• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_KERNELS_EIGEN_ACTIVATIONS_H_
17 #define TENSORFLOW_CORE_KERNELS_EIGEN_ACTIVATIONS_H_
18 
19 #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
20 
21 namespace Eigen {
22 
23 /** scalar_sigmoid_fast_derivative_op
24  * \ingroup CXX11_NeuralNetworks_Module
25  * \brief Template functor to compute the fast derivative of a sigmoid
26  *
27  * Input should be the backpropagated gradient.
28  *
29  * \sa class CwiseUnaryOp, Cwise::sigmoid_fast_derivative()
30  */
31 template <typename T>
32 struct scalar_sigmoid_fast_derivative_op {
EIGEN_EMPTY_STRUCT_CTORscalar_sigmoid_fast_derivative_op33   EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_fast_derivative_op)
34   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& y) const {
35     const T one = T(1);
36     return (one - y) * y;
37   }
38 
39   template <typename Packet>
packetOpscalar_sigmoid_fast_derivative_op40   inline Packet packetOp(const Packet& y) const {
41     const Packet one = internal::pset1<Packet>(1);
42     return internal::pmul(internal::psub(one, y), y);
43   }
44 };
45 
46 namespace internal {
47 template <typename T>
48 struct functor_traits<scalar_sigmoid_fast_derivative_op<T> > {
49   enum {
50     Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost,
51     PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasMul &&
52                    packet_traits<T>::HasNegate
53   };
54 };
55 }  // namespace internal
56 
57 /** scalar_tanh_fast_derivative_op
58  * \ingroup CXX11_NeuralNetworks_Module
59  * \brief Template functor to compute the fast derivative of a tanh
60  *
61  * Input should be the backpropagated gradient.
62  *
63  * \sa class CwiseUnaryOp, Cwise::tanh_fast_derivative()
64  */
65 template <typename T>
66 struct scalar_tanh_fast_derivative_op {
67   EIGEN_EMPTY_STRUCT_CTOR(scalar_tanh_fast_derivative_op)
68   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& y) const {
69     const T one = T(1);
70     return one - (y * y);
71   }
72 
73   template <typename Packet>
74   inline Packet packetOp(const Packet& y) const {
75     const Packet one = internal::pset1<Packet>(1);
76     return internal::psub(one, internal::pmul(y, y));
77   }
78 };
79 
80 namespace internal {
81 template <typename T>
82 struct functor_traits<scalar_tanh_fast_derivative_op<T> > {
83   enum {
84     Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 1,
85     PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasMul &&
86                    packet_traits<T>::HasNegate
87   };
88 };
89 }  // namespace internal
90 
91 /**
92  * \ingroup CXX11_NeuralNetworks_Module
93  * \brief Template functor to clip the magnitude of the first scalar.
94  *
95  * \sa class CwiseBinaryOp, MatrixBase::Clip
96  */
97 template <typename Scalar>
98 struct scalar_clip_op {
99   EIGEN_EMPTY_STRUCT_CTOR(scalar_clip_op)
100   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar
101   operator()(const Scalar& a, const Scalar& b) const {
102     return numext::mini(numext::maxi(a, -b), b);
103   }
104   template <typename Packet>
105   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet
106   packetOp(const Packet& a, const Packet& b) const {
107     return internal::pmin(internal::pmax(a, internal::pnegate(b)), b);
108   }
109 };
110 
111 namespace internal {
112 template <typename Scalar>
113 struct functor_traits<scalar_clip_op<Scalar> > {
114   enum {
115     Cost = NumTraits<Scalar>::AddCost * 3,
116     PacketAccess = packet_traits<Scalar>::HasMax &&
117                    packet_traits<Scalar>::HasMin &&
118                    packet_traits<Scalar>::HasNegate
119   };
120 };
121 }  // namespace internal
122 
123 }  // end namespace Eigen
124 
125 #endif  // TENSORFLOW_CORE_KERNELS_EIGEN_ACTIVATIONS_H_
126