• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 // See docs in ../ops/image_ops.cc
17 
18 #include <memory>
19 #include "tensorflow/core/framework/bounds_check.h"
20 #include "tensorflow/core/framework/op_kernel.h"
21 #include "tensorflow/core/framework/register_types.h"
22 #include "tensorflow/core/framework/tensor.h"
23 #include "tensorflow/core/framework/tensor_shape.h"
24 #include "tensorflow/core/framework/types.h"
25 #include "tensorflow/core/framework/types.pb.h"
26 #include "tensorflow/core/lib/core/status.h"
27 #include "tensorflow/core/platform/logging.h"
28 
29 namespace tensorflow {
30 
31 // Decode the contents of a BMP file
32 class DecodeBmpOp : public OpKernel {
33  public:
DecodeBmpOp(OpKernelConstruction * context)34   explicit DecodeBmpOp(OpKernelConstruction* context) : OpKernel(context) {
35     OP_REQUIRES_OK(context, context->GetAttr("channels", &channels_));
36     OP_REQUIRES(
37         context,
38         channels_ == 0 || channels_ == 1 || channels_ == 3 || channels_ == 4,
39         errors::InvalidArgument("channels must be 0, 1, 3 or 4, got ",
40                                 channels_));
41   }
ByteSwapInt32ForBigEndian(int32 x)42   inline int32 ByteSwapInt32ForBigEndian(int32 x) {
43 #if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
44     return le32toh(x);
45 #else
46     return x;
47 #endif
48   }
49 
Compute(OpKernelContext * context)50   void Compute(OpKernelContext* context) override {
51     const Tensor& contents = context->input(0);
52     OP_REQUIRES(context, TensorShapeUtils::IsScalar(contents.shape()),
53                 errors::InvalidArgument("contents must be scalar, got shape ",
54                                         contents.shape().DebugString()));
55 
56     // Start decoding image to get shape details
57     const StringPiece input = contents.scalar<string>()();
58 
59     OP_REQUIRES(context, (32 <= input.size()),
60                 errors::InvalidArgument("Incomplete bmp content, requires at "
61                                         "least 32 bytes to find the header "
62                                         "size, width, height, and bpp, got ",
63                                         input.size(), " bytes"));
64 
65     const uint8* img_bytes = reinterpret_cast<const uint8*>(input.data());
66     int32 header_size_ = internal::SubtleMustCopy(
67         *(reinterpret_cast<const int32*>(img_bytes + 10)));
68     const int32 header_size = ByteSwapInt32ForBigEndian(header_size_);
69     int32 width_ = internal::SubtleMustCopy(
70         *(reinterpret_cast<const int32*>(img_bytes + 18)));
71     const int32 width = ByteSwapInt32ForBigEndian(width_);
72     int32 height_ = internal::SubtleMustCopy(
73         *(reinterpret_cast<const int32*>(img_bytes + 22)));
74     const int32 height = ByteSwapInt32ForBigEndian(height_);
75     int32 bpp_ = internal::SubtleMustCopy(
76         *(reinterpret_cast<const int32*>(img_bytes + 28)));
77     const int32 bpp = ByteSwapInt32ForBigEndian(bpp_);
78 
79     if (channels_) {
80       OP_REQUIRES(context, (channels_ == bpp / 8),
81                   errors::InvalidArgument(
82                       "channels attribute ", channels_,
83                       " does not match bits per pixel from file ", bpp / 8));
84     } else {
85       channels_ = bpp / 8;
86     }
87 
88     // Current implementation only supports 1, 3 or 4 channel
89     // bitmaps.
90     OP_REQUIRES(context, (channels_ == 1 || channels_ == 3 || channels_ == 4),
91                 errors::InvalidArgument(
92                     "Number of channels must be 1, 3 or 4, was ", channels_));
93 
94     OP_REQUIRES(context, width > 0,
95                 errors::InvalidArgument("Width must be positive"));
96     OP_REQUIRES(context, height != 0,
97                 errors::InvalidArgument("Height must be nonzero"));
98     OP_REQUIRES(context, header_size >= 0,
99                 errors::InvalidArgument("header size must be nonnegative"));
100 
101     // The real requirement is < 2^31 minus some headers and channel data,
102     // so rounding down to something that's still ridiculously big.
103     OP_REQUIRES(
104         context,
105         (static_cast<int64>(width) * std::abs(static_cast<int64>(height))) <
106             static_cast<int64>(std::numeric_limits<int32_t>::max() / 8),
107         errors::InvalidArgument(
108             "Total possible pixel bytes must be less than 2^30"));
109 
110     const int32 abs_height = abs(height);
111 
112     // there may be padding bytes when the width is not a multiple of 4 bytes
113     const int row_size = (channels_ * width + 3) / 4 * 4;
114 
115     const int64 last_pixel_offset = static_cast<int64>(header_size) +
116                                     (abs_height - 1) * row_size +
117                                     (width - 1) * channels_;
118 
119     // [expected file size] = [last pixel offset] + [last pixel size=channels]
120     const int64 expected_file_size = last_pixel_offset + channels_;
121 
122     OP_REQUIRES(
123         context, (expected_file_size <= input.size()),
124         errors::InvalidArgument("Incomplete bmp content, requires at least ",
125                                 expected_file_size, " bytes, got ",
126                                 input.size(), " bytes"));
127 
128     // if height is negative, data layout is top down
129     // otherwise, it's bottom up
130     bool top_down = (height < 0);
131 
132     // Decode image, allocating tensor once the image size is known
133     Tensor* output = nullptr;
134     OP_REQUIRES_OK(
135         context, context->allocate_output(
136                      0, TensorShape({abs_height, width, channels_}), &output));
137 
138     const uint8* bmp_pixels = &img_bytes[header_size];
139 
140     Decode(bmp_pixels, row_size, output->flat<uint8>().data(), width,
141            abs_height, channels_, top_down);
142   }
143 
144   uint8* Decode(const uint8* input, const int row_size, uint8* const output,
145                 const int width, const int height, const int channels,
146                 bool top_down);
147 
148  private:
149   int channels_;
150 };
151 REGISTER_KERNEL_BUILDER(Name("DecodeBmp").Device(DEVICE_CPU), DecodeBmpOp);
152 
Decode(const uint8 * input,const int row_size,uint8 * const output,const int width,const int height,const int channels,bool top_down)153 uint8* DecodeBmpOp::Decode(const uint8* input, const int row_size,
154                            uint8* const output, const int width,
155                            const int height, const int channels,
156                            bool top_down) {
157   for (int i = 0; i < height; i++) {
158     int src_pos;
159     int dst_pos;
160 
161     for (int j = 0; j < width; j++) {
162       if (!top_down) {
163         src_pos = ((height - 1 - i) * row_size) + j * channels;
164       } else {
165         src_pos = i * row_size + j * channels;
166       }
167 
168       dst_pos = (i * width + j) * channels;
169 
170       switch (channels) {
171         case 1:
172           output[dst_pos] = input[src_pos];
173           break;
174         case 3:
175           // BGR -> RGB
176           output[dst_pos] = input[src_pos + 2];
177           output[dst_pos + 1] = input[src_pos + 1];
178           output[dst_pos + 2] = input[src_pos];
179           break;
180         case 4:
181           // BGRA -> RGBA
182           output[dst_pos] = input[src_pos + 2];
183           output[dst_pos + 1] = input[src_pos + 1];
184           output[dst_pos + 2] = input[src_pos];
185           output[dst_pos + 3] = input[src_pos + 3];
186           break;
187         default:
188           LOG(FATAL) << "Unexpected number of channels: " << channels;
189           break;
190       }
191     }
192   }
193 
194   return output;
195 }
196 
197 }  // namespace tensorflow
198