow, &new_borrow);
1148 result->set_digit(i, difference);
1149 borrow = new_borrow;
1150 }
1151 for (; i < x->length(); i++) {
1152 digit_t new_borrow = 0;
1153 digit_t difference = digit_sub(x->digit(i), borrow, &new_borrow);
1154 result->set_digit(i, difference);
1155 borrow = new_borrow;
1156 }
1157 DCHECK_EQ(0, borrow);
1158 result->set_sign(result_sign);
1159 return MakeImmutable(result);
1160 }
1161
1162 // Adds 1 to the absolute value of {x} and sets the result's sign to {sign}.
1163 // {result_storage} is optional; if present, it will be used to store the
1164 // result, otherwise a new BigInt will be allocated for the result.
1165 // {result_storage} and {x} may refer to the same BigInt for in-place
1166 // modification.
AbsoluteAddOne(Isolate * isolate,Handle<BigIntBase> x,bool sign,MutableBigInt * result_storage)1167 MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteAddOne(
1168 Isolate* isolate, Handle<BigIntBase> x, bool sign,
1169 MutableBigInt* result_storage) {
1170 int input_length = x->length();
1171 // The addition will overflow into a new digit if all existing digits are
1172 // at maximum.
1173 bool will_overflow = true;
1174 for (int i = 0; i < input_length; i++) {
1175 if (!digit_ismax(x->digit(i))) {
1176 will_overflow = false;
1177 break;
1178 }
1179 }
1180 int result_length = input_length + will_overflow;
1181 Handle<MutableBigInt> result(result_storage, isolate);
1182 if (result_storage == nullptr) {
1183 if (!New(isolate, result_length).ToHandle(&result)) {
1184 return MaybeHandle<MutableBigInt>();
1185 }
1186 } else {
1187 DCHECK(result->length() == result_length);
1188 }
1189 digit_t carry = 1;
1190 for (int i = 0; i < input_length; i++) {
1191 digit_t new_carry = 0;
1192 result->set_digit(i, digit_add(x->digit(i), carry, &new_carry));
1193 carry = new_carry;
1194 }
1195 if (result_length > input_length) {
1196 result->set_digit(input_length, carry);
1197 } else {
1198 DCHECK_EQ(carry, 0);
1199 }
1200 result->set_sign(sign);
1201 return result;
1202 }
1203
1204 // Subtracts 1 from the absolute value of {x}. {x} must not be zero.
AbsoluteSubOne(Isolate * isolate,Handle<BigIntBase> x)1205 Handle<MutableBigInt> MutableBigInt::AbsoluteSubOne(Isolate* isolate,
1206 Handle<BigIntBase> x) {
1207 DCHECK(!x->is_zero());
1208 // Requesting a result length identical to an existing BigInt's length
1209 // cannot overflow the limit.
1210 return AbsoluteSubOne(isolate, x, x->length()).ToHandleChecked();
1211 }
1212
1213 // Like the above, but you can specify that the allocated result should have
1214 // length {result_length}, which must be at least as large as {x->length()}.
AbsoluteSubOne(Isolate * isolate,Handle<BigIntBase> x,int result_length)1215 MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteSubOne(Isolate* isolate,
1216 Handle<BigIntBase> x,
1217 int result_length) {
1218 DCHECK(!x->is_zero());
1219 DCHECK(result_length >= x->length());
1220 Handle<MutableBigInt> result;
1221 if (!New(isolate, result_length).ToHandle(&result)) {
1222 return MaybeHandle<MutableBigInt>();
1223 }
1224 int length = x->length();
1225 digit_t borrow = 1;
1226 for (int i = 0; i < length; i++) {
1227 digit_t new_borrow = 0;
1228 result->set_digit(i, digit_sub(x->digit(i), borrow, &new_borrow));
1229 borrow = new_borrow;
1230 }
1231 DCHECK_EQ(borrow, 0);
1232 for (int i = length; i < result_length; i++) {
1233 result->set_digit(i, borrow);
1234 }
1235 return result;
1236 }
1237
1238 // Helper for Absolute{And,AndNot,Or,Xor}.
1239 // Performs the given binary {op} on digit pairs of {x} and {y}; when the
1240 // end of the shorter of the two is reached, {extra_digits} configures how
1241 // remaining digits in the longer input (if {symmetric} == kSymmetric, in
1242 // {x} otherwise) are handled: copied to the result or ignored.
1243 // If {result_storage} is non-nullptr, it will be used for the result and
1244 // any extra digits in it will be zeroed out, otherwise a new BigInt (with
1245 // the same length as the longer input) will be allocated.
1246 // {result_storage} may alias {x} or {y} for in-place modification.
1247 // Example:
1248 // y: [ y2 ][ y1 ][ y0 ]
1249 // x: [ x3 ][ x2 ][ x1 ][ x0 ]
1250 // | | | |
1251 // (kCopy) (op) (op) (op)
1252 // | | | |
1253 // v v v v
1254 // result_storage: [ 0 ][ x3 ][ r2 ][ r1 ][ r0 ]
AbsoluteBitwiseOp(Isolate * isolate,Handle<BigIntBase> x,Handle<BigIntBase> y,MutableBigInt * result_storage,ExtraDigitsHandling extra_digits,SymmetricOp symmetric,std::function<digit_t (digit_t,digit_t)> op)1255 inline Handle<MutableBigInt> MutableBigInt::AbsoluteBitwiseOp(
1256 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
1257 MutableBigInt* result_storage, ExtraDigitsHandling extra_digits,
1258 SymmetricOp symmetric, std::function<digit_t(digit_t, digit_t)> op) {
1259 int x_length = x->length();
1260 int y_length = y->length();
1261 int num_pairs = y_length;
1262 if (x_length < y_length) {
1263 num_pairs = x_length;
1264 if (symmetric == kSymmetric) {
1265 std::swap(x, y);
1266 std::swap(x_length, y_length);
1267 }
1268 }
1269 DCHECK(num_pairs == Min(x_length, y_length));
1270 Handle<MutableBigInt> result(result_storage, isolate);
1271 int result_length = extra_digits == kCopy ? x_length : num_pairs;
1272 if (result_storage == nullptr) {
1273 result = New(isolate, result_length).ToHandleChecked();
1274 } else {
1275 DCHECK(result_storage->length() >= result_length);
1276 result_length = result_storage->length();
1277 }
1278 int i = 0;
1279 for (; i < num_pairs; i++) {
1280 result->set_digit(i, op(x->digit(i), y->digit(i)));
1281 }
1282 if (extra_digits == kCopy) {
1283 for (; i < x_length; i++) {
1284 result->set_digit(i, x->digit(i));
1285 }
1286 }
1287 for (; i < result_length; i++) {
1288 result->set_digit(i, 0);
1289 }
1290 return result;
1291 }
1292
1293 // If {result_storage} is non-nullptr, it will be used for the result,
1294 // otherwise a new BigInt of appropriate length will be allocated.
1295 // {result_storage} may alias {x} or {y} for in-place modification.
AbsoluteAnd(Isolate * isolate,Handle<BigIntBase> x,Handle<BigIntBase> y,MutableBigInt * result_storage)1296 Handle<MutableBigInt> MutableBigInt::AbsoluteAnd(
1297 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
1298 MutableBigInt* result_storage) {
1299 return AbsoluteBitwiseOp(isolate, x, y, result_storage, kSkip, kSymmetric,
1300 [](digit_t a, digit_t b) { return a & b; });
1301 }
1302
1303 // If {result_storage} is non-nullptr, it will be used for the result,
1304 // otherwise a new BigInt of appropriate length will be allocated.
1305 // {result_storage} may alias {x} or {y} for in-place modification.
AbsoluteAndNot(Isolate * isolate,Handle<BigIntBase> x,Handle<BigIntBase> y,MutableBigInt * result_storage)1306 Handle<MutableBigInt> MutableBigInt::AbsoluteAndNot(
1307 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
1308 MutableBigInt* result_storage) {
1309 return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kNotSymmetric,
1310 [](digit_t a, digit_t b) { return a & ~b; });
1311 }
1312
1313 // If {result_storage} is non-nullptr, it will be used for the result,
1314 // otherwise a new BigInt of appropriate length will be allocated.
1315 // {result_storage} may alias {x} or {y} for in-place modification.
AbsoluteOr(Isolate * isolate,Handle<BigIntBase> x,Handle<BigIntBase> y,MutableBigInt * result_storage)1316 Handle<MutableBigInt> MutableBigInt::AbsoluteOr(Isolate* isolate,
1317 Handle<BigIntBase> x,
1318 Handle<BigIntBase> y,
1319 MutableBigInt* result_storage) {
1320 return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kSymmetric,
1321 [](digit_t a, digit_t b) { return a | b; });
1322 }
1323
1324 // If {result_storage} is non-nullptr, it will be used for the result,
1325 // otherwise a new BigInt of appropriate length will be allocated.
1326 // {result_storage} may alias {x} or {y} for in-place modification.
AbsoluteXor(Isolate * isolate,Handle<BigIntBase> x,Handle<BigIntBase> y,MutableBigInt * result_storage)1327 Handle<MutableBigInt> MutableBigInt::AbsoluteXor(
1328 Isolate* isolate, Handle<BigIntBase> x, Handle<BigIntBase> y,
1329 MutableBigInt* result_storage) {
1330 return AbsoluteBitwiseOp(isolate, x, y, result_storage, kCopy, kSymmetric,
1331 [](digit_t a, digit_t b) { return a ^ b; });
1332 }
1333
1334 // Returns a positive value if abs(x) > abs(y), a negative value if
1335 // abs(x) < abs(y), or zero if abs(x) == abs(y).
AbsoluteCompare(Handle<BigIntBase> x,Handle<BigIntBase> y)1336 int MutableBigInt::AbsoluteCompare(Handle<BigIntBase> x, Handle<BigIntBase> y) {
1337 int diff = x->length() - y->length();
1338 if (diff != 0) return diff;
1339 int i = x->length() - 1;
1340 while (i >= 0 && x->digit(i) == y->digit(i)) i--;
1341 if (i < 0) return 0;
1342 return x->digit(i) > y->digit(i) ? 1 : -1;
1343 }
1344
1345 // Multiplies {multiplicand} with {multiplier} and adds the result to
1346 // {accumulator}, starting at {accumulator_index} for the least-significant
1347 // digit.
1348 // Callers must ensure that {accumulator} is big enough to hold the result.
MultiplyAccumulate(Handle<BigIntBase> multiplicand,digit_t multiplier,Handle<MutableBigInt> accumulator,int accumulator_index)1349 void MutableBigInt::MultiplyAccumulate(Handle<BigIntBase> multiplicand,
1350 digit_t multiplier,
1351 Handle<MutableBigInt> accumulator,
1352 int accumulator_index) {
1353 // This is a minimum requirement; the DCHECK in the second loop below
1354 // will enforce more as needed.
1355 DCHECK(accumulator->length() > multiplicand->length() + accumulator_index);
1356 if (multiplier == 0L) return;
1357 digit_t carry = 0;
1358 digit_t high = 0;
1359 for (int i = 0; i < multiplicand->length(); i++, accumulator_index++) {
1360 digit_t acc = accumulator->digit(accumulator_index);
1361 digit_t new_carry = 0;
1362 // Add last round's carryovers.
1363 acc = digit_add(acc, high, &new_carry);
1364 acc = digit_add(acc, carry, &new_carry);
1365 // Compute this round's multiplication.
1366 digit_t m_digit = multiplicand->digit(i);
1367 digit_t low = digit_mul(multiplier, m_digit, &high);
1368 acc = digit_add(acc, low, &new_carry);
1369 // Store result and prepare for next round.
1370 accumulator->set_digit(accumulator_index, acc);
1371 carry = new_carry;
1372 }
1373 for (; carry != 0 || high != 0; accumulator_index++) {
1374 DCHECK(accumulator_index < accumulator->length());
1375 digit_t acc = accumulator->digit(accumulator_index);
1376 digit_t new_carry = 0;
1377 acc = digit_add(acc, high, &new_carry);
1378 high = 0;
1379 acc = digit_add(acc, carry, &new_carry);
1380 accumulator->set_digit(accumulator_index, acc);
1381 carry = new_carry;
1382 }
1383 }
1384
1385 // Multiplies {source} with {factor} and adds {summand} to the result.
1386 // {result} and {source} may be the same BigInt for inplace modification.
InternalMultiplyAdd(BigIntBase * source,digit_t factor,digit_t summand,int n,MutableBigInt * result)1387 void MutableBigInt::InternalMultiplyAdd(BigIntBase* source, digit_t factor,
1388 digit_t summand, int n,
1389 MutableBigInt* result) {
1390 DCHECK(source->length() >= n);
1391 DCHECK(result->length() >= n);
1392 digit_t carry = summand;
1393 digit_t high = 0;
1394 for (int i = 0; i < n; i++) {
1395 digit_t current = source->digit(i);
1396 digit_t new_carry = 0;
1397 // Compute this round's multiplication.
1398 digit_t new_high = 0;
1399 current = digit_mul(current, factor, &new_high);
1400 // Add last round's carryovers.
1401 current = digit_add(current, high, &new_carry);
1402 current = digit_add(current, carry, &new_carry);
1403 // Store result and prepare for next round.
1404 result->set_digit(i, current);
1405 carry = new_carry;
1406 high = new_high;
1407 }
1408 if (result->length() > n) {
1409 result->set_digit(n++, carry + high);
1410 // Current callers don't pass in such large results, but let's be robust.
1411 while (n < result->length()) {
1412 result->set_digit(n++, 0);
1413 }
1414 } else {
1415 CHECK_EQ(carry + high, 0);
1416 }
1417 }
1418
1419 // Multiplies {x} with {factor} and then adds {summand} to it.
InplaceMultiplyAdd(Handle<FreshlyAllocatedBigInt> x,uintptr_t factor,uintptr_t summand)1420 void BigInt::InplaceMultiplyAdd(Handle<FreshlyAllocatedBigInt> x,
1421 uintptr_t factor, uintptr_t summand) {
1422 STATIC_ASSERT(sizeof(factor) == sizeof(digit_t));
1423 STATIC_ASSERT(sizeof(summand) == sizeof(digit_t));
1424 Handle<MutableBigInt> bigint = MutableBigInt::Cast(x);
1425 MutableBigInt::InternalMultiplyAdd(*bigint, factor, summand, bigint->length(),
1426 *bigint);
1427 }
1428
1429 // Divides {x} by {divisor}, returning the result in {quotient} and {remainder}.
1430 // Mathematically, the contract is:
1431 // quotient = (x - remainder) / divisor, with 0 <= remainder < divisor.
1432 // If {quotient} is an empty handle, an appropriately sized BigInt will be
1433 // allocated for it; otherwise the caller must ensure that it is big enough.
1434 // {quotient} can be the same as {x} for an in-place division. {quotient} can
1435 // also be nullptr if the caller is only interested in the remainder.
AbsoluteDivSmall(Isolate * isolate,Handle<BigIntBase> x,digit_t divisor,Handle<MutableBigInt> * quotient,digit_t * remainder)1436 void MutableBigInt::AbsoluteDivSmall(Isolate* isolate, Handle<BigIntBase> x,
1437 digit_t divisor,
1438 Handle<MutableBigInt>* quotient,
1439 digit_t* remainder) {
1440 DCHECK_NE(divisor, 0);
1441 DCHECK(!x->is_zero()); // Callers check anyway, no need to handle this.
1442 *remainder = 0;
1443 int length = x->length();
1444 if (quotient != nullptr) {
1445 if ((*quotient).is_null()) {
1446 *quotient = New(isolate, length).ToHandleChecked();
1447 }
1448 for (int i = length - 1; i >= 0; i--) {
1449 digit_t q = digit_div(*remainder, x->digit(i), divisor, remainder);
1450 (*quotient)->set_digit(i, q);
1451 }
1452 } else {
1453 for (int i = length - 1; i >= 0; i--) {
1454 digit_div(*remainder, x->digit(i), divisor, remainder);
1455 }
1456 }
1457 }
1458
1459 // Divides {dividend} by {divisor}, returning the result in {quotient} and
1460 // {remainder}. Mathematically, the contract is:
1461 // quotient = (dividend - remainder) / divisor, with 0 <= remainder < divisor.
1462 // Both {quotient} and {remainder} are optional, for callers that are only
1463 // interested in one of them.
1464 // See Knuth, Volume 2, section 4.3.1, Algorithm D.
AbsoluteDivLarge(Isolate * isolate,Handle<BigIntBase> dividend,Handle<BigIntBase> divisor,Handle<MutableBigInt> * quotient,Handle<MutableBigInt> * remainder)1465 bool MutableBigInt::AbsoluteDivLarge(Isolate* isolate,
1466 Handle<BigIntBase> dividend,
1467 Handle<BigIntBase> divisor,
1468 Handle<MutableBigInt>* quotient,
1469 Handle<MutableBigInt>* remainder) {
1470 DCHECK_GE(divisor->length(), 2);
1471 DCHECK(dividend->length() >= divisor->length());
1472 // The unusual variable names inside this function are consistent with
1473 // Knuth's book, as well as with Go's implementation of this algorithm.
1474 // Maintaining this consistency is probably more useful than trying to
1475 // come up with more descriptive names for them.
1476 int n = divisor->length();
1477 int m = dividend->length() - n;
1478
1479 // The quotient to be computed.
1480 Handle<MutableBigInt> q;
1481 if (quotient != nullptr) q = New(isolate, m + 1).ToHandleChecked();
1482 // In each iteration, {qhatv} holds {divisor} * {current quotient digit}.
1483 // "v" is the book's name for {divisor}, "qhat" the current quotient digit.
1484 Handle<MutableBigInt> qhatv;
1485 if (!New(isolate, n + 1).ToHandle(&qhatv)) return false;
1486
1487 // D1.
1488 // Left-shift inputs so that the divisor's MSB is set. This is necessary
1489 // to prevent the digit-wise divisions (see digit_div call below) from
1490 // overflowing (they take a two digits wide input, and return a one digit
1491 // result).
1492 int shift = base::bits::CountLeadingZeros(divisor->digit(n - 1));
1493 if (shift > 0) {
1494 divisor = SpecialLeftShift(isolate, divisor, shift, kSameSizeResult)
1495 .ToHandleChecked();
1496 }
1497 // Holds the (continuously updated) remaining part of the dividend, which
1498 // eventually becomes the remainder.
1499 Handle<MutableBigInt> u;
1500 if (!SpecialLeftShift(isolate, dividend, shift, kAlwaysAddOneDigit)
1501 .ToHandle(&u)) {
1502 return false;
1503 }
1504
1505 // D2.
1506 // Iterate over the dividend's digit (like the "grad school" algorithm).
1507 // {vn1} is the divisor's most significant digit.
1508 digit_t vn1 = divisor->digit(n - 1);
1509 for (int j = m; j >= 0; j--) {
1510 // D3.
1511 // Estimate the current iteration's quotient digit (see Knuth for details).
1512 // {qhat} is the current quotient digit.
1513 digit_t qhat = std::numeric_limits<digit_t>::max();
1514 // {ujn} is the dividend's most significant remaining digit.
1515 digit_t ujn = u->digit(j + n);
1516 if (ujn != vn1) {
1517 // {rhat} is the current iteration's remainder.
1518 digit_t rhat = 0;
1519 // Estimate the current quotient digit by dividing the most significant
1520 // digits of dividend and divisor. The result will not be too small,
1521 // but could be a bit too large.
1522 qhat = digit_div(ujn, u->digit(j + n - 1), vn1, &rhat);
1523
1524 // Decrement the quotient estimate as needed by looking at the next
1525 // digit, i.e. by testing whether
1526 // qhat * v_{n-2} > (rhat << kDigitBits) + u_{j+n-2}.
1527 digit_t vn2 = divisor->digit(n - 2);
1528 digit_t ujn2 = u->digit(j + n - 2);
1529 while (ProductGreaterThan(qhat, vn2, rhat, ujn2)) {
1530 qhat--;
1531 digit_t prev_rhat = rhat;
1532 rhat += vn1;
1533 // v[n-1] >= 0, so this tests for overflow.
1534 if (rhat < prev_rhat) break;
1535 }
1536 }
1537
1538 // D4.
1539 // Multiply the divisor with the current quotient digit, and subtract
1540 // it from the dividend. If there was "borrow", then the quotient digit
1541 // was one too high, so we must correct it and undo one subtraction of
1542 // the (shifted) divisor.
1543 InternalMultiplyAdd(*divisor, qhat, 0, n, *qhatv);
1544 digit_t c = u->InplaceSub(qhatv, j);
1545 if (c != 0) {
1546 c = u->InplaceAdd(divisor, j);
1547 u->set_digit(j + n, u->digit(j + n) + c);
1548 qhat--;
1549 }
1550
1551 if (quotient != nullptr) q->set_digit(j, qhat);
1552 }
1553 if (quotient != nullptr) {
1554 *quotient = q; // Caller will right-trim.
1555 }
1556 if (remainder != nullptr) {
1557 u->InplaceRightShift(shift);
1558 *remainder = u;
1559 }
1560 return true;
1561 }
1562
1563 // Returns whether (factor1 * factor2) > (high << kDigitBits) + low.
ProductGreaterThan(digit_t factor1,digit_t factor2,digit_t high,digit_t low)1564 bool MutableBigInt::ProductGreaterThan(digit_t factor1, digit_t factor2,
1565 digit_t high, digit_t low) {
1566 digit_t result_high;
1567 digit_t result_low = digit_mul(factor1, factor2, &result_high);
1568 return result_high > high || (result_high == high && result_low > low);
1569 }
1570
1571 // Adds {summand} onto {this}, starting with {summand}'s 0th digit
1572 // at {this}'s {start_index}'th digit. Returns the "carry" (0 or 1).
InplaceAdd(Handle<BigIntBase> summand,int start_index)1573 BigInt::digit_t MutableBigInt::InplaceAdd(Handle<BigIntBase> summand,
1574 int start_index) {
1575 digit_t carry = 0;
1576 int n = summand->length();
1577 DCHECK(length() >= start_index + n);
1578 for (int i = 0; i < n; i++) {
1579 digit_t new_carry = 0;
1580 digit_t sum =
1581 digit_add(digit(start_index + i), summand->digit(i), &new_carry);
1582 sum = digit_add(sum, carry, &new_carry);
1583 set_digit(start_index + i, sum);
1584 carry = new_carry;
1585 }
1586 return carry;
1587 }
1588
1589 // Subtracts {subtrahend} from {this}, starting with {subtrahend}'s 0th digit
1590 // at {this}'s {start_index}-th digit. Returns the "borrow" (0 or 1).
InplaceSub(Handle<BigIntBase> subtrahend,int start_index)1591 BigInt::digit_t MutableBigInt::InplaceSub(Handle<BigIntBase> subtrahend,
1592 int start_index) {
1593 digit_t borrow = 0;
1594 int n = subtrahend->length();
1595 DCHECK(length() >= start_index + n);
1596 for (int i = 0; i < n; i++) {
1597 digit_t new_borrow = 0;
1598 digit_t difference =
1599 digit_sub(digit(start_index + i), subtrahend->digit(i), &new_borrow);
1600 difference = digit_sub(difference, borrow, &new_borrow);
1601 set_digit(start_index + i, difference);
1602 borrow = new_borrow;
1603 }
1604 return borrow;
1605 }
1606
InplaceRightShift(int shift)1607 void MutableBigInt::InplaceRightShift(int shift) {
1608 DCHECK_GE(shift, 0);
1609 DCHECK_LT(shift, kDigitBits);
1610 DCHECK_GT(length(), 0);
1611 DCHECK_EQ(digit(0) & ((static_cast<digit_t>(1) << shift) - 1), 0);
1612 if (shift == 0) return;
1613 digit_t carry = digit(0) >> shift;
1614 int last = length() - 1;
1615 for (int i = 0; i < last; i++) {
1616 digit_t d = digit(i + 1);
1617 set_digit(i, (d << (kDigitBits - shift)) | carry);
1618 carry = d >> shift;
1619 }
1620 set_digit(last, carry);
1621 }
1622
1623 // Always copies the input, even when {shift} == 0.
1624 // {shift} must be less than kDigitBits, {x} must be non-zero.
SpecialLeftShift(Isolate * isolate,Handle<BigIntBase> x,int shift,SpecialLeftShiftMode mode)1625 MaybeHandle<MutableBigInt> MutableBigInt::SpecialLeftShift(
1626 Isolate* isolate, Handle<BigIntBase> x, int shift,
1627 SpecialLeftShiftMode mode) {
1628 DCHECK_GE(shift, 0);
1629 DCHECK_LT(shift, kDigitBits);
1630 DCHECK_GT(x->length(), 0);
1631 int n = x->length();
1632 int result_length = mode == kAlwaysAddOneDigit ? n + 1 : n;
1633 Handle<MutableBigInt> result;
1634 if (!New(isolate, result_length).ToHandle(&result)) {
1635 return MaybeHandle<MutableBigInt>();
1636 }
1637 if (shift == 0) {
1638 for (int i = 0; i < n; i++) result->set_digit(i, x->digit(i));
1639 if (mode == kAlwaysAddOneDigit) result->set_digit(n, 0);
1640 return result;
1641 }
1642 DCHECK_GT(shift, 0);
1643 digit_t carry = 0;
1644 for (int i = 0; i < n; i++) {
1645 digit_t d = x->digit(i);
1646 result->set_digit(i, (d << shift) | carry);
1647 carry = d >> (kDigitBits - shift);
1648 }
1649 if (mode == kAlwaysAddOneDigit) {
1650 result->set_digit(n, carry);
1651 } else {
1652 DCHECK_EQ(mode, kSameSizeResult);
1653 DCHECK_EQ(carry, 0);
1654 }
1655 return result;
1656 }
1657
LeftShiftByAbsolute(Isolate * isolate,Handle<BigIntBase> x,Handle<BigIntBase> y)1658 MaybeHandle<BigInt> MutableBigInt::LeftShiftByAbsolute(Isolate* isolate,
1659 Handle<BigIntBase> x,
1660 Handle<BigIntBase> y) {
1661 Maybe<digit_t> maybe_shift = ToShiftAmount(y);
1662 if (maybe_shift.IsNothing()) {
1663 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
1664 BigInt);
1665 }
1666 digit_t shift = maybe_shift.FromJust();
1667 int digit_shift = static_cast<int>(shift / kDigitBits);
1668 int bits_shift = static_cast<int>(shift % kDigitBits);
1669 int length = x->length();
1670 bool grow = bits_shift != 0 &&
1671 (x->digit(length - 1) >> (kDigitBits - bits_shift)) != 0;
1672 int result_length = length + digit_shift + grow;
1673 if (result_length > kMaxLength) {
1674 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
1675 BigInt);
1676 }
1677 Handle<MutableBigInt> result;
1678 if (!New(isolate, result_length).ToHandle(&result)) {
1679 return MaybeHandle<BigInt>();
1680 }
1681 if (bits_shift == 0) {
1682 int i = 0;
1683 for (; i < digit_shift; i++) result->set_digit(i, 0ul);
1684 for (; i < result_length; i++) {
1685 result->set_digit(i, x->digit(i - digit_shift));
1686 }
1687 } else {
1688 digit_t carry = 0;
1689 for (int i = 0; i < digit_shift; i++) result->set_digit(i, 0ul);
1690 for (int i = 0; i < length; i++) {
1691 digit_t d = x->digit(i);
1692 result->set_digit(i + digit_shift, (d << bits_shift) | carry);
1693 carry = d >> (kDigitBits - bits_shift);
1694 }
1695 if (grow) {
1696 result->set_digit(length + digit_shift, carry);
1697 } else {
1698 DCHECK_EQ(carry, 0);
1699 }
1700 }
1701 result->set_sign(x->sign());
1702 return MakeImmutable(result);
1703 }
1704
RightShiftByAbsolute(Isolate * isolate,Handle<BigIntBase> x,Handle<BigIntBase> y)1705 Handle<BigInt> MutableBigInt::RightShiftByAbsolute(Isolate* isolate,
1706 Handle<BigIntBase> x,
1707 Handle<BigIntBase> y) {
1708 int length = x->length();
1709 bool sign = x->sign();
1710 Maybe<digit_t> maybe_shift = ToShiftAmount(y);
1711 if (maybe_shift.IsNothing()) {
1712 return RightShiftByMaximum(isolate, sign);
1713 }
1714 digit_t shift = maybe_shift.FromJust();
1715 int digit_shift = static_cast<int>(shift / kDigitBits);
1716 int bits_shift = static_cast<int>(shift % kDigitBits);
1717 int result_length = length - digit_shift;
1718 if (result_length <= 0) {
1719 return RightShiftByMaximum(isolate, sign);
1720 }
1721 // For negative numbers, round down if any bit was shifted out (so that e.g.
1722 // -5n >> 1n == -3n and not -2n). Check now whether this will happen and
1723 // whether it can cause overflow into a new digit. If we allocate the result
1724 // large enough up front, it avoids having to do a second allocation later.
1725 bool must_round_down = false;
1726 if (sign) {
1727 const digit_t mask = (static_cast<digit_t>(1) << bits_shift) - 1;
1728 if ((x->digit(digit_shift) & mask) != 0) {
1729 must_round_down = true;
1730 } else {
1731 for (int i = 0; i < digit_shift; i++) {
1732 if (x->digit(i) != 0) {
1733 must_round_down = true;
1734 break;
1735 }
1736 }
1737 }
1738 }
1739 // If bits_shift is non-zero, it frees up bits, preventing overflow.
1740 if (must_round_down && bits_shift == 0) {
1741 // Overflow cannot happen if the most significant digit has unset bits.
1742 digit_t msd = x->digit(length - 1);
1743 bool rounding_can_overflow = digit_ismax(msd);
1744 if (rounding_can_overflow) result_length++;
1745 }
1746
1747 DCHECK_LE(result_length, length);
1748 Handle<MutableBigInt> result = New(isolate, result_length).ToHandleChecked();
1749 if (bits_shift == 0) {
1750 for (int i = digit_shift; i < length; i++) {
1751 result->set_digit(i - digit_shift, x->digit(i));
1752 }
1753 } else {
1754 digit_t carry = x->digit(digit_shift) >> bits_shift;
1755 int last = length - digit_shift - 1;
1756 for (int i = 0; i < last; i++) {
1757 digit_t d = x->digit(i + digit_shift + 1);
1758 result->set_digit(i, (d << (kDigitBits - bits_shift)) | carry);
1759 carry = d >> bits_shift;
1760 }
1761 result->set_digit(last, carry);
1762 }
1763
1764 if (sign) {
1765 result->set_sign(true);
1766 if (must_round_down) {
1767 // Since the result is negative, rounding down means adding one to
1768 // its absolute value. This cannot overflow.
1769 result = AbsoluteAddOne(isolate, result, true, *result).ToHandleChecked();
1770 }
1771 }
1772 return MakeImmutable(result);
1773 }
1774
RightShiftByMaximum(Isolate * isolate,bool sign)1775 Handle<BigInt> MutableBigInt::RightShiftByMaximum(Isolate* isolate, bool sign) {
1776 if (sign) {
1777 // TODO(jkummerow): Consider caching a canonical -1n BigInt.
1778 return NewFromInt(isolate, -1);
1779 } else {
1780 return Zero(isolate);
1781 }
1782 }
1783
1784 // Returns the value of {x} if it is less than the maximum bit length of
1785 // a BigInt, or Nothing otherwise.
ToShiftAmount(Handle<BigIntBase> x)1786 Maybe<BigInt::digit_t> MutableBigInt::ToShiftAmount(Handle<BigIntBase> x) {
1787 if (x->length() > 1) return Nothing<digit_t>();
1788 digit_t value = x->digit(0);
1789 STATIC_ASSERT(kMaxLengthBits < std::numeric_limits<digit_t>::max());
1790 if (value > kMaxLengthBits) return Nothing<digit_t>();
1791 return Just(value);
1792 }
1793
1794 // Lookup table for the maximum number of bits required per character of a
1795 // base-N string representation of a number. To increase accuracy, the array
1796 // value is the actual value multiplied by 32. To generate this table:
1797 // for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); }
1798 constexpr uint8_t kMaxBitsPerChar[] = {
1799 0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8
1800 102, 107, 111, 115, 119, 122, 126, 128, // 9..16
1801 131, 134, 136, 139, 141, 143, 145, 147, // 17..24
1802 149, 151, 153, 154, 156, 158, 159, 160, // 25..32
1803 162, 163, 165, 166, // 33..36
1804 };
1805
1806 static const int kBitsPerCharTableShift = 5;
1807 static const size_t kBitsPerCharTableMultiplier = 1u << kBitsPerCharTableShift;
1808
AllocateFor(Isolate * isolate,int radix,int charcount,ShouldThrow should_throw,PretenureFlag pretenure)1809 MaybeHandle<FreshlyAllocatedBigInt> BigInt::AllocateFor(
1810 Isolate* isolate, int radix, int charcount, ShouldThrow should_throw,
1811 PretenureFlag pretenure) {
1812 DCHECK(2 <= radix && radix <= 36);
1813 DCHECK_GE(charcount, 0);
1814 size_t bits_per_char = kMaxBitsPerChar[radix];
1815 size_t chars = static_cast<size_t>(charcount);
1816 const int roundup = kBitsPerCharTableMultiplier - 1;
1817 if (chars <= (std::numeric_limits<size_t>::max() - roundup) / bits_per_char) {
1818 size_t bits_min = bits_per_char * chars;
1819 // Divide by 32 (see table), rounding up.
1820 bits_min = (bits_min + roundup) >> kBitsPerCharTableShift;
1821 if (bits_min <= static_cast<size_t>(kMaxInt)) {
1822 // Divide by kDigitsBits, rounding up.
1823 int length = (static_cast<int>(bits_min) + kDigitBits - 1) / kDigitBits;
1824 if (length <= kMaxLength) {
1825 Handle<MutableBigInt> result =
1826 MutableBigInt::New(isolate, length, pretenure).ToHandleChecked();
1827 result->InitializeDigits(length);
1828 return result;
1829 }
1830 }
1831 }
1832 // All the overflow/maximum checks above fall through to here.
1833 if (should_throw == kThrowOnError) {
1834 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
1835 FreshlyAllocatedBigInt);
1836 } else {
1837 return MaybeHandle<FreshlyAllocatedBigInt>();
1838 }
1839 }
1840
Finalize(Handle<FreshlyAllocatedBigInt> x,bool sign)1841 Handle<BigInt> BigInt::Finalize(Handle<FreshlyAllocatedBigInt> x, bool sign) {
1842 Handle<MutableBigInt> bigint = MutableBigInt::Cast(x);
1843 bigint->set_sign(sign);
1844 return MutableBigInt::MakeImmutable(bigint);
1845 }
1846
1847 // The serialization format MUST NOT CHANGE without updating the format
1848 // version in value-serializer.cc!
GetBitfieldForSerialization() const1849 uint32_t BigInt::GetBitfieldForSerialization() const {
1850 // In order to make the serialization format the same on 32/64 bit builds,
1851 // we convert the length-in-digits to length-in-bytes for serialization.
1852 // Being able to do this depends on having enough LengthBits:
1853 STATIC_ASSERT(kMaxLength * kDigitSize <= LengthBits::kMax);
1854 int bytelength = length() * kDigitSize;
1855 return SignBits::encode(sign()) | LengthBits::encode(bytelength);
1856 }
1857
DigitsByteLengthForBitfield(uint32_t bitfield)1858 int BigInt::DigitsByteLengthForBitfield(uint32_t bitfield) {
1859 return LengthBits::decode(bitfield);
1860 }
1861
1862 // The serialization format MUST NOT CHANGE without updating the format
1863 // version in value-serializer.cc!
SerializeDigits(uint8_t * storage)1864 void BigInt::SerializeDigits(uint8_t* storage) {
1865 void* digits = reinterpret_cast<void*>(reinterpret_cast<Address>(this) +
1866 kDigitsOffset - kHeapObjectTag);
1867 #if defined(V8_TARGET_LITTLE_ENDIAN)
1868 int bytelength = length() * kDigitSize;
1869 memcpy(storage, digits, bytelength);
1870 #elif defined(V8_TARGET_BIG_ENDIAN)
1871 digit_t* digit_storage = reinterpret_cast<digit_t*>(storage);
1872 const digit_t* digit = reinterpret_cast<const digit_t*>(digits);
1873 for (int i = 0; i < length(); i++) {
1874 *digit_storage = ByteReverse(*digit);
1875 digit_storage++;
1876 digit++;
1877 }
1878 #endif // V8_TARGET_BIG_ENDIAN
1879 }
1880
1881 // The serialization format MUST NOT CHANGE without updating the format
1882 // version in value-serializer.cc!
FromSerializedDigits(Isolate * isolate,uint32_t bitfield,Vector<const uint8_t> digits_storage,PretenureFlag pretenure)1883 MaybeHandle<BigInt> BigInt::FromSerializedDigits(
1884 Isolate* isolate, uint32_t bitfield, Vector<const uint8_t> digits_storage,
1885 PretenureFlag pretenure) {
1886 int bytelength = LengthBits::decode(bitfield);
1887 DCHECK(digits_storage.length() == bytelength);
1888 bool sign = SignBits::decode(bitfield);
1889 int length = (bytelength + kDigitSize - 1) / kDigitSize; // Round up.
1890 Handle<MutableBigInt> result =
1891 MutableBigInt::Cast(isolate->factory()->NewBigInt(length, pretenure));
1892 result->initialize_bitfield(sign, length);
1893 void* digits = reinterpret_cast<void*>(reinterpret_cast<Address>(*result) +
1894 kDigitsOffset - kHeapObjectTag);
1895 #if defined(V8_TARGET_LITTLE_ENDIAN)
1896 memcpy(digits, digits_storage.start(), bytelength);
1897 void* padding_start =
1898 reinterpret_cast<void*>(reinterpret_cast<Address>(digits) + bytelength);
1899 memset(padding_start, 0, length * kDigitSize - bytelength);
1900 #elif defined(V8_TARGET_BIG_ENDIAN)
1901 digit_t* digit = reinterpret_cast<digit_t*>(digits);
1902 const digit_t* digit_storage =
1903 reinterpret_cast<const digit_t*>(digits_storage.start());
1904 for (int i = 0; i < bytelength / kDigitSize; i++) {
1905 *digit = ByteReverse(*digit_storage);
1906 digit_storage++;
1907 digit++;
1908 }
1909 if (bytelength % kDigitSize) {
1910 *digit = 0;
1911 byte* digit_byte = reinterpret_cast<byte*>(digit);
1912 digit_byte += sizeof(*digit) - 1;
1913 const byte* digit_storage_byte =
1914 reinterpret_cast<const byte*>(digit_storage);
1915 for (int i = 0; i < bytelength % kDigitSize; i++) {
1916 *digit_byte = *digit_storage_byte;
1917 digit_byte--;
1918 digit_storage_byte++;
1919 }
1920 }
1921 #endif // V8_TARGET_BIG_ENDIAN
1922 return MutableBigInt::MakeImmutable(result);
1923 }
1924
1925 static const char kConversionChars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
1926
ToStringBasePowerOfTwo(Isolate * isolate,Handle<BigIntBase> x,int radix)1927 MaybeHandle<String> MutableBigInt::ToStringBasePowerOfTwo(Isolate* isolate,
1928 Handle<BigIntBase> x,
1929 int radix) {
1930 STATIC_ASSERT(base::bits::IsPowerOfTwo(kDigitBits));
1931 DCHECK(base::bits::IsPowerOfTwo(radix));
1932 DCHECK(radix >= 2 && radix <= 32);
1933 DCHECK(!x->is_zero());
1934
1935 const int length = x->length();
1936 const bool sign = x->sign();
1937 const int bits_per_char = base::bits::CountTrailingZeros(radix);
1938 const int char_mask = radix - 1;
1939 // Compute the length of the resulting string: divide the bit length of the
1940 // BigInt by the number of bits representable per character (rounding up).
1941 const digit_t msd = x->digit(length - 1);
1942 const int msd_leading_zeros = base::bits::CountLeadingZeros(msd);
1943 const size_t bit_length = length * kDigitBits - msd_leading_zeros;
1944 const size_t chars_required =
1945 (bit_length + bits_per_char - 1) / bits_per_char + sign;
1946
1947 if (chars_required > String::kMaxLength) {
1948 THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String);
1949 }
1950
1951 Handle<SeqOneByteString> result =
1952 isolate->factory()
1953 ->NewRawOneByteString(static_cast<int>(chars_required))
1954 .ToHandleChecked();
1955 DisallowHeapAllocation no_gc;
1956 uint8_t* buffer = result->GetChars();
1957 // Print the number into the string, starting from the last position.
1958 int pos = static_cast<int>(chars_required - 1);
1959 digit_t digit = 0;
1960 // Keeps track of how many unprocessed bits there are in {digit}.
1961 int available_bits = 0;
1962 for (int i = 0; i < length - 1; i++) {
1963 digit_t new_digit = x->digit(i);
1964 // Take any leftover bits from the last iteration into account.
1965 int current = (digit | (new_digit << available_bits)) & char_mask;
1966 buffer[pos--] = kConversionChars[current];
1967 int consumed_bits = bits_per_char - available_bits;
1968 digit = new_digit >> consumed_bits;
1969 available_bits = kDigitBits - consumed_bits;
1970 while (available_bits >= bits_per_char) {
1971 buffer[pos--] = kConversionChars[digit & char_mask];
1972 digit >>= bits_per_char;
1973 available_bits -= bits_per_char;
1974 }
1975 }
1976 // Take any leftover bits from the last iteration into account.
1977 int current = (digit | (msd << available_bits)) & char_mask;
1978 buffer[pos--] = kConversionChars[current];
1979 digit = msd >> (bits_per_char - available_bits);
1980 while (digit != 0) {
1981 buffer[pos--] = kConversionChars[digit & char_mask];
1982 digit >>= bits_per_char;
1983 }
1984 if (sign) buffer[pos--] = '-';
1985 DCHECK_EQ(pos, -1);
1986 return result;
1987 }
1988
ToStringGeneric(Isolate * isolate,Handle<BigIntBase> x,int radix)1989 MaybeHandle<String> MutableBigInt::ToStringGeneric(Isolate* isolate,
1990 Handle<BigIntBase> x,
1991 int radix) {
1992 DCHECK(radix >= 2 && radix <= 36);
1993 DCHECK(!x->is_zero());
1994 Heap* heap = isolate->heap();
1995
1996 const int length = x->length();
1997 const bool sign = x->sign();
1998
1999 // Compute (an overapproximation of) the length of the resulting string:
2000 // Divide bit length of the BigInt by bits representable per character.
2001 const size_t bit_length =
2002 length * kDigitBits - base::bits::CountLeadingZeros(x->digit(length - 1));
2003 // Maximum number of bits we can represent with one character. We'll use this
2004 // to find an appropriate chunk size below.
2005 const uint8_t max_bits_per_char = kMaxBitsPerChar[radix];
2006 // For estimating result length, we have to be pessimistic and work with
2007 // the minimum number of bits one character can represent.
2008 const uint8_t min_bits_per_char = max_bits_per_char - 1;
2009 // Perform the following computation with uint64_t to avoid overflows.
2010 uint64_t chars_required = bit_length;
2011 chars_required *= kBitsPerCharTableMultiplier;
2012 chars_required += min_bits_per_char - 1; // Round up.
2013 chars_required /= min_bits_per_char;
2014 chars_required += sign;
2015
2016 if (chars_required > String::kMaxLength) {
2017 THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String);
2018 }
2019 Handle<SeqOneByteString> result =
2020 isolate->factory()
2021 ->NewRawOneByteString(static_cast<int>(chars_required))
2022 .ToHandleChecked();
2023
2024 #if DEBUG
2025 // Zap the string first.
2026 {
2027 DisallowHeapAllocation no_gc;
2028 uint8_t* chars = result->GetChars();
2029 for (int i = 0; i < static_cast<int>(chars_required); i++) chars[i] = '?';
2030 }
2031 #endif
2032
2033 // We assemble the result string in reverse order, and then reverse it.
2034 // TODO(jkummerow): Consider building the string from the right, and
2035 // left-shifting it if the length estimate was too large.
2036 int pos = 0;
2037
2038 digit_t last_digit;
2039 if (length == 1) {
2040 last_digit = x->digit(0);
2041 } else {
2042 int chunk_chars =
2043 kDigitBits * kBitsPerCharTableMultiplier / max_bits_per_char;
2044 digit_t chunk_divisor = digit_pow(radix, chunk_chars);
2045 // By construction of chunk_chars, there can't have been overflow.
2046 DCHECK_NE(chunk_divisor, 0);
2047 int nonzero_digit = length - 1;
2048 DCHECK_NE(x->digit(nonzero_digit), 0);
2049 // {rest} holds the part of the BigInt that we haven't looked at yet.
2050 // Not to be confused with "remainder"!
2051 Handle<MutableBigInt> rest;
2052 // In the first round, divide the input, allocating a new BigInt for
2053 // the result == rest; from then on divide the rest in-place.
2054 Handle<BigIntBase>* dividend = &x;
2055 do {
2056 digit_t chunk;
2057 AbsoluteDivSmall(isolate, *dividend, chunk_divisor, &rest, &chunk);
2058 DCHECK(!rest.is_null());
2059 dividend = reinterpret_cast<Handle<BigIntBase>*>(&rest);
2060 DisallowHeapAllocation no_gc;
2061 uint8_t* chars = result->GetChars();
2062 for (int i = 0; i < chunk_chars; i++) {
2063 chars[pos++] = kConversionChars[chunk % radix];
2064 chunk /= radix;
2065 }
2066 DCHECK_EQ(chunk, 0);
2067 if (rest->digit(nonzero_digit) == 0) nonzero_digit--;
2068 // We can never clear more than one digit per iteration, because
2069 // chunk_divisor is smaller than max digit value.
2070 DCHECK_GT(rest->digit(nonzero_digit), 0);
2071 } while (nonzero_digit > 0);
2072 last_digit = rest->digit(0);
2073 }
2074 DisallowHeapAllocation no_gc;
2075 uint8_t* chars = result->GetChars();
2076 do {
2077 chars[pos++] = kConversionChars[last_digit % radix];
2078 last_digit /= radix;
2079 } while (last_digit > 0);
2080 DCHECK_GE(pos, 1);
2081 DCHECK(pos <= static_cast<int>(chars_required));
2082 // Remove leading zeroes.
2083 while (pos > 1 && chars[pos - 1] == '0') pos--;
2084 if (sign) chars[pos++] = '-';
2085 // Trim any over-allocation (which can happen due to conservative estimates).
2086 if (pos < static_cast<int>(chars_required)) {
2087 result->synchronized_set_length(pos);
2088 int string_size =
2089 SeqOneByteString::SizeFor(static_cast<int>(chars_required));
2090 int needed_size = SeqOneByteString::SizeFor(pos);
2091 if (needed_size < string_size) {
2092 Address new_end = result->address() + needed_size;
2093 heap->CreateFillerObjectAt(new_end, (string_size - needed_size),
2094 ClearRecordedSlots::kNo);
2095 }
2096 }
2097 // Reverse the string.
2098 for (int i = 0, j = pos - 1; i < j; i++, j--) {
2099 uint8_t tmp = chars[i];
2100 chars[i] = chars[j];
2101 chars[j] = tmp;
2102 }
2103 #if DEBUG
2104 // Verify that all characters have been written.
2105 DCHECK(result->length() == pos);
2106 for (int i = 0; i < pos; i++) DCHECK_NE(chars[i], '?');
2107 #endif
2108 return result;
2109 }
2110
AsIntN(Isolate * isolate,uint64_t n,Handle<BigInt> x)2111 Handle<BigInt> BigInt::AsIntN(Isolate* isolate, uint64_t n, Handle<BigInt> x) {
2112 if (x->is_zero()) return x;
2113 if (n == 0) return MutableBigInt::Zero(isolate);
2114 uint64_t needed_length = (n + kDigitBits - 1) / kDigitBits;
2115 uint64_t x_length = static_cast<uint64_t>(x->length());
2116 // If {x} has less than {n} bits, return it directly.
2117 if (x_length < needed_length) return x;
2118 DCHECK_LE(needed_length, kMaxInt);
2119 digit_t top_digit = x->digit(static_cast<int>(needed_length) - 1);
2120 digit_t compare_digit = static_cast<digit_t>(1) << ((n - 1) % kDigitBits);
2121 if (x_length == needed_length && top_digit < compare_digit) return x;
2122 // Otherwise we have to truncate (which is a no-op in the special case
2123 // of x == -2^(n-1)), and determine the right sign. We also might have
2124 // to subtract from 2^n to simulate having two's complement representation.
2125 // In most cases, the result's sign is x->sign() xor "(n-1)th bit present".
2126 // The only exception is when x is negative, has the (n-1)th bit, and all
2127 // its bits below (n-1) are zero. In that case, the result is the minimum
2128 // n-bit integer (example: asIntN(3, -12n) => -4n).
2129 bool has_bit = (top_digit & compare_digit) == compare_digit;
2130 DCHECK_LE(n, kMaxInt);
2131 int N = static_cast<int>(n);
2132 if (!has_bit) {
2133 return MutableBigInt::TruncateToNBits(isolate, N, x);
2134 }
2135 if (!x->sign()) {
2136 return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x, true);
2137 }
2138 // Negative numbers must subtract from 2^n, except for the special case
2139 // described above.
2140 if ((top_digit & (compare_digit - 1)) == 0) {
2141 for (int i = static_cast<int>(needed_length) - 2; i >= 0; i--) {
2142 if (x->digit(i) != 0) {
2143 return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x,
2144 false);
2145 }
2146 }
2147 return MutableBigInt::TruncateToNBits(isolate, N, x);
2148 }
2149 return MutableBigInt::TruncateAndSubFromPowerOfTwo(isolate, N, x, false);
2150 }
2151
AsUintN(Isolate * isolate,uint64_t n,Handle<BigInt> x)2152 MaybeHandle<BigInt> BigInt::AsUintN(Isolate* isolate, uint64_t n,
2153 Handle<BigInt> x) {
2154 if (x->is_zero()) return x;
2155 if (n == 0) return MutableBigInt::Zero(isolate);
2156 // If {x} is negative, simulate two's complement representation.
2157 if (x->sign()) {
2158 if (n > kMaxLengthBits) {
2159 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
2160 BigInt);
2161 }
2162 return MutableBigInt::TruncateAndSubFromPowerOfTwo(
2163 isolate, static_cast<int>(n), x, false);
2164 }
2165 // If {x} is positive and has up to {n} bits, return it directly.
2166 if (n >= kMaxLengthBits) return x;
2167 STATIC_ASSERT(kMaxLengthBits < kMaxInt - kDigitBits);
2168 int needed_length = static_cast<int>((n + kDigitBits - 1) / kDigitBits);
2169 if (x->length() < needed_length) return x;
2170 int bits_in_top_digit = n % kDigitBits;
2171 if (bits_in_top_digit == 0) {
2172 if (x->length() == needed_length) return x;
2173 } else {
2174 digit_t top_digit = x->digit(needed_length - 1);
2175 if ((top_digit >> bits_in_top_digit) == 0) return x;
2176 }
2177 // Otherwise, truncate.
2178 DCHECK_LE(n, kMaxInt);
2179 return MutableBigInt::TruncateToNBits(isolate, static_cast<int>(n), x);
2180 }
2181
TruncateToNBits(Isolate * isolate,int n,Handle<BigInt> x)2182 Handle<BigInt> MutableBigInt::TruncateToNBits(Isolate* isolate, int n,
2183 Handle<BigInt> x) {
2184 // Only call this when there's something to do.
2185 DCHECK_NE(n, 0);
2186 DCHECK_GT(x->length(), n / kDigitBits);
2187
2188 int needed_digits = (n + (kDigitBits - 1)) / kDigitBits;
2189 DCHECK_LE(needed_digits, x->length());
2190 Handle<MutableBigInt> result = New(isolate, needed_digits).ToHandleChecked();
2191
2192 // Copy all digits except the MSD.
2193 int last = needed_digits - 1;
2194 for (int i = 0; i < last; i++) {
2195 result->set_digit(i, x->digit(i));
2196 }
2197
2198 // The MSD might contain extra bits that we don't want.
2199 digit_t msd = x->digit(last);
2200 if (n % kDigitBits != 0) {
2201 int drop = kDigitBits - (n % kDigitBits);
2202 msd = (msd << drop) >> drop;
2203 }
2204 result->set_digit(last, msd);
2205 result->set_sign(x->sign());
2206 return MakeImmutable(result);
2207 }
2208
2209 // Subtracts the least significant n bits of abs(x) from 2^n.
TruncateAndSubFromPowerOfTwo(Isolate * isolate,int n,Handle<BigInt> x,bool result_sign)2210 Handle<BigInt> MutableBigInt::TruncateAndSubFromPowerOfTwo(Isolate* isolate,
2211 int n,
2212 Handle<BigInt> x,
2213 bool result_sign) {
2214 DCHECK_NE(n, 0);
2215 DCHECK_LE(n, kMaxLengthBits);
2216
2217 int needed_digits = (n + (kDigitBits - 1)) / kDigitBits;
2218 DCHECK_LE(needed_digits, kMaxLength); // Follows from n <= kMaxLengthBits.
2219 Handle<MutableBigInt> result = New(isolate, needed_digits).ToHandleChecked();
2220
2221 // Process all digits except the MSD.
2222 int i = 0;
2223 int last = needed_digits - 1;
2224 int x_length = x->length();
2225 digit_t borrow = 0;
2226 // Take digits from {x} unless its length is exhausted.
2227 int limit = Min(last, x_length);
2228 for (; i < limit; i++) {
2229 digit_t new_borrow = 0;
2230 digit_t difference = digit_sub(0, x->digit(i), &new_borrow);
2231 difference = digit_sub(difference, borrow, &new_borrow);
2232 result->set_digit(i, difference);
2233 borrow = new_borrow;
2234 }
2235 // Then simulate leading zeroes in {x} as needed.
2236 for (; i < last; i++) {
2237 digit_t new_borrow = 0;
2238 digit_t difference = digit_sub(0, borrow, &new_borrow);
2239 result->set_digit(i, difference);
2240 borrow = new_borrow;
2241 }
2242
2243 // The MSD might contain extra bits that we don't want.
2244 digit_t msd = last < x_length ? x->digit(last) : 0;
2245 int msd_bits_consumed = n % kDigitBits;
2246 digit_t result_msd;
2247 if (msd_bits_consumed == 0) {
2248 digit_t new_borrow = 0;
2249 result_msd = digit_sub(0, msd, &new_borrow);
2250 result_msd = digit_sub(result_msd, borrow, &new_borrow);
2251 } else {
2252 int drop = kDigitBits - msd_bits_consumed;
2253 msd = (msd << drop) >> drop;
2254 digit_t minuend_msd = static_cast<digit_t>(1) << (kDigitBits - drop);
2255 digit_t new_borrow = 0;
2256 result_msd = digit_sub(minuend_msd, msd, &new_borrow);
2257 result_msd = digit_sub(result_msd, borrow, &new_borrow);
2258 DCHECK_EQ(new_borrow, 0); // result < 2^n.
2259 // If all subtracted bits were zero, we have to get rid of the
2260 // materialized minuend_msd again.
2261 result_msd &= (minuend_msd - 1);
2262 }
2263 result->set_digit(last, result_msd);
2264 result->set_sign(result_sign);
2265 return MakeImmutable(result);
2266 }
2267
FromInt64(Isolate * isolate,int64_t n)2268 Handle<BigInt> BigInt::FromInt64(Isolate* isolate, int64_t n) {
2269 if (n == 0) return MutableBigInt::Zero(isolate);
2270 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
2271 int length = 64 / kDigitBits;
2272 Handle<MutableBigInt> result =
2273 MutableBigInt::Cast(isolate->factory()->NewBigInt(length));
2274 bool sign = n < 0;
2275 result->initialize_bitfield(sign, length);
2276 uint64_t absolute;
2277 if (!sign) {
2278 absolute = static_cast<uint64_t>(n);
2279 } else {
2280 if (n == std::numeric_limits<int64_t>::min()) {
2281 absolute = static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) + 1;
2282 } else {
2283 absolute = static_cast<uint64_t>(-n);
2284 }
2285 }
2286 result->set_64_bits(absolute);
2287 return MutableBigInt::MakeImmutable(result);
2288 }
2289
FromUint64(Isolate * isolate,uint64_t n)2290 Handle<BigInt> BigInt::FromUint64(Isolate* isolate, uint64_t n) {
2291 if (n == 0) return MutableBigInt::Zero(isolate);
2292 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
2293 int length = 64 / kDigitBits;
2294 Handle<MutableBigInt> result =
2295 MutableBigInt::Cast(isolate->factory()->NewBigInt(length));
2296 result->initialize_bitfield(false, length);
2297 result->set_64_bits(n);
2298 return MutableBigInt::MakeImmutable(result);
2299 }
2300
FromWords64(Isolate * isolate,int sign_bit,int words64_count,const uint64_t * words)2301 MaybeHandle<BigInt> BigInt::FromWords64(Isolate* isolate, int sign_bit,
2302 int words64_count,
2303 const uint64_t* words) {
2304 if (words64_count < 0 || words64_count > kMaxLength / (64 / kDigitBits)) {
2305 THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig),
2306 BigInt);
2307 }
2308 if (words64_count == 0) return MutableBigInt::Zero(isolate);
2309 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
2310 int length = (64 / kDigitBits) * words64_count;
2311 DCHECK_GT(length, 0);
2312 if (kDigitBits == 32 && words[words64_count - 1] <= (1ULL << 32)) length--;
2313
2314 Handle<MutableBigInt> result;
2315 if (!MutableBigInt::New(isolate, length).ToHandle(&result)) {
2316 return MaybeHandle<BigInt>();
2317 }
2318
2319 result->set_sign(sign_bit);
2320 if (kDigitBits == 64) {
2321 for (int i = 0; i < length; ++i) {
2322 result->set_digit(i, static_cast<digit_t>(words[i]));
2323 }
2324 } else {
2325 for (int i = 0; i < length; i += 2) {
2326 digit_t lo = static_cast<digit_t>(words[i / 2]);
2327 digit_t hi = static_cast<digit_t>(words[i / 2] >> 32);
2328 result->set_digit(i, lo);
2329 if (i + 1 < length) result->set_digit(i + 1, hi);
2330 }
2331 }
2332
2333 return MutableBigInt::MakeImmutable(result);
2334 }
2335
Words64Count()2336 int BigInt::Words64Count() {
2337 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
2338 return length() / (64 / kDigitBits) +
2339 (kDigitBits == 32 && length() % 2 == 1 ? 1 : 0);
2340 }
2341
ToWordsArray64(int * sign_bit,int * words64_count,uint64_t * words)2342 void BigInt::ToWordsArray64(int* sign_bit, int* words64_count,
2343 uint64_t* words) {
2344 DCHECK_NE(sign_bit, nullptr);
2345 DCHECK_NE(words64_count, nullptr);
2346 *sign_bit = sign();
2347 int available_words = *words64_count;
2348 *words64_count = Words64Count();
2349 if (available_words == 0) return;
2350 DCHECK_NE(words, nullptr);
2351
2352 int len = length();
2353 if (kDigitBits == 64) {
2354 for (int i = 0; i < len && i < available_words; ++i) words[i] = digit(i);
2355 } else {
2356 for (int i = 0; i < len && available_words > 0; i += 2) {
2357 uint64_t lo = digit(i);
2358 uint64_t hi = (i + 1) < len ? digit(i + 1) : 0;
2359 words[i / 2] = lo | (hi << 32);
2360 available_words--;
2361 }
2362 }
2363 }
2364
GetRawBits(BigIntBase * x,bool * lossless)2365 uint64_t MutableBigInt::GetRawBits(BigIntBase* x, bool* lossless) {
2366 if (lossless != nullptr) *lossless = true;
2367 if (x->is_zero()) return 0;
2368 int len = x->length();
2369 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
2370 if (lossless != nullptr && len > 64 / kDigitBits) *lossless = false;
2371 uint64_t raw = static_cast<uint64_t>(x->digit(0));
2372 if (kDigitBits == 32 && len > 1) {
2373 raw |= static_cast<uint64_t>(x->digit(1)) << 32;
2374 }
2375 // Simulate two's complement. MSVC dislikes "-raw".
2376 return x->sign() ? ((~raw) + 1u) : raw;
2377 }
2378
AsInt64(bool * lossless)2379 int64_t BigInt::AsInt64(bool* lossless) {
2380 uint64_t raw = MutableBigInt::GetRawBits(this, lossless);
2381 int64_t result = static_cast<int64_t>(raw);
2382 if (lossless != nullptr && (result < 0) != sign()) *lossless = false;
2383 return result;
2384 }
2385
AsUint64(bool * lossless)2386 uint64_t BigInt::AsUint64(bool* lossless) {
2387 uint64_t result = MutableBigInt::GetRawBits(this, lossless);
2388 if (lossless != nullptr && sign()) *lossless = false;
2389 return result;
2390 }
2391
2392 // Digit arithmetic helpers.
2393
2394 #if V8_TARGET_ARCH_32_BIT
2395 #define HAVE_TWODIGIT_T 1
2396 typedef uint64_t twodigit_t;
2397 #elif defined(__SIZEOF_INT128__)
2398 // Both Clang and GCC support this on x64.
2399 #define HAVE_TWODIGIT_T 1
2400 typedef __uint128_t twodigit_t;
2401 #endif
2402
2403 // {carry} must point to an initialized digit_t and will either be incremented
2404 // by one or left alone.
digit_add(digit_t a,digit_t b,digit_t * carry)2405 inline BigInt::digit_t MutableBigInt::digit_add(digit_t a, digit_t b,
2406 digit_t* carry) {
2407 #if HAVE_TWODIGIT_T
2408 twodigit_t result = static_cast<twodigit_t>(a) + static_cast<twodigit_t>(b);
2409 *carry += result >> kDigitBits;
2410 return static_cast<digit_t>(result);
2411 #else
2412 digit_t result = a + b;
2413 if (result < a) *carry += 1;
2414 return result;
2415 #endif
2416 }
2417
2418 // {borrow} must point to an initialized digit_t and will either be incremented
2419 // by one or left alone.
digit_sub(digit_t a,digit_t b,digit_t * borrow)2420 inline BigInt::digit_t MutableBigInt::digit_sub(digit_t a, digit_t b,
2421 digit_t* borrow) {
2422 #if HAVE_TWODIGIT_T
2423 twodigit_t result = static_cast<twodigit_t>(a) - static_cast<twodigit_t>(b);
2424 *borrow += (result >> kDigitBits) & 1;
2425 return static_cast<digit_t>(result);
2426 #else
2427 digit_t result = a - b;
2428 if (result > a) *borrow += 1;
2429 return static_cast<digit_t>(result);
2430 #endif
2431 }
2432
2433 // Returns the low half of the result. High half is in {high}.
digit_mul(digit_t a,digit_t b,digit_t * high)2434 inline BigInt::digit_t MutableBigInt::digit_mul(digit_t a, digit_t b,
2435 digit_t* high) {
2436 #if HAVE_TWODIGIT_T
2437 twodigit_t result = static_cast<twodigit_t>(a) * static_cast<twodigit_t>(b);
2438 *high = result >> kDigitBits;
2439 return static_cast<digit_t>(result);
2440 #else
2441 // Multiply in half-pointer-sized chunks.
2442 // For inputs [AH AL]*[BH BL], the result is:
2443 //
2444 // [AL*BL] // r_low
2445 // + [AL*BH] // r_mid1
2446 // + [AH*BL] // r_mid2
2447 // + [AH*BH] // r_high
2448 // = [R4 R3 R2 R1] // high = [R4 R3], low = [R2 R1]
2449 //
2450 // Where of course we must be careful with carries between the columns.
2451 digit_t a_low = a & kHalfDigitMask;
2452 digit_t a_high = a >> kHalfDigitBits;
2453 digit_t b_low = b & kHalfDigitMask;
2454 digit_t b_high = b >> kHalfDigitBits;
2455
2456 digit_t r_low = a_low * b_low;
2457 digit_t r_mid1 = a_low * b_high;
2458 digit_t r_mid2 = a_high * b_low;
2459 digit_t r_high = a_high * b_high;
2460
2461 digit_t carry = 0;
2462 digit_t low = digit_add(r_low, r_mid1 << kHalfDigitBits, &carry);
2463 low = digit_add(low, r_mid2 << kHalfDigitBits, &carry);
2464 *high =
2465 (r_mid1 >> kHalfDigitBits) + (r_mid2 >> kHalfDigitBits) + r_high + carry;
2466 return low;
2467 #endif
2468 }
2469
2470 // Returns the quotient.
2471 // quotient = (high << kDigitBits + low - remainder) / divisor
digit_div(digit_t high,digit_t low,digit_t divisor,digit_t * remainder)2472 BigInt::digit_t MutableBigInt::digit_div(digit_t high, digit_t low,
2473 digit_t divisor, digit_t* remainder) {
2474 DCHECK(high < divisor);
2475 #if V8_TARGET_ARCH_X64 && (__GNUC__ || __clang__)
2476 digit_t quotient;
2477 digit_t rem;
2478 __asm__("divq %[divisor]"
2479 // Outputs: {quotient} will be in rax, {rem} in rdx.
2480 : "=a"(quotient), "=d"(rem)
2481 // Inputs: put {high} into rdx, {low} into rax, and {divisor} into
2482 // any register or stack slot.
2483 : "d"(high), "a"(low), [divisor] "rm"(divisor));
2484 *remainder = rem;
2485 return quotient;
2486 #elif V8_TARGET_ARCH_IA32 && (__GNUC__ || __clang__)
2487 digit_t quotient;
2488 digit_t rem;
2489 __asm__("divl %[divisor]"
2490 // Outputs: {quotient} will be in eax, {rem} in edx.
2491 : "=a"(quotient), "=d"(rem)
2492 // Inputs: put {high} into edx, {low} into eax, and {divisor} into
2493 // any register or stack slot.
2494 : "d"(high), "a"(low), [divisor] "rm"(divisor));
2495 *remainder = rem;
2496 return quotient;
2497 #else
2498 static const digit_t kHalfDigitBase = 1ull << kHalfDigitBits;
2499 // Adapted from Warren, Hacker's Delight, p. 152.
2500 int s = base::bits::CountLeadingZeros(divisor);
2501 DCHECK_NE(s, kDigitBits); // {divisor} is not 0.
2502 divisor <<= s;
2503
2504 digit_t vn1 = divisor >> kHalfDigitBits;
2505 digit_t vn0 = divisor & kHalfDigitMask;
2506 // {s} can be 0. {low >> kDigitBits} would be undefined behavior, so
2507 // we mask the shift amount with {kShiftMask}, and the result with
2508 // {s_zero_mask} which is 0 if s == 0 and all 1-bits otherwise.
2509 STATIC_ASSERT(sizeof(intptr_t) == sizeof(digit_t));
2510 const int kShiftMask = kDigitBits - 1;
2511 digit_t s_zero_mask =
2512 static_cast<digit_t>(static_cast<intptr_t>(-s) >> (kDigitBits - 1));
2513 digit_t un32 =
2514 (high << s) | ((low >> ((kDigitBits - s) & kShiftMask)) & s_zero_mask);
2515 digit_t un10 = low << s;
2516 digit_t un1 = un10 >> kHalfDigitBits;
2517 digit_t un0 = un10 & kHalfDigitMask;
2518 digit_t q1 = un32 / vn1;
2519 digit_t rhat = un32 - q1 * vn1;
2520
2521 while (q1 >= kHalfDigitBase || q1 * vn0 > rhat * kHalfDigitBase + un1) {
2522 q1--;
2523 rhat += vn1;
2524 if (rhat >= kHalfDigitBase) break;
2525 }
2526
2527 digit_t un21 = un32 * kHalfDigitBase + un1 - q1 * divisor;
2528 digit_t q0 = un21 / vn1;
2529 rhat = un21 - q0 * vn1;
2530
2531 while (q0 >= kHalfDigitBase || q0 * vn0 > rhat * kHalfDigitBase + un0) {
2532 q0--;
2533 rhat += vn1;
2534 if (rhat >= kHalfDigitBase) break;
2535 }
2536
2537 *remainder = (un21 * kHalfDigitBase + un0 - q0 * divisor) >> s;
2538 return q1 * kHalfDigitBase + q0;
2539 #endif
2540 }
2541
2542 // Raises {base} to the power of {exponent}. Does not check for overflow.
digit_pow(digit_t base,digit_t exponent)2543 BigInt::digit_t MutableBigInt::digit_pow(digit_t base, digit_t exponent) {
2544 digit_t result = 1ull;
2545 while (exponent > 0) {
2546 if (exponent & 1) {
2547 result *= base;
2548 }
2549 exponent >>= 1;
2550 base *= base;
2551 }
2552 return result;
2553 }
2554
2555 #undef HAVE_TWODIGIT_T
2556
set_64_bits(uint64_t bits)2557 void MutableBigInt::set_64_bits(uint64_t bits) {
2558 STATIC_ASSERT(kDigitBits == 64 || kDigitBits == 32);
2559 if (kDigitBits == 64) {
2560 set_digit(0, static_cast<digit_t>(bits));
2561 } else {
2562 set_digit(0, static_cast<digit_t>(bits & 0xFFFFFFFFu));
2563 set_digit(1, static_cast<digit_t>(bits >> 32));
2564 }
2565 }
2566
2567 #ifdef OBJECT_PRINT
BigIntPrint(std::ostream & os)2568 void BigInt::BigIntPrint(std::ostream& os) {
2569 DisallowHeapAllocation no_gc;
2570 HeapObject::PrintHeader(os, "BigInt");
2571 int len = length();
2572 os << "\n- length: " << len;
2573 os << "\n- sign: " << sign();
2574 if (len > 0) {
2575 os << "\n- digits:";
2576 for (int i = 0; i < len; i++) {
2577 os << "\n 0x" << std::hex << digit(i);
2578 }
2579 }
2580 os << std::dec << "\n";
2581 }
2582 #endif // OBJECT_PRINT
2583
2584 } // namespace internal
2585 } // namespace v8
2586