1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36
37 #ifndef V8_PPC_ASSEMBLER_PPC_INL_H_
38 #define V8_PPC_ASSEMBLER_PPC_INL_H_
39
40 #include "src/ppc/assembler-ppc.h"
41
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 #include "src/objects-inl.h"
45
46 namespace v8 {
47 namespace internal {
48
SupportsOptimizer()49 bool CpuFeatures::SupportsOptimizer() { return true; }
50
SupportsWasmSimd128()51 bool CpuFeatures::SupportsWasmSimd128() { return false; }
52
apply(intptr_t delta)53 void RelocInfo::apply(intptr_t delta) {
54 // absolute code pointer inside code object moves with the code object.
55 if (IsInternalReference(rmode_)) {
56 // Jump table entry
57 Address target = Memory<Address>(pc_);
58 Memory<Address>(pc_) = target + delta;
59 } else {
60 // mov sequence
61 DCHECK(IsInternalReferenceEncoded(rmode_));
62 Address target = Assembler::target_address_at(pc_, constant_pool_);
63 Assembler::set_target_address_at(pc_, constant_pool_, target + delta,
64 SKIP_ICACHE_FLUSH);
65 }
66 }
67
68
target_internal_reference()69 Address RelocInfo::target_internal_reference() {
70 if (IsInternalReference(rmode_)) {
71 // Jump table entry
72 return Memory<Address>(pc_);
73 } else {
74 // mov sequence
75 DCHECK(IsInternalReferenceEncoded(rmode_));
76 return Assembler::target_address_at(pc_, constant_pool_);
77 }
78 }
79
80
target_internal_reference_address()81 Address RelocInfo::target_internal_reference_address() {
82 DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
83 return pc_;
84 }
85
86
target_address()87 Address RelocInfo::target_address() {
88 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
89 return Assembler::target_address_at(pc_, constant_pool_);
90 }
91
target_address_address()92 Address RelocInfo::target_address_address() {
93 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) ||
94 IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
95 IsOffHeapTarget(rmode_));
96
97 if (FLAG_enable_embedded_constant_pool &&
98 Assembler::IsConstantPoolLoadStart(pc_)) {
99 // We return the PC for embedded constant pool since this function is used
100 // by the serializer and expects the address to reside within the code
101 // object.
102 return pc_;
103 }
104
105 // Read the address of the word containing the target_address in an
106 // instruction stream.
107 // The only architecture-independent user of this function is the serializer.
108 // The serializer uses it to find out how many raw bytes of instruction to
109 // output before the next target.
110 // For an instruction like LIS/ORI where the target bits are mixed into the
111 // instruction bits, the size of the target will be zero, indicating that the
112 // serializer should not step forward in memory after a target is resolved
113 // and written.
114 return pc_;
115 }
116
117
constant_pool_entry_address()118 Address RelocInfo::constant_pool_entry_address() {
119 if (FLAG_enable_embedded_constant_pool) {
120 DCHECK(constant_pool_);
121 ConstantPoolEntry::Access access;
122 if (Assembler::IsConstantPoolLoadStart(pc_, &access))
123 return Assembler::target_constant_pool_address_at(
124 pc_, constant_pool_, access, ConstantPoolEntry::INTPTR);
125 }
126 UNREACHABLE();
127 }
128
129
target_address_size()130 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
131
target_address_from_return_address(Address pc)132 Address Assembler::target_address_from_return_address(Address pc) {
133 // Returns the address of the call target from the return address that will
134 // be returned to after a call.
135 // Call sequence is :
136 // mov ip, @ call address
137 // mtlr ip
138 // blrl
139 // @ return address
140 int len;
141 ConstantPoolEntry::Access access;
142 if (FLAG_enable_embedded_constant_pool &&
143 IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) {
144 len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
145 } else {
146 len = kMovInstructionsNoConstantPool;
147 }
148 return pc - (len + 2) * kInstrSize;
149 }
150
151
return_address_from_call_start(Address pc)152 Address Assembler::return_address_from_call_start(Address pc) {
153 int len;
154 ConstantPoolEntry::Access access;
155 if (FLAG_enable_embedded_constant_pool &&
156 IsConstantPoolLoadStart(pc, &access)) {
157 len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
158 } else {
159 len = kMovInstructionsNoConstantPool;
160 }
161 return pc + (len + 2) * kInstrSize;
162 }
163
target_object()164 HeapObject* RelocInfo::target_object() {
165 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
166 return HeapObject::cast(reinterpret_cast<Object*>(
167 Assembler::target_address_at(pc_, constant_pool_)));
168 }
169
target_object_handle(Assembler * origin)170 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
171 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
172 return Handle<HeapObject>(reinterpret_cast<HeapObject**>(
173 Assembler::target_address_at(pc_, constant_pool_)));
174 }
175
set_target_object(Heap * heap,HeapObject * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)176 void RelocInfo::set_target_object(Heap* heap, HeapObject* target,
177 WriteBarrierMode write_barrier_mode,
178 ICacheFlushMode icache_flush_mode) {
179 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
180 Assembler::set_target_address_at(pc_, constant_pool_,
181 reinterpret_cast<Address>(target),
182 icache_flush_mode);
183 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) {
184 WriteBarrierForCode(host(), this, target);
185 }
186 }
187
188
target_external_reference()189 Address RelocInfo::target_external_reference() {
190 DCHECK(rmode_ == EXTERNAL_REFERENCE);
191 return Assembler::target_address_at(pc_, constant_pool_);
192 }
193
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)194 void RelocInfo::set_target_external_reference(
195 Address target, ICacheFlushMode icache_flush_mode) {
196 DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
197 Assembler::set_target_address_at(pc_, constant_pool_, target,
198 icache_flush_mode);
199 }
200
target_runtime_entry(Assembler * origin)201 Address RelocInfo::target_runtime_entry(Assembler* origin) {
202 DCHECK(IsRuntimeEntry(rmode_));
203 return target_address();
204 }
205
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)206 void RelocInfo::set_target_runtime_entry(Address target,
207 WriteBarrierMode write_barrier_mode,
208 ICacheFlushMode icache_flush_mode) {
209 DCHECK(IsRuntimeEntry(rmode_));
210 if (target_address() != target)
211 set_target_address(target, write_barrier_mode, icache_flush_mode);
212 }
213
target_off_heap_target()214 Address RelocInfo::target_off_heap_target() {
215 DCHECK(IsOffHeapTarget(rmode_));
216 return Assembler::target_address_at(pc_, constant_pool_);
217 }
218
WipeOut()219 void RelocInfo::WipeOut() {
220 DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
221 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
222 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
223 IsOffHeapTarget(rmode_));
224 if (IsInternalReference(rmode_)) {
225 // Jump table entry
226 Memory<Address>(pc_) = kNullAddress;
227 } else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) {
228 // mov sequence
229 // Currently used only by deserializer, no need to flush.
230 Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress,
231 SKIP_ICACHE_FLUSH);
232 } else {
233 Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
234 }
235 }
236
237 template <typename ObjectVisitor>
Visit(ObjectVisitor * visitor)238 void RelocInfo::Visit(ObjectVisitor* visitor) {
239 RelocInfo::Mode mode = rmode();
240 if (mode == RelocInfo::EMBEDDED_OBJECT) {
241 visitor->VisitEmbeddedPointer(host(), this);
242 } else if (RelocInfo::IsCodeTargetMode(mode)) {
243 visitor->VisitCodeTarget(host(), this);
244 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
245 visitor->VisitExternalReference(host(), this);
246 } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
247 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
248 visitor->VisitInternalReference(host(), this);
249 } else if (IsRuntimeEntry(mode)) {
250 visitor->VisitRuntimeEntry(host(), this);
251 } else if (RelocInfo::IsOffHeapTarget(mode)) {
252 visitor->VisitOffHeapTarget(host(), this);
253 }
254 }
255
Operand(Register rm)256 Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NONE) {}
257
UntrackBranch()258 void Assembler::UntrackBranch() {
259 DCHECK(!trampoline_emitted_);
260 DCHECK_GT(tracked_branch_count_, 0);
261 int count = --tracked_branch_count_;
262 if (count == 0) {
263 // Reset
264 next_trampoline_check_ = kMaxInt;
265 } else {
266 next_trampoline_check_ += kTrampolineSlotsSize;
267 }
268 }
269
270 // Fetch the 32bit value from the FIXED_SEQUENCE lis/ori
target_address_at(Address pc,Address constant_pool)271 Address Assembler::target_address_at(Address pc, Address constant_pool) {
272 if (FLAG_enable_embedded_constant_pool && constant_pool) {
273 ConstantPoolEntry::Access access;
274 if (IsConstantPoolLoadStart(pc, &access))
275 return Memory<Address>(target_constant_pool_address_at(
276 pc, constant_pool, access, ConstantPoolEntry::INTPTR));
277 }
278
279 Instr instr1 = instr_at(pc);
280 Instr instr2 = instr_at(pc + kInstrSize);
281 // Interpret 2 instructions generated by lis/ori
282 if (IsLis(instr1) && IsOri(instr2)) {
283 #if V8_TARGET_ARCH_PPC64
284 Instr instr4 = instr_at(pc + (3 * kInstrSize));
285 Instr instr5 = instr_at(pc + (4 * kInstrSize));
286 // Assemble the 64 bit value.
287 uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) |
288 static_cast<uint32_t>(instr2 & kImm16Mask));
289 uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) |
290 static_cast<uint32_t>(instr5 & kImm16Mask));
291 return static_cast<Address>((hi << 32) | lo);
292 #else
293 // Assemble the 32 bit value.
294 return static_cast<Address>(((instr1 & kImm16Mask) << 16) |
295 (instr2 & kImm16Mask));
296 #endif
297 }
298
299 UNREACHABLE();
300 }
301
302
303 #if V8_TARGET_ARCH_PPC64
304 const uint32_t kLoadIntptrOpcode = LD;
305 #else
306 const uint32_t kLoadIntptrOpcode = LWZ;
307 #endif
308
309 // Constant pool load sequence detection:
310 // 1) REGULAR access:
311 // load <dst>, kConstantPoolRegister + <offset>
312 //
313 // 2) OVERFLOWED access:
314 // addis <scratch>, kConstantPoolRegister, <offset_high>
315 // load <dst>, <scratch> + <offset_low>
IsConstantPoolLoadStart(Address pc,ConstantPoolEntry::Access * access)316 bool Assembler::IsConstantPoolLoadStart(Address pc,
317 ConstantPoolEntry::Access* access) {
318 Instr instr = instr_at(pc);
319 uint32_t opcode = instr & kOpcodeMask;
320 if (GetRA(instr) != kConstantPoolRegister) return false;
321 bool overflowed = (opcode == ADDIS);
322 #ifdef DEBUG
323 if (overflowed) {
324 opcode = instr_at(pc + kInstrSize) & kOpcodeMask;
325 }
326 DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD);
327 #endif
328 if (access) {
329 *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
330 : ConstantPoolEntry::REGULAR);
331 }
332 return true;
333 }
334
335
IsConstantPoolLoadEnd(Address pc,ConstantPoolEntry::Access * access)336 bool Assembler::IsConstantPoolLoadEnd(Address pc,
337 ConstantPoolEntry::Access* access) {
338 Instr instr = instr_at(pc);
339 uint32_t opcode = instr & kOpcodeMask;
340 bool overflowed = false;
341 if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false;
342 if (GetRA(instr) != kConstantPoolRegister) {
343 instr = instr_at(pc - kInstrSize);
344 opcode = instr & kOpcodeMask;
345 if ((opcode != ADDIS) || GetRA(instr) != kConstantPoolRegister) {
346 return false;
347 }
348 overflowed = true;
349 }
350 if (access) {
351 *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
352 : ConstantPoolEntry::REGULAR);
353 }
354 return true;
355 }
356
357
GetConstantPoolOffset(Address pc,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)358 int Assembler::GetConstantPoolOffset(Address pc,
359 ConstantPoolEntry::Access access,
360 ConstantPoolEntry::Type type) {
361 bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
362 #ifdef DEBUG
363 ConstantPoolEntry::Access access_check =
364 static_cast<ConstantPoolEntry::Access>(-1);
365 DCHECK(IsConstantPoolLoadStart(pc, &access_check));
366 DCHECK(access_check == access);
367 #endif
368 int offset;
369 if (overflowed) {
370 offset = (instr_at(pc) & kImm16Mask) << 16;
371 offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask);
372 DCHECK(!is_int16(offset));
373 } else {
374 offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask));
375 }
376 return offset;
377 }
378
379
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)380 void Assembler::PatchConstantPoolAccessInstruction(
381 int pc_offset, int offset, ConstantPoolEntry::Access access,
382 ConstantPoolEntry::Type type) {
383 Address pc = reinterpret_cast<Address>(buffer_) + pc_offset;
384 bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
385 CHECK(overflowed != is_int16(offset));
386 #ifdef DEBUG
387 ConstantPoolEntry::Access access_check =
388 static_cast<ConstantPoolEntry::Access>(-1);
389 DCHECK(IsConstantPoolLoadStart(pc, &access_check));
390 DCHECK(access_check == access);
391 #endif
392 if (overflowed) {
393 int hi_word = static_cast<int>(offset >> 16);
394 int lo_word = static_cast<int>(offset & 0xffff);
395 if (lo_word & 0x8000) hi_word++;
396
397 Instr instr1 = instr_at(pc);
398 Instr instr2 = instr_at(pc + kInstrSize);
399 instr1 &= ~kImm16Mask;
400 instr1 |= (hi_word & kImm16Mask);
401 instr2 &= ~kImm16Mask;
402 instr2 |= (lo_word & kImm16Mask);
403 instr_at_put(pc, instr1);
404 instr_at_put(pc + kInstrSize, instr2);
405 } else {
406 Instr instr = instr_at(pc);
407 instr &= ~kImm16Mask;
408 instr |= (offset & kImm16Mask);
409 instr_at_put(pc, instr);
410 }
411 }
412
413
target_constant_pool_address_at(Address pc,Address constant_pool,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)414 Address Assembler::target_constant_pool_address_at(
415 Address pc, Address constant_pool, ConstantPoolEntry::Access access,
416 ConstantPoolEntry::Type type) {
417 Address addr = constant_pool;
418 DCHECK(addr);
419 addr += GetConstantPoolOffset(pc, access, type);
420 return addr;
421 }
422
423
424 // This sets the branch destination (which gets loaded at the call address).
425 // This is for calls and branches within generated code. The serializer
426 // has already deserialized the mov instructions etc.
427 // There is a FIXED_SEQUENCE assumption here
deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)428 void Assembler::deserialization_set_special_target_at(
429 Address instruction_payload, Code* code, Address target) {
430 set_target_address_at(instruction_payload,
431 code ? code->constant_pool() : kNullAddress, target);
432 }
433
deserialization_special_target_size(Address instruction_payload)434 int Assembler::deserialization_special_target_size(
435 Address instruction_payload) {
436 return kSpecialTargetSize;
437 }
438
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)439 void Assembler::deserialization_set_target_internal_reference_at(
440 Address pc, Address target, RelocInfo::Mode mode) {
441 if (RelocInfo::IsInternalReferenceEncoded(mode)) {
442 set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH);
443 } else {
444 Memory<Address>(pc) = target;
445 }
446 }
447
448
449 // This code assumes the FIXED_SEQUENCE of lis/ori
set_target_address_at(Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)450 void Assembler::set_target_address_at(Address pc, Address constant_pool,
451 Address target,
452 ICacheFlushMode icache_flush_mode) {
453 if (FLAG_enable_embedded_constant_pool && constant_pool) {
454 ConstantPoolEntry::Access access;
455 if (IsConstantPoolLoadStart(pc, &access)) {
456 Memory<Address>(target_constant_pool_address_at(
457 pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target;
458 return;
459 }
460 }
461
462 Instr instr1 = instr_at(pc);
463 Instr instr2 = instr_at(pc + kInstrSize);
464 // Interpret 2 instructions generated by lis/ori
465 if (IsLis(instr1) && IsOri(instr2)) {
466 #if V8_TARGET_ARCH_PPC64
467 Instr instr4 = instr_at(pc + (3 * kInstrSize));
468 Instr instr5 = instr_at(pc + (4 * kInstrSize));
469 // Needs to be fixed up when mov changes to handle 64-bit values.
470 uint32_t* p = reinterpret_cast<uint32_t*>(pc);
471 uintptr_t itarget = static_cast<uintptr_t>(target);
472
473 instr5 &= ~kImm16Mask;
474 instr5 |= itarget & kImm16Mask;
475 itarget = itarget >> 16;
476
477 instr4 &= ~kImm16Mask;
478 instr4 |= itarget & kImm16Mask;
479 itarget = itarget >> 16;
480
481 instr2 &= ~kImm16Mask;
482 instr2 |= itarget & kImm16Mask;
483 itarget = itarget >> 16;
484
485 instr1 &= ~kImm16Mask;
486 instr1 |= itarget & kImm16Mask;
487 itarget = itarget >> 16;
488
489 *p = instr1;
490 *(p + 1) = instr2;
491 *(p + 3) = instr4;
492 *(p + 4) = instr5;
493 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
494 Assembler::FlushICache(p, 5 * kInstrSize);
495 }
496 #else
497 uint32_t* p = reinterpret_cast<uint32_t*>(pc);
498 uint32_t itarget = static_cast<uint32_t>(target);
499 int lo_word = itarget & kImm16Mask;
500 int hi_word = itarget >> 16;
501 instr1 &= ~kImm16Mask;
502 instr1 |= hi_word;
503 instr2 &= ~kImm16Mask;
504 instr2 |= lo_word;
505
506 *p = instr1;
507 *(p + 1) = instr2;
508 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
509 Assembler::FlushICache(p, 2 * kInstrSize);
510 }
511 #endif
512 return;
513 }
514 UNREACHABLE();
515 }
516 } // namespace internal
517 } // namespace v8
518
519 #endif // V8_PPC_ASSEMBLER_PPC_INL_H_
520