• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_CPU_CONV_CANONICALIZATION_H_
17 #define TENSORFLOW_COMPILER_XLA_SERVICE_CPU_CONV_CANONICALIZATION_H_
18 
19 #include "tensorflow/compiler/xla/service/cpu/target_machine_features.h"
20 #include "tensorflow/compiler/xla/service/hlo_module.h"
21 #include "tensorflow/compiler/xla/service/hlo_pass_interface.h"
22 
23 namespace xla {
24 namespace cpu {
25 
26 // An HLO pass that canonicalizes the dimension numbers of all top-level
27 // convolutions in the given module.
28 //
29 // In order to hit the fast path of using Eigen's convolution implementation, a
30 // convolution's dimension numbers need to satisfy certain constraints (so
31 // called canonical convolutions). This pass expands non-canonical convolutions
32 // into reshapes and canonical convolutions, so that these non-canonical
33 // convolutions can run faster.
34 class ConvCanonicalization : public HloModulePass {
35  public:
ConvCanonicalization(const TargetMachineFeatures * target_machine_features)36   explicit ConvCanonicalization(
37       const TargetMachineFeatures* target_machine_features)
38       : target_machine_features_(*target_machine_features) {}
39 
~ConvCanonicalization()40   ~ConvCanonicalization() override {}
name()41   absl::string_view name() const override {
42     return "convolution-canonicalization";
43   }
44 
45   StatusOr<bool> Run(HloModule* module) override;
46 
47  private:
48   const TargetMachineFeatures& target_machine_features_;
49 };
50 
51 }  // namespace cpu
52 }  // namespace xla
53 
54 #endif  // TENSORFLOW_COMPILER_XLA_SERVICE_CPU_CONV_CANONICALIZATION_H_
55