• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_
17 #define TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_
18 
19 #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
20 #include "tensorflow/core/framework/types.h"
21 #include "tensorflow/core/util/tensor_format.h"
22 
23 namespace tensorflow {
24 
25 struct DepthwiseArgs {
26   // Input layer dimensions
27   int batch;
28   int in_rows;
29   int in_cols;
30   int in_depth;
31   int filter_rows;
32   int filter_cols;
33   int depth_multiplier;
34   int stride;
35   int pad_rows;
36   int pad_cols;
37 
38   // Output layer dimensions
39   int out_rows;
40   int out_cols;
41   int out_depth;
42 
DepthwiseArgsDepthwiseArgs43   DepthwiseArgs()
44       : batch(0),
45         in_rows(0),
46         in_cols(0),
47         in_depth(0),
48         filter_rows(0),
49         filter_cols(0),
50         depth_multiplier(0),
51         stride(0),
52         pad_rows(0),
53         pad_cols(0),
54         out_rows(0),
55         out_cols(0),
56         out_depth(0) {}
57 };
58 
59 // Forward declaration.
60 class OpKernelContext;
61 
62 template <typename Device, typename T>
63 struct LaunchDepthwiseConvOp {
64   void operator()(OpKernelContext* ctx, const DepthwiseArgs& args,
65                   const T* input, const T* filter, T* output,
66                   TensorFormat data_format);
67 };
68 
69 template <typename Device, typename T>
70 struct LaunchDepthwiseConvBackpropInputOp {
71   void operator()(OpKernelContext* ctx, const DepthwiseArgs& args,
72                   const T* out_backprop, const T* filter, T* in_backprop,
73                   TensorFormat data_format);
74 };
75 
76 template <typename Device, typename T>
77 struct LaunchDepthwiseConvBackpropFilterOp {
78   void operator()(OpKernelContext* ctx, const DepthwiseArgs& args,
79                   const T* out_backprop, const T* input, T* filter_backprop,
80                   TensorFormat data_format);
81 };
82 
83 #if GOOGLE_CUDA
84 template <typename T>
85 struct LaunchDepthwiseConvOp<Eigen::GpuDevice, T> {
86   void operator()(OpKernelContext* ctx, const DepthwiseArgs& args,
87                   const T* input, const T* filter, T* output,
88                   TensorFormat data_format);
89 };
90 
91 template <typename T>
92 struct LaunchDepthwiseConvBackpropInputOp<Eigen::GpuDevice, T> {
93   void operator()(class OpKernelContext* ctx, const DepthwiseArgs& args,
94                   const T* out_backprop, const T* filter, T* in_backprop,
95                   TensorFormat data_format);
96 };
97 
98 template <typename T>
99 struct LaunchDepthwiseConvBackpropFilterOp<Eigen::GpuDevice, T> {
100   void operator()(class OpKernelContext* ctx, const DepthwiseArgs& args,
101                   const T* out_backprop, const T* input, T* filter_backprop,
102                   TensorFormat data_format);
103 };
104 #endif
105 
106 }  // namespace tensorflow
107 
108 namespace tensorflow {
109 namespace functor {
110 
111 // Pads 'filter' to vector-register boundary along its inner dimension:
112 //   filter_inner_dim_size = in_depth * depth_multiplier
113 // Requires 'filter' to have the following storage order:
114 //   [filter_rows, filter_cols, in_depth, depth_multiplier]
115 // Returns zero-padded filter in 'padded_filter'.
116 //
117 // EX:
118 //   in_depth = 3, depth_multiplier = 2, filter [2, 2], register_width = 4
119 //   So we have a total of 3 * 2 = 6 filters, each of spatial size 2 x 2.
120 //
121 //   filter [rows, cols, in_depth, depth_multiplier]
122 //     [u0, v0, w0, x0] [y0, z0, u1, v1] [w1, x1, y1, z1]
123 //     [u2, v2, w2, x2] [y2, z2, u3, v3] [w3, x3, y3, z3]
124 //
125 //   padded_filter [rows, cols, in_depth, depth_multiplier]
126 //     [u0, v0, w0, x0] [y0, z0, 0, 0] [u1, v1, w1, x1] [y1, z1, 0, 0]
127 //     [u2, v2, w2, x2] [y2, z2, 0, 0] [u3, v3, w3, x3] [y3, z3, 0, 0]
128 
129 template <typename T>
130 struct DepthwiseFilterPadOp {
131   void operator()(const DepthwiseArgs& args, const T* filter,
132                   T* padded_filter) {
133     typedef typename Eigen::internal::packet_traits<T>::type Packet;
134     static const int64 kPacketSize = (sizeof(Packet) / sizeof(T));
135 
136     // Calculate vectorized and scalar lengths of filter's inner dimension.
137     const int64 filter_inner_dim_size = args.out_depth;
138     const int64 vectorized_size =
139         (filter_inner_dim_size / kPacketSize) * kPacketSize;
140     const int64 scalar_size = filter_inner_dim_size - vectorized_size;
141     // Calculate required padding and padded output buffer stride.
142     const int64 pad_size = scalar_size > 0 ? kPacketSize - scalar_size : 0;
143     const int64 padded_filter_stride = vectorized_size + kPacketSize;
144 
145     const int64 filter_spatial_size = args.filter_rows * args.filter_cols;
146     for (int64 i = 0; i < filter_spatial_size; ++i) {
147       const int64 input_base = i * filter_inner_dim_size;
148       const int64 output_base = i * padded_filter_stride;
149       // Write vectorized length of filter's inner dimension to output.
150       for (int64 j = 0; j < vectorized_size; j += kPacketSize) {
151         const auto v = Eigen::internal::ploadu<Packet>(filter + input_base + j);
152         Eigen::internal::pstoreu<T>(padded_filter + output_base + j, v);
153       }
154       // Write scalar length of filter's inner dimension to output.
155       for (int64 j = 0; j < scalar_size; ++j) {
156         padded_filter[output_base + vectorized_size + j] =
157             filter[input_base + vectorized_size + j];
158       }
159       // Pad the remainder of output to vector-register boundary.
160       for (int64 j = 0; j < pad_size; ++j) {
161         padded_filter[output_base + vectorized_size + scalar_size + j] =
162             static_cast<T>(0);
163       }
164     }
165   }
166 };
167 
168 // Copies data from local region in 'input' specified by 'out_r' and 'out_'c'
169 // to 'input_buffer'. The copied data is replicated by factor
170 // 'args.depth_mulitplier', and padded to vector register-width boundaries so
171 // that it is aligned for efficient traversal and vector multiply-add by the
172 // depthwise kernel.
173 //
174 // EX:
175 //   in_depth = 3, depth_multiplier = 2, filter [2, 2], register_width = 4
176 //
177 //   input: [batch, in_rows, in_cols, in_depth]
178 //
179 //     [a0, a1, a2, b0, b1, b2, ..., e0, e1, e2, f0, f1, f2, ...]
180 //
181 //   input_buffer (register boundaries shown):
182 //     [a0, a0, a1, a1] [a2, a2, 0, 0]   in_row = 0, in_col = 0
183 //     [b0, b0, b1, b1] [b2, b2, 0, 0]   in_row = 0, in_col = 1
184 //     [e0, e0, e1, e1] [e2, e2, 0, 0]   in_row = 1, in_col = 0
185 //     [f0, f0, f1, f1] [f2, f2, 0, 0]   in_row = 1, in_col = 1
186 //
187 // Returns replicated and padded data from specified input region in
188 // 'input_buffer'.
189 
190 template <typename T>
191 struct DepthwiseInputCopyOp {
192   void operator()(const DepthwiseArgs& args,
193                   const int64 padded_filter_inner_dim_size, const int64 out_r,
194                   const int64 out_c, const T* input, T* input_buffer) {
195     typedef typename Eigen::internal::packet_traits<T>::type Packet;
196     static const int64 kPacketSize = (sizeof(Packet) / sizeof(T));
197 
198     // Calculate vectorized and scalar (residual) lengths for 'in_depth'.
199     const int64 input_vectorized_size =
200         (args.in_depth / kPacketSize) * kPacketSize;
201     const int64 input_scalar_size = args.in_depth % kPacketSize;
202 
203     // Calculate vectorized and scalar (residual) lengths for
204     // 'depth_multiplier'. This is used to efficiently replicate data for
205     // when 'depth_multiplier' > kPacketSize.
206     const int64 dm_vectorized_size =
207         (args.depth_multiplier / kPacketSize) * kPacketSize;
208     const int64 dm_scalar_size = args.depth_multiplier % kPacketSize;
209 
210     // Calculate output padding length.
211     const int64 output_scalar_size = args.out_depth % kPacketSize;
212     const int64 output_pad_size =
213         output_scalar_size > 0 ? kPacketSize - output_scalar_size : 0;
214 
215     const int64 replicated_packet_size = kPacketSize * args.depth_multiplier;
216 
217     // Iterate through all rows x cols reading 'in_depth' from 'input' and
218     // replicating by 'depth_multiplier' into 'input_buffer' (otherwise
219     // zero-padding input buffer as needed).
220     auto* in_buf = input_buffer;
221     const int64 in_r_start = out_r * args.stride - args.pad_rows;
222     const int64 in_c_start = out_c * args.stride - args.pad_cols;
223 
224     for (int64 f_r = 0; f_r < args.filter_rows; ++f_r) {
225       const int64 in_r = in_r_start + f_r;
226 
227       for (int64 f_c = 0; f_c < args.filter_cols; ++f_c) {
228         const int64 in_c = in_c_start + f_c;
229 
230         if (in_r >= 0 && in_r < args.in_rows && in_c >= 0 &&
231             in_c < args.in_cols) {
232           auto* in = input + (in_r * args.in_cols + in_c) * args.in_depth;
233           // Copy vectorized portion of inner dimension.
234           for (int64 d = 0; d < input_vectorized_size; d += kPacketSize) {
235             auto v = Eigen::internal::ploadu<Packet>(in + d);
236             for (int dm = 0; dm < args.depth_multiplier; ++dm) {
237               Eigen::internal::pscatter<T, Packet>(in_buf + dm, v,
238                                                    args.depth_multiplier);
239             }
240             in_buf += replicated_packet_size;
241           }
242 
243           // Copy scalar portion of inner dimension.
244           for (int64 d = 0; d < input_scalar_size; ++d) {
245             T v = in[input_vectorized_size + d];
246             const int64 base = d * args.depth_multiplier;
247             if (dm_vectorized_size > 0) {
248               // Copy vectorized portion of replicated output.
249               // This branch is only taken if 'args.depth_multiplier' is
250               // vectorizable (i.e. args.depth_multiplier >= register width).
251               auto p = Eigen::internal::pset1<Packet>(v);
252               for (int64 dm = 0; dm < dm_vectorized_size; dm += kPacketSize) {
253                 Eigen::internal::pstoreu<T>(in_buf + base + dm, p);
254               }
255               // Copy scalar portion of replicated output.
256               for (int64 dm = 0; dm < dm_scalar_size; ++dm) {
257                 in_buf[base + dm_vectorized_size + dm] = v;
258               }
259             } else {
260               // Depth multiplier is less than one packet: scalar copy.
261               for (int dm = 0; dm < args.depth_multiplier; ++dm) {
262                 in_buf[base + dm] = v;
263               }
264             }
265           }
266           in_buf += input_scalar_size * args.depth_multiplier;
267 
268           // Pad the remainder of the output to vector register boundary.
269           for (int64 d = 0; d < output_pad_size; ++d) {
270             in_buf[d] = static_cast<T>(0);
271           }
272           in_buf += output_pad_size;
273 
274         } else {
275           // Zero pad.
276           memset(in_buf, 0, sizeof(T) * padded_filter_inner_dim_size);
277           in_buf += padded_filter_inner_dim_size;
278         }
279       }
280     }
281   }
282 };
283 
284 }  // namespace functor
285 }  // namespace tensorflow
286 
287 #endif  // TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_
288