• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <arm_gic.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <debug.h>
12 #include <gic_v2.h>
13 #include <interrupt_mgmt.h>
14 #include <platform.h>
15 #include <stdint.h>
16 #include <tegra_def.h>
17 #include <tegra_private.h>
18 
19 /* Value used to initialize Non-Secure IRQ priorities four at a time */
20 #define GICD_IPRIORITYR_DEF_VAL \
21 	(GIC_HIGHEST_NS_PRIORITY | \
22 	(GIC_HIGHEST_NS_PRIORITY << 8) | \
23 	(GIC_HIGHEST_NS_PRIORITY << 16) | \
24 	(GIC_HIGHEST_NS_PRIORITY << 24))
25 
26 static const irq_sec_cfg_t *g_irq_sec_ptr;
27 static uint32_t g_num_irqs;
28 
29 /*******************************************************************************
30  * Place the cpu interface in a state where it can never make a cpu exit wfi as
31  * as result of an asserted interrupt. This is critical for powering down a cpu
32  ******************************************************************************/
tegra_gic_cpuif_deactivate(void)33 void tegra_gic_cpuif_deactivate(void)
34 {
35 	uint32_t val;
36 
37 	/* Disable secure, non-secure interrupts and disable their bypass */
38 	val = gicc_read_ctlr(TEGRA_GICC_BASE);
39 	val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
40 	val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
41 	val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
42 	gicc_write_ctlr(TEGRA_GICC_BASE, val);
43 }
44 
45 /*******************************************************************************
46  * Enable secure interrupts and set the priority mask register to allow all
47  * interrupts to trickle in.
48  ******************************************************************************/
tegra_gic_cpuif_setup(uint32_t gicc_base)49 static void tegra_gic_cpuif_setup(uint32_t gicc_base)
50 {
51 	uint32_t val;
52 
53 	val = ENABLE_GRP0 | ENABLE_GRP1 | FIQ_EN | FIQ_BYP_DIS_GRP0;
54 	val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
55 
56 	gicc_write_ctlr(gicc_base, val);
57 	gicc_write_pmr(gicc_base, GIC_PRI_MASK);
58 }
59 
60 /*******************************************************************************
61  * Per cpu gic distributor setup which will be done by all cpus after a cold
62  * boot/hotplug. This marks out the secure interrupts & enables them.
63  ******************************************************************************/
tegra_gic_pcpu_distif_setup(uint32_t gicd_base)64 static void tegra_gic_pcpu_distif_setup(uint32_t gicd_base)
65 {
66 	uint32_t index, sec_ppi_sgi_mask = 0;
67 
68 	assert(gicd_base != 0U);
69 
70 	/* Setup PPI priorities doing four at a time */
71 	for (index = 0U; index < 32U; index += 4U) {
72 		gicd_write_ipriorityr(gicd_base, index,
73 				GICD_IPRIORITYR_DEF_VAL);
74 	}
75 
76 	/*
77 	 * Invert the bitmask to create a mask for non-secure PPIs and
78 	 * SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will
79 	 * update the GICR_IGROUPR0 as well in case we are running on a GICv3
80 	 * system. This is critical if GICD_CTLR.ARE_NS=1.
81 	 */
82 	gicd_write_igroupr(gicd_base, 0, ~sec_ppi_sgi_mask);
83 }
84 
85 /*******************************************************************************
86  * Global gic distributor setup which will be done by the primary cpu after a
87  * cold boot. It marks out the non secure SPIs, PPIs & SGIs and enables them.
88  * It then enables the secure GIC distributor interface.
89  ******************************************************************************/
tegra_gic_distif_setup(uint32_t gicd_base)90 static void tegra_gic_distif_setup(uint32_t gicd_base)
91 {
92 	uint32_t index, num_ints, irq_num;
93 	uint8_t target_cpus;
94 	uint32_t val;
95 
96 	/*
97 	 * Mark out non-secure interrupts. Calculate number of
98 	 * IGROUPR registers to consider. Will be equal to the
99 	 * number of IT_LINES
100 	 */
101 	num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;
102 	num_ints = (num_ints + 1U) << 5;
103 	for (index = MIN_SPI_ID; index < num_ints; index += 32U) {
104 		gicd_write_igroupr(gicd_base, index, 0xFFFFFFFFU);
105 	}
106 
107 	/* Setup SPI priorities doing four at a time */
108 	for (index = MIN_SPI_ID; index < num_ints; index += 4U) {
109 		gicd_write_ipriorityr(gicd_base, index,
110 				GICD_IPRIORITYR_DEF_VAL);
111 	}
112 
113 	/* Configure SPI secure interrupts now */
114 	if (g_irq_sec_ptr != NULL) {
115 
116 		for (index = 0U; index < g_num_irqs; index++) {
117 			irq_num = g_irq_sec_ptr[index].irq;
118 			target_cpus = (uint8_t)g_irq_sec_ptr[index].target_cpus;
119 
120 			if (irq_num >= MIN_SPI_ID) {
121 
122 				/* Configure as a secure interrupt */
123 				gicd_clr_igroupr(gicd_base, irq_num);
124 
125 				/* Configure SPI priority */
126 				mmio_write_8((uint64_t)gicd_base +
127 					(uint64_t)GICD_IPRIORITYR +
128 					(uint64_t)irq_num,
129 					GIC_HIGHEST_SEC_PRIORITY &
130 					GIC_PRI_MASK);
131 
132 				/* Configure as level triggered */
133 				val = gicd_read_icfgr(gicd_base, irq_num);
134 				val |= (3U << ((irq_num & 0xFU) << 1U));
135 				gicd_write_icfgr(gicd_base, irq_num, val);
136 
137 				/* Route SPI to the target CPUs */
138 				gicd_set_itargetsr(gicd_base, irq_num,
139 					target_cpus);
140 
141 				/* Enable this interrupt */
142 				gicd_set_isenabler(gicd_base, irq_num);
143 			}
144 		}
145 	}
146 
147 	/*
148 	 * Configure the SGI and PPI. This is done in a separated function
149 	 * because each CPU is responsible for initializing its own private
150 	 * interrupts.
151 	 */
152 	tegra_gic_pcpu_distif_setup(gicd_base);
153 
154 	/* enable distributor */
155 	gicd_write_ctlr(gicd_base, ENABLE_GRP0 | ENABLE_GRP1);
156 }
157 
tegra_gic_setup(const irq_sec_cfg_t * irq_sec_ptr,uint32_t num_irqs)158 void tegra_gic_setup(const irq_sec_cfg_t *irq_sec_ptr, uint32_t num_irqs)
159 {
160 	g_irq_sec_ptr = irq_sec_ptr;
161 	g_num_irqs = num_irqs;
162 
163 	tegra_gic_cpuif_setup(TEGRA_GICC_BASE);
164 	tegra_gic_distif_setup(TEGRA_GICD_BASE);
165 }
166 
167 /*******************************************************************************
168  * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
169  * The interrupt controller knows which pin/line it uses to signal a type of
170  * interrupt. This function provides a common implementation of
171  * plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use
172  * across platforms. It lets the interrupt management framework determine
173  * for a type of interrupt and security state, which line should be used in the
174  * SCR_EL3 to control its routing to EL3. The interrupt line is represented as
175  * the bit position of the IRQ or FIQ bit in the SCR_EL3.
176  ******************************************************************************/
tegra_gic_interrupt_type_to_line(uint32_t type,uint32_t security_state)177 static uint32_t tegra_gic_interrupt_type_to_line(uint32_t type,
178 				uint32_t security_state)
179 {
180 	assert((type == INTR_TYPE_S_EL1) ||
181 	       (type == INTR_TYPE_EL3) ||
182 	       (type == INTR_TYPE_NS));
183 
184 	assert(sec_state_is_valid(security_state));
185 
186 	/*
187 	 * We ignore the security state parameter under the assumption that
188 	 * both normal and secure worlds are using ARM GICv2. This parameter
189 	 * will be used when the secure world starts using GICv3.
190 	 */
191 #if ARM_GIC_ARCH == 2
192 	return gicv2_interrupt_type_to_line(TEGRA_GICC_BASE, type);
193 #else
194 #error "Invalid ARM GIC architecture version specified for platform port"
195 #endif /* ARM_GIC_ARCH */
196 }
197 
198 #if ARM_GIC_ARCH == 2
199 /*******************************************************************************
200  * This function returns the type of the highest priority pending interrupt at
201  * the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
202  * interrupt pending.
203  ******************************************************************************/
tegra_gic_get_pending_interrupt_type(void)204 static uint32_t tegra_gic_get_pending_interrupt_type(void)
205 {
206 	uint32_t id;
207 	uint32_t index;
208 	uint32_t ret = INTR_TYPE_NS;
209 
210 	id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK;
211 
212 	/* get the interrupt type */
213 	if (id < 1022U) {
214 		for (index = 0U; index < g_num_irqs; index++) {
215 			if (id == g_irq_sec_ptr[index].irq) {
216 				ret = g_irq_sec_ptr[index].type;
217 				break;
218 			}
219 		}
220 	} else {
221 		 if (id == GIC_SPURIOUS_INTERRUPT) {
222 			ret = INTR_TYPE_INVAL;
223 		}
224 	}
225 
226 	return ret;
227 }
228 
229 /*******************************************************************************
230  * This function returns the id of the highest priority pending interrupt at
231  * the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
232  * interrupt pending.
233  ******************************************************************************/
tegra_gic_get_pending_interrupt_id(void)234 static uint32_t tegra_gic_get_pending_interrupt_id(void)
235 {
236 	uint32_t id, ret;
237 
238 	id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK;
239 
240 	if (id < 1022U) {
241 		ret = id;
242 	} else if (id == 1023U) {
243 		ret = 0xFFFFFFFFU; /* INTR_ID_UNAVAILABLE */
244 	} else {
245 		/*
246 		 * Find out which non-secure interrupt it is under the assumption that
247 		 * the GICC_CTLR.AckCtl bit is 0.
248 		 */
249 		ret = gicc_read_ahppir(TEGRA_GICC_BASE) & INT_ID_MASK;
250 	}
251 
252 	return ret;
253 }
254 
255 /*******************************************************************************
256  * This functions reads the GIC cpu interface Interrupt Acknowledge register
257  * to start handling the pending interrupt. It returns the contents of the IAR.
258  ******************************************************************************/
tegra_gic_acknowledge_interrupt(void)259 static uint32_t tegra_gic_acknowledge_interrupt(void)
260 {
261 	return gicc_read_IAR(TEGRA_GICC_BASE);
262 }
263 
264 /*******************************************************************************
265  * This functions writes the GIC cpu interface End Of Interrupt register with
266  * the passed value to finish handling the active interrupt
267  ******************************************************************************/
tegra_gic_end_of_interrupt(uint32_t id)268 static void tegra_gic_end_of_interrupt(uint32_t id)
269 {
270 	gicc_write_EOIR(TEGRA_GICC_BASE, id);
271 }
272 
273 /*******************************************************************************
274  * This function returns the type of the interrupt id depending upon the group
275  * this interrupt has been configured under by the interrupt controller i.e.
276  * group0 or group1.
277  ******************************************************************************/
tegra_gic_get_interrupt_type(uint32_t id)278 static uint32_t tegra_gic_get_interrupt_type(uint32_t id)
279 {
280 	uint32_t group;
281 	uint32_t index;
282 	uint32_t ret = INTR_TYPE_NS;
283 
284 	group = gicd_get_igroupr(TEGRA_GICD_BASE, id);
285 
286 	/* get the interrupt type */
287 	if (group == GRP0) {
288 		for (index = 0U; index < g_num_irqs; index++) {
289 			if (id == g_irq_sec_ptr[index].irq) {
290 				ret = g_irq_sec_ptr[index].type;
291 				break;
292 			}
293 		}
294 	}
295 
296 	return ret;
297 }
298 
299 #else
300 #error "Invalid ARM GIC architecture version specified for platform port"
301 #endif /* ARM_GIC_ARCH */
302 
plat_ic_get_pending_interrupt_id(void)303 uint32_t plat_ic_get_pending_interrupt_id(void)
304 {
305 	return tegra_gic_get_pending_interrupt_id();
306 }
307 
plat_ic_get_pending_interrupt_type(void)308 uint32_t plat_ic_get_pending_interrupt_type(void)
309 {
310 	return tegra_gic_get_pending_interrupt_type();
311 }
312 
plat_ic_acknowledge_interrupt(void)313 uint32_t plat_ic_acknowledge_interrupt(void)
314 {
315 	return tegra_gic_acknowledge_interrupt();
316 }
317 
plat_ic_get_interrupt_type(uint32_t id)318 uint32_t plat_ic_get_interrupt_type(uint32_t id)
319 {
320 	return tegra_gic_get_interrupt_type(id);
321 }
322 
plat_ic_end_of_interrupt(uint32_t id)323 void plat_ic_end_of_interrupt(uint32_t id)
324 {
325 	tegra_gic_end_of_interrupt(id);
326 }
327 
plat_interrupt_type_to_line(uint32_t type,uint32_t security_state)328 uint32_t plat_interrupt_type_to_line(uint32_t type,
329 				uint32_t security_state)
330 {
331 	return tegra_gic_interrupt_type_to_line(type, security_state);
332 }
333