1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 #ifndef TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_ 17 #define TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_ 18 19 #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor" 20 #include "tensorflow/core/framework/types.h" 21 #include "tensorflow/core/util/tensor_format.h" 22 23 namespace tensorflow { 24 25 struct DepthwiseArgs { 26 // Input layer dimensions 27 int batch; 28 int in_rows; 29 int in_cols; 30 int in_depth; 31 int filter_rows; 32 int filter_cols; 33 int depth_multiplier; 34 int stride; 35 int pad_rows; 36 int pad_cols; 37 38 // Output layer dimensions 39 int out_rows; 40 int out_cols; 41 int out_depth; 42 DepthwiseArgsDepthwiseArgs43 DepthwiseArgs() 44 : batch(0), 45 in_rows(0), 46 in_cols(0), 47 in_depth(0), 48 filter_rows(0), 49 filter_cols(0), 50 depth_multiplier(0), 51 stride(0), 52 pad_rows(0), 53 pad_cols(0), 54 out_rows(0), 55 out_cols(0), 56 out_depth(0) {} 57 }; 58 59 // Forward declaration. 60 class OpKernelContext; 61 62 template <typename Device, typename T> 63 struct LaunchDepthwiseConvOp { 64 void operator()(OpKernelContext* ctx, const DepthwiseArgs& args, 65 const T* input, const T* filter, T* output, 66 TensorFormat data_format); 67 }; 68 69 template <typename Device, typename T> 70 struct LaunchDepthwiseConvBackpropInputOp { 71 void operator()(OpKernelContext* ctx, const DepthwiseArgs& args, 72 const T* out_backprop, const T* filter, T* in_backprop, 73 TensorFormat data_format); 74 }; 75 76 template <typename Device, typename T> 77 struct LaunchDepthwiseConvBackpropFilterOp { 78 void operator()(OpKernelContext* ctx, const DepthwiseArgs& args, 79 const T* out_backprop, const T* input, T* filter_backprop, 80 TensorFormat data_format); 81 }; 82 83 #if GOOGLE_CUDA 84 template <typename T> 85 struct LaunchDepthwiseConvOp<Eigen::GpuDevice, T> { 86 void operator()(OpKernelContext* ctx, const DepthwiseArgs& args, 87 const T* input, const T* filter, T* output, 88 TensorFormat data_format); 89 }; 90 91 template <typename T> 92 struct LaunchDepthwiseConvBackpropInputOp<Eigen::GpuDevice, T> { 93 void operator()(class OpKernelContext* ctx, const DepthwiseArgs& args, 94 const T* out_backprop, const T* filter, T* in_backprop, 95 TensorFormat data_format); 96 }; 97 98 template <typename T> 99 struct LaunchDepthwiseConvBackpropFilterOp<Eigen::GpuDevice, T> { 100 void operator()(class OpKernelContext* ctx, const DepthwiseArgs& args, 101 const T* out_backprop, const T* input, T* filter_backprop, 102 TensorFormat data_format); 103 }; 104 #endif 105 106 } // namespace tensorflow 107 108 namespace tensorflow { 109 namespace functor { 110 111 // Pads 'filter' to vector-register boundary along its inner dimension: 112 // filter_inner_dim_size = in_depth * depth_multiplier 113 // Requires 'filter' to have the following storage order: 114 // [filter_rows, filter_cols, in_depth, depth_multiplier] 115 // Returns zero-padded filter in 'padded_filter'. 116 // 117 // EX: 118 // in_depth = 3, depth_multiplier = 2, filter [2, 2], register_width = 4 119 // So we have a total of 3 * 2 = 6 filters, each of spatial size 2 x 2. 120 // 121 // filter [rows, cols, in_depth, depth_multiplier] 122 // [u0, v0, w0, x0] [y0, z0, u1, v1] [w1, x1, y1, z1] 123 // [u2, v2, w2, x2] [y2, z2, u3, v3] [w3, x3, y3, z3] 124 // 125 // padded_filter [rows, cols, in_depth, depth_multiplier] 126 // [u0, v0, w0, x0] [y0, z0, 0, 0] [u1, v1, w1, x1] [y1, z1, 0, 0] 127 // [u2, v2, w2, x2] [y2, z2, 0, 0] [u3, v3, w3, x3] [y3, z3, 0, 0] 128 129 template <typename T> 130 struct DepthwiseFilterPadOp { 131 void operator()(const DepthwiseArgs& args, const T* filter, 132 T* padded_filter) { 133 typedef typename Eigen::internal::packet_traits<T>::type Packet; 134 static const int64 kPacketSize = (sizeof(Packet) / sizeof(T)); 135 136 // Calculate vectorized and scalar lengths of filter's inner dimension. 137 const int64 filter_inner_dim_size = args.out_depth; 138 const int64 vectorized_size = 139 (filter_inner_dim_size / kPacketSize) * kPacketSize; 140 const int64 scalar_size = filter_inner_dim_size - vectorized_size; 141 // Calculate required padding and padded output buffer stride. 142 const int64 pad_size = scalar_size > 0 ? kPacketSize - scalar_size : 0; 143 const int64 padded_filter_stride = vectorized_size + kPacketSize; 144 145 const int64 filter_spatial_size = args.filter_rows * args.filter_cols; 146 for (int64 i = 0; i < filter_spatial_size; ++i) { 147 const int64 input_base = i * filter_inner_dim_size; 148 const int64 output_base = i * padded_filter_stride; 149 // Write vectorized length of filter's inner dimension to output. 150 for (int64 j = 0; j < vectorized_size; j += kPacketSize) { 151 const auto v = Eigen::internal::ploadu<Packet>(filter + input_base + j); 152 Eigen::internal::pstoreu<T>(padded_filter + output_base + j, v); 153 } 154 // Write scalar length of filter's inner dimension to output. 155 for (int64 j = 0; j < scalar_size; ++j) { 156 padded_filter[output_base + vectorized_size + j] = 157 filter[input_base + vectorized_size + j]; 158 } 159 // Pad the remainder of output to vector-register boundary. 160 for (int64 j = 0; j < pad_size; ++j) { 161 padded_filter[output_base + vectorized_size + scalar_size + j] = 162 static_cast<T>(0); 163 } 164 } 165 } 166 }; 167 168 // Copies data from local region in 'input' specified by 'out_r' and 'out_'c' 169 // to 'input_buffer'. The copied data is replicated by factor 170 // 'args.depth_mulitplier', and padded to vector register-width boundaries so 171 // that it is aligned for efficient traversal and vector multiply-add by the 172 // depthwise kernel. 173 // 174 // EX: 175 // in_depth = 3, depth_multiplier = 2, filter [2, 2], register_width = 4 176 // 177 // input: [batch, in_rows, in_cols, in_depth] 178 // 179 // [a0, a1, a2, b0, b1, b2, ..., e0, e1, e2, f0, f1, f2, ...] 180 // 181 // input_buffer (register boundaries shown): 182 // [a0, a0, a1, a1] [a2, a2, 0, 0] in_row = 0, in_col = 0 183 // [b0, b0, b1, b1] [b2, b2, 0, 0] in_row = 0, in_col = 1 184 // [e0, e0, e1, e1] [e2, e2, 0, 0] in_row = 1, in_col = 0 185 // [f0, f0, f1, f1] [f2, f2, 0, 0] in_row = 1, in_col = 1 186 // 187 // Returns replicated and padded data from specified input region in 188 // 'input_buffer'. 189 190 template <typename T> 191 struct DepthwiseInputCopyOp { 192 void operator()(const DepthwiseArgs& args, 193 const int64 padded_filter_inner_dim_size, const int64 out_r, 194 const int64 out_c, const T* input, T* input_buffer) { 195 typedef typename Eigen::internal::packet_traits<T>::type Packet; 196 static const int64 kPacketSize = (sizeof(Packet) / sizeof(T)); 197 198 // Calculate vectorized and scalar (residual) lengths for 'in_depth'. 199 const int64 input_vectorized_size = 200 (args.in_depth / kPacketSize) * kPacketSize; 201 const int64 input_scalar_size = args.in_depth % kPacketSize; 202 203 // Calculate vectorized and scalar (residual) lengths for 204 // 'depth_multiplier'. This is used to efficiently replicate data for 205 // when 'depth_multiplier' > kPacketSize. 206 const int64 dm_vectorized_size = 207 (args.depth_multiplier / kPacketSize) * kPacketSize; 208 const int64 dm_scalar_size = args.depth_multiplier % kPacketSize; 209 210 // Calculate output padding length. 211 const int64 output_scalar_size = args.out_depth % kPacketSize; 212 const int64 output_pad_size = 213 output_scalar_size > 0 ? kPacketSize - output_scalar_size : 0; 214 215 const int64 replicated_packet_size = kPacketSize * args.depth_multiplier; 216 217 // Iterate through all rows x cols reading 'in_depth' from 'input' and 218 // replicating by 'depth_multiplier' into 'input_buffer' (otherwise 219 // zero-padding input buffer as needed). 220 auto* in_buf = input_buffer; 221 const int64 in_r_start = out_r * args.stride - args.pad_rows; 222 const int64 in_c_start = out_c * args.stride - args.pad_cols; 223 224 for (int64 f_r = 0; f_r < args.filter_rows; ++f_r) { 225 const int64 in_r = in_r_start + f_r; 226 227 for (int64 f_c = 0; f_c < args.filter_cols; ++f_c) { 228 const int64 in_c = in_c_start + f_c; 229 230 if (in_r >= 0 && in_r < args.in_rows && in_c >= 0 && 231 in_c < args.in_cols) { 232 auto* in = input + (in_r * args.in_cols + in_c) * args.in_depth; 233 // Copy vectorized portion of inner dimension. 234 for (int64 d = 0; d < input_vectorized_size; d += kPacketSize) { 235 auto v = Eigen::internal::ploadu<Packet>(in + d); 236 for (int dm = 0; dm < args.depth_multiplier; ++dm) { 237 Eigen::internal::pscatter<T, Packet>(in_buf + dm, v, 238 args.depth_multiplier); 239 } 240 in_buf += replicated_packet_size; 241 } 242 243 // Copy scalar portion of inner dimension. 244 for (int64 d = 0; d < input_scalar_size; ++d) { 245 T v = in[input_vectorized_size + d]; 246 const int64 base = d * args.depth_multiplier; 247 if (dm_vectorized_size > 0) { 248 // Copy vectorized portion of replicated output. 249 // This branch is only taken if 'args.depth_multiplier' is 250 // vectorizable (i.e. args.depth_multiplier >= register width). 251 auto p = Eigen::internal::pset1<Packet>(v); 252 for (int64 dm = 0; dm < dm_vectorized_size; dm += kPacketSize) { 253 Eigen::internal::pstoreu<T>(in_buf + base + dm, p); 254 } 255 // Copy scalar portion of replicated output. 256 for (int64 dm = 0; dm < dm_scalar_size; ++dm) { 257 in_buf[base + dm_vectorized_size + dm] = v; 258 } 259 } else { 260 // Depth multiplier is less than one packet: scalar copy. 261 for (int dm = 0; dm < args.depth_multiplier; ++dm) { 262 in_buf[base + dm] = v; 263 } 264 } 265 } 266 in_buf += input_scalar_size * args.depth_multiplier; 267 268 // Pad the remainder of the output to vector register boundary. 269 for (int64 d = 0; d < output_pad_size; ++d) { 270 in_buf[d] = static_cast<T>(0); 271 } 272 in_buf += output_pad_size; 273 274 } else { 275 // Zero pad. 276 memset(in_buf, 0, sizeof(T) * padded_filter_inner_dim_size); 277 in_buf += padded_filter_inner_dim_size; 278 } 279 } 280 } 281 } 282 }; 283 284 } // namespace functor 285 } // namespace tensorflow 286 287 #endif // TENSORFLOW_CORE_KERNELS_DEPTHWISE_CONV_OP_H_ 288