• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36 
37 #ifndef V8_PPC_ASSEMBLER_PPC_INL_H_
38 #define V8_PPC_ASSEMBLER_PPC_INL_H_
39 
40 #include "src/ppc/assembler-ppc.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 #include "src/objects-inl.h"
45 
46 namespace v8 {
47 namespace internal {
48 
SupportsOptimizer()49 bool CpuFeatures::SupportsOptimizer() { return true; }
50 
SupportsWasmSimd128()51 bool CpuFeatures::SupportsWasmSimd128() { return false; }
52 
apply(intptr_t delta)53 void RelocInfo::apply(intptr_t delta) {
54   // absolute code pointer inside code object moves with the code object.
55   if (IsInternalReference(rmode_)) {
56     // Jump table entry
57     Address target = Memory<Address>(pc_);
58     Memory<Address>(pc_) = target + delta;
59   } else {
60     // mov sequence
61     DCHECK(IsInternalReferenceEncoded(rmode_));
62     Address target = Assembler::target_address_at(pc_, constant_pool_);
63     Assembler::set_target_address_at(pc_, constant_pool_, target + delta,
64                                      SKIP_ICACHE_FLUSH);
65   }
66 }
67 
68 
target_internal_reference()69 Address RelocInfo::target_internal_reference() {
70   if (IsInternalReference(rmode_)) {
71     // Jump table entry
72     return Memory<Address>(pc_);
73   } else {
74     // mov sequence
75     DCHECK(IsInternalReferenceEncoded(rmode_));
76     return Assembler::target_address_at(pc_, constant_pool_);
77   }
78 }
79 
80 
target_internal_reference_address()81 Address RelocInfo::target_internal_reference_address() {
82   DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
83   return pc_;
84 }
85 
86 
target_address()87 Address RelocInfo::target_address() {
88   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
89   return Assembler::target_address_at(pc_, constant_pool_);
90 }
91 
target_address_address()92 Address RelocInfo::target_address_address() {
93   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) ||
94          IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
95          IsOffHeapTarget(rmode_));
96 
97   if (FLAG_enable_embedded_constant_pool &&
98       Assembler::IsConstantPoolLoadStart(pc_)) {
99     // We return the PC for embedded constant pool since this function is used
100     // by the serializer and expects the address to reside within the code
101     // object.
102     return pc_;
103   }
104 
105   // Read the address of the word containing the target_address in an
106   // instruction stream.
107   // The only architecture-independent user of this function is the serializer.
108   // The serializer uses it to find out how many raw bytes of instruction to
109   // output before the next target.
110   // For an instruction like LIS/ORI where the target bits are mixed into the
111   // instruction bits, the size of the target will be zero, indicating that the
112   // serializer should not step forward in memory after a target is resolved
113   // and written.
114   return pc_;
115 }
116 
117 
constant_pool_entry_address()118 Address RelocInfo::constant_pool_entry_address() {
119   if (FLAG_enable_embedded_constant_pool) {
120     DCHECK(constant_pool_);
121     ConstantPoolEntry::Access access;
122     if (Assembler::IsConstantPoolLoadStart(pc_, &access))
123       return Assembler::target_constant_pool_address_at(
124           pc_, constant_pool_, access, ConstantPoolEntry::INTPTR);
125   }
126   UNREACHABLE();
127 }
128 
129 
target_address_size()130 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
131 
target_address_from_return_address(Address pc)132 Address Assembler::target_address_from_return_address(Address pc) {
133 // Returns the address of the call target from the return address that will
134 // be returned to after a call.
135 // Call sequence is :
136 //  mov   ip, @ call address
137 //  mtlr  ip
138 //  blrl
139 //                      @ return address
140   int len;
141   ConstantPoolEntry::Access access;
142   if (FLAG_enable_embedded_constant_pool &&
143       IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) {
144     len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
145   } else {
146     len = kMovInstructionsNoConstantPool;
147   }
148   return pc - (len + 2) * kInstrSize;
149 }
150 
151 
return_address_from_call_start(Address pc)152 Address Assembler::return_address_from_call_start(Address pc) {
153   int len;
154   ConstantPoolEntry::Access access;
155   if (FLAG_enable_embedded_constant_pool &&
156       IsConstantPoolLoadStart(pc, &access)) {
157     len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
158   } else {
159     len = kMovInstructionsNoConstantPool;
160   }
161   return pc + (len + 2) * kInstrSize;
162 }
163 
target_object()164 HeapObject* RelocInfo::target_object() {
165   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
166   return HeapObject::cast(reinterpret_cast<Object*>(
167       Assembler::target_address_at(pc_, constant_pool_)));
168 }
169 
target_object_handle(Assembler * origin)170 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
171   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
172   return Handle<HeapObject>(reinterpret_cast<HeapObject**>(
173       Assembler::target_address_at(pc_, constant_pool_)));
174 }
175 
set_target_object(Heap * heap,HeapObject * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)176 void RelocInfo::set_target_object(Heap* heap, HeapObject* target,
177                                   WriteBarrierMode write_barrier_mode,
178                                   ICacheFlushMode icache_flush_mode) {
179   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
180   Assembler::set_target_address_at(pc_, constant_pool_,
181                                    reinterpret_cast<Address>(target),
182                                    icache_flush_mode);
183   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) {
184     WriteBarrierForCode(host(), this, target);
185   }
186 }
187 
188 
target_external_reference()189 Address RelocInfo::target_external_reference() {
190   DCHECK(rmode_ == EXTERNAL_REFERENCE);
191   return Assembler::target_address_at(pc_, constant_pool_);
192 }
193 
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)194 void RelocInfo::set_target_external_reference(
195     Address target, ICacheFlushMode icache_flush_mode) {
196   DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
197   Assembler::set_target_address_at(pc_, constant_pool_, target,
198                                    icache_flush_mode);
199 }
200 
target_runtime_entry(Assembler * origin)201 Address RelocInfo::target_runtime_entry(Assembler* origin) {
202   DCHECK(IsRuntimeEntry(rmode_));
203   return target_address();
204 }
205 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)206 void RelocInfo::set_target_runtime_entry(Address target,
207                                          WriteBarrierMode write_barrier_mode,
208                                          ICacheFlushMode icache_flush_mode) {
209   DCHECK(IsRuntimeEntry(rmode_));
210   if (target_address() != target)
211     set_target_address(target, write_barrier_mode, icache_flush_mode);
212 }
213 
target_off_heap_target()214 Address RelocInfo::target_off_heap_target() {
215   DCHECK(IsOffHeapTarget(rmode_));
216   return Assembler::target_address_at(pc_, constant_pool_);
217 }
218 
WipeOut()219 void RelocInfo::WipeOut() {
220   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
221          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
222          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
223          IsOffHeapTarget(rmode_));
224   if (IsInternalReference(rmode_)) {
225     // Jump table entry
226     Memory<Address>(pc_) = kNullAddress;
227   } else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) {
228     // mov sequence
229     // Currently used only by deserializer, no need to flush.
230     Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress,
231                                      SKIP_ICACHE_FLUSH);
232   } else {
233     Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
234   }
235 }
236 
237 template <typename ObjectVisitor>
Visit(ObjectVisitor * visitor)238 void RelocInfo::Visit(ObjectVisitor* visitor) {
239   RelocInfo::Mode mode = rmode();
240   if (mode == RelocInfo::EMBEDDED_OBJECT) {
241     visitor->VisitEmbeddedPointer(host(), this);
242   } else if (RelocInfo::IsCodeTargetMode(mode)) {
243     visitor->VisitCodeTarget(host(), this);
244   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
245     visitor->VisitExternalReference(host(), this);
246   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
247              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
248     visitor->VisitInternalReference(host(), this);
249   } else if (IsRuntimeEntry(mode)) {
250     visitor->VisitRuntimeEntry(host(), this);
251   } else if (RelocInfo::IsOffHeapTarget(mode)) {
252     visitor->VisitOffHeapTarget(host(), this);
253   }
254 }
255 
Operand(Register rm)256 Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NONE) {}
257 
UntrackBranch()258 void Assembler::UntrackBranch() {
259   DCHECK(!trampoline_emitted_);
260   DCHECK_GT(tracked_branch_count_, 0);
261   int count = --tracked_branch_count_;
262   if (count == 0) {
263     // Reset
264     next_trampoline_check_ = kMaxInt;
265   } else {
266     next_trampoline_check_ += kTrampolineSlotsSize;
267   }
268 }
269 
270 // Fetch the 32bit value from the FIXED_SEQUENCE lis/ori
target_address_at(Address pc,Address constant_pool)271 Address Assembler::target_address_at(Address pc, Address constant_pool) {
272   if (FLAG_enable_embedded_constant_pool && constant_pool) {
273     ConstantPoolEntry::Access access;
274     if (IsConstantPoolLoadStart(pc, &access))
275       return Memory<Address>(target_constant_pool_address_at(
276           pc, constant_pool, access, ConstantPoolEntry::INTPTR));
277   }
278 
279   Instr instr1 = instr_at(pc);
280   Instr instr2 = instr_at(pc + kInstrSize);
281   // Interpret 2 instructions generated by lis/ori
282   if (IsLis(instr1) && IsOri(instr2)) {
283 #if V8_TARGET_ARCH_PPC64
284     Instr instr4 = instr_at(pc + (3 * kInstrSize));
285     Instr instr5 = instr_at(pc + (4 * kInstrSize));
286     // Assemble the 64 bit value.
287     uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) |
288                    static_cast<uint32_t>(instr2 & kImm16Mask));
289     uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) |
290                    static_cast<uint32_t>(instr5 & kImm16Mask));
291     return static_cast<Address>((hi << 32) | lo);
292 #else
293     // Assemble the 32 bit value.
294     return static_cast<Address>(((instr1 & kImm16Mask) << 16) |
295                                 (instr2 & kImm16Mask));
296 #endif
297   }
298 
299   UNREACHABLE();
300 }
301 
302 
303 #if V8_TARGET_ARCH_PPC64
304 const uint32_t kLoadIntptrOpcode = LD;
305 #else
306 const uint32_t kLoadIntptrOpcode = LWZ;
307 #endif
308 
309 // Constant pool load sequence detection:
310 // 1) REGULAR access:
311 //    load <dst>, kConstantPoolRegister + <offset>
312 //
313 // 2) OVERFLOWED access:
314 //    addis <scratch>, kConstantPoolRegister, <offset_high>
315 //    load <dst>, <scratch> + <offset_low>
IsConstantPoolLoadStart(Address pc,ConstantPoolEntry::Access * access)316 bool Assembler::IsConstantPoolLoadStart(Address pc,
317                                         ConstantPoolEntry::Access* access) {
318   Instr instr = instr_at(pc);
319   uint32_t opcode = instr & kOpcodeMask;
320   if (GetRA(instr) != kConstantPoolRegister) return false;
321   bool overflowed = (opcode == ADDIS);
322 #ifdef DEBUG
323   if (overflowed) {
324     opcode = instr_at(pc + kInstrSize) & kOpcodeMask;
325   }
326   DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD);
327 #endif
328   if (access) {
329     *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
330                           : ConstantPoolEntry::REGULAR);
331   }
332   return true;
333 }
334 
335 
IsConstantPoolLoadEnd(Address pc,ConstantPoolEntry::Access * access)336 bool Assembler::IsConstantPoolLoadEnd(Address pc,
337                                       ConstantPoolEntry::Access* access) {
338   Instr instr = instr_at(pc);
339   uint32_t opcode = instr & kOpcodeMask;
340   bool overflowed = false;
341   if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false;
342   if (GetRA(instr) != kConstantPoolRegister) {
343     instr = instr_at(pc - kInstrSize);
344     opcode = instr & kOpcodeMask;
345     if ((opcode != ADDIS) || GetRA(instr) != kConstantPoolRegister) {
346       return false;
347     }
348     overflowed = true;
349   }
350   if (access) {
351     *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
352                           : ConstantPoolEntry::REGULAR);
353   }
354   return true;
355 }
356 
357 
GetConstantPoolOffset(Address pc,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)358 int Assembler::GetConstantPoolOffset(Address pc,
359                                      ConstantPoolEntry::Access access,
360                                      ConstantPoolEntry::Type type) {
361   bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
362 #ifdef DEBUG
363   ConstantPoolEntry::Access access_check =
364       static_cast<ConstantPoolEntry::Access>(-1);
365   DCHECK(IsConstantPoolLoadStart(pc, &access_check));
366   DCHECK(access_check == access);
367 #endif
368   int offset;
369   if (overflowed) {
370     offset = (instr_at(pc) & kImm16Mask) << 16;
371     offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask);
372     DCHECK(!is_int16(offset));
373   } else {
374     offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask));
375   }
376   return offset;
377 }
378 
379 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)380 void Assembler::PatchConstantPoolAccessInstruction(
381     int pc_offset, int offset, ConstantPoolEntry::Access access,
382     ConstantPoolEntry::Type type) {
383   Address pc = reinterpret_cast<Address>(buffer_) + pc_offset;
384   bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
385   CHECK(overflowed != is_int16(offset));
386 #ifdef DEBUG
387   ConstantPoolEntry::Access access_check =
388       static_cast<ConstantPoolEntry::Access>(-1);
389   DCHECK(IsConstantPoolLoadStart(pc, &access_check));
390   DCHECK(access_check == access);
391 #endif
392   if (overflowed) {
393     int hi_word = static_cast<int>(offset >> 16);
394     int lo_word = static_cast<int>(offset & 0xffff);
395     if (lo_word & 0x8000) hi_word++;
396 
397     Instr instr1 = instr_at(pc);
398     Instr instr2 = instr_at(pc + kInstrSize);
399     instr1 &= ~kImm16Mask;
400     instr1 |= (hi_word & kImm16Mask);
401     instr2 &= ~kImm16Mask;
402     instr2 |= (lo_word & kImm16Mask);
403     instr_at_put(pc, instr1);
404     instr_at_put(pc + kInstrSize, instr2);
405   } else {
406     Instr instr = instr_at(pc);
407     instr &= ~kImm16Mask;
408     instr |= (offset & kImm16Mask);
409     instr_at_put(pc, instr);
410   }
411 }
412 
413 
target_constant_pool_address_at(Address pc,Address constant_pool,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)414 Address Assembler::target_constant_pool_address_at(
415     Address pc, Address constant_pool, ConstantPoolEntry::Access access,
416     ConstantPoolEntry::Type type) {
417   Address addr = constant_pool;
418   DCHECK(addr);
419   addr += GetConstantPoolOffset(pc, access, type);
420   return addr;
421 }
422 
423 
424 // This sets the branch destination (which gets loaded at the call address).
425 // This is for calls and branches within generated code.  The serializer
426 // has already deserialized the mov instructions etc.
427 // There is a FIXED_SEQUENCE assumption here
deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)428 void Assembler::deserialization_set_special_target_at(
429     Address instruction_payload, Code* code, Address target) {
430   set_target_address_at(instruction_payload,
431                         code ? code->constant_pool() : kNullAddress, target);
432 }
433 
deserialization_special_target_size(Address instruction_payload)434 int Assembler::deserialization_special_target_size(
435     Address instruction_payload) {
436   return kSpecialTargetSize;
437 }
438 
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)439 void Assembler::deserialization_set_target_internal_reference_at(
440     Address pc, Address target, RelocInfo::Mode mode) {
441   if (RelocInfo::IsInternalReferenceEncoded(mode)) {
442     set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH);
443   } else {
444     Memory<Address>(pc) = target;
445   }
446 }
447 
448 
449 // This code assumes the FIXED_SEQUENCE of lis/ori
set_target_address_at(Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)450 void Assembler::set_target_address_at(Address pc, Address constant_pool,
451                                       Address target,
452                                       ICacheFlushMode icache_flush_mode) {
453   if (FLAG_enable_embedded_constant_pool && constant_pool) {
454     ConstantPoolEntry::Access access;
455     if (IsConstantPoolLoadStart(pc, &access)) {
456       Memory<Address>(target_constant_pool_address_at(
457           pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target;
458       return;
459     }
460   }
461 
462   Instr instr1 = instr_at(pc);
463   Instr instr2 = instr_at(pc + kInstrSize);
464   // Interpret 2 instructions generated by lis/ori
465   if (IsLis(instr1) && IsOri(instr2)) {
466 #if V8_TARGET_ARCH_PPC64
467     Instr instr4 = instr_at(pc + (3 * kInstrSize));
468     Instr instr5 = instr_at(pc + (4 * kInstrSize));
469     // Needs to be fixed up when mov changes to handle 64-bit values.
470     uint32_t* p = reinterpret_cast<uint32_t*>(pc);
471     uintptr_t itarget = static_cast<uintptr_t>(target);
472 
473     instr5 &= ~kImm16Mask;
474     instr5 |= itarget & kImm16Mask;
475     itarget = itarget >> 16;
476 
477     instr4 &= ~kImm16Mask;
478     instr4 |= itarget & kImm16Mask;
479     itarget = itarget >> 16;
480 
481     instr2 &= ~kImm16Mask;
482     instr2 |= itarget & kImm16Mask;
483     itarget = itarget >> 16;
484 
485     instr1 &= ~kImm16Mask;
486     instr1 |= itarget & kImm16Mask;
487     itarget = itarget >> 16;
488 
489     *p = instr1;
490     *(p + 1) = instr2;
491     *(p + 3) = instr4;
492     *(p + 4) = instr5;
493     if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
494       Assembler::FlushICache(p, 5 * kInstrSize);
495     }
496 #else
497     uint32_t* p = reinterpret_cast<uint32_t*>(pc);
498     uint32_t itarget = static_cast<uint32_t>(target);
499     int lo_word = itarget & kImm16Mask;
500     int hi_word = itarget >> 16;
501     instr1 &= ~kImm16Mask;
502     instr1 |= hi_word;
503     instr2 &= ~kImm16Mask;
504     instr2 |= lo_word;
505 
506     *p = instr1;
507     *(p + 1) = instr2;
508     if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
509       Assembler::FlushICache(p, 2 * kInstrSize);
510     }
511 #endif
512     return;
513   }
514   UNREACHABLE();
515 }
516 }  // namespace internal
517 }  // namespace v8
518 
519 #endif  // V8_PPC_ASSEMBLER_PPC_INL_H_
520