1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 #ifndef TENSORFLOW_CORE_KERNELS_HINGE_LOSS_H_ 17 #define TENSORFLOW_CORE_KERNELS_HINGE_LOSS_H_ 18 19 #include <algorithm> 20 #include <limits> 21 22 #include "tensorflow/core/kernels/loss.h" 23 #include "tensorflow/core/lib/core/errors.h" 24 #include "tensorflow/core/lib/core/status.h" 25 26 namespace tensorflow { 27 28 class HingeLossUpdater : public DualLossUpdater { 29 public: 30 // Computes the updated dual variable (corresponding) to a single example. The 31 // updated dual value maximizes the objective function of the dual 32 // optimization problem associated with hinge loss (conditioned on keeping the 33 // rest of the dual variables intact). The method below finds an optimal delta 34 // (difference between updated and previous dual value) using the update rule 35 // within SDCA procedure (see http://arxiv.org/pdf/1209.1873v2.pdf, page 5) 36 // and the particular form of conjugate function for hinge loss. 37 // 38 // The CoCoA+ modification is detailed in readme.md. 39 // 40 // TODO(sibyl-vie3Poto): Write up a doc with concrete derivation and point to it from 41 // here. ComputeUpdatedDual(const int num_loss_partitions,const double label,const double example_weight,const double current_dual,const double wx,const double weighted_example_norm)42 double ComputeUpdatedDual(const int num_loss_partitions, const double label, 43 const double example_weight, 44 const double current_dual, const double wx, 45 const double weighted_example_norm) const final { 46 // Intutitvely there are 3 cases: 47 // a. new optimal value of the dual variable falls within the admissible 48 // range [0, 1]. In this case we set new dual to this value. 49 // b. new optimal value is < 0. Then, because of convexity, the optimal 50 // valid value for new dual = 0 51 // c. new optimal value > 1.0. Then new optimal value should be set to 1.0. 52 const double candidate_optimal_dual = 53 current_dual + (label - wx) / (num_loss_partitions * example_weight * 54 weighted_example_norm); 55 if (label * candidate_optimal_dual < 0) { 56 return 0.0; 57 } 58 if (label * candidate_optimal_dual > 1.0) { 59 return label; 60 } 61 return candidate_optimal_dual; 62 } 63 64 // Conjugate of hinge loss. This is computed as: 65 // \phi*(z) = z if z \in [-1, 0] and +infinity everywhere else. See for 66 // instance http://www.eecs.berkeley.edu/~wainwrig/stat241b/lec10.pdf 67 // Here we want the weighted version of the conjugate loss. It turns out, that 68 // if w is the weight of an example, the conjugate of the weighted hinge loss 69 // is given by: 70 // \phi*(z) = z if z \in [-w, 0] and +infinity everywhere else. Here the 71 // conjugate function depends not only on the weight of the example but also 72 // on its label. In particular: 73 // \phi_y*(z) = y*z if y*z \in [-w, 0] and +infinity everywhere else where 74 // y \in {-1,1}. The following method implements \phi_y*(-\alpha/w). ComputeDualLoss(const double current_dual,const double example_label,const double example_weight)75 double ComputeDualLoss(const double current_dual, const double example_label, 76 const double example_weight) const final { 77 // For binary classification, there are 2 conjugate functions, one per 78 // label value (-1 and 1). 79 const double y_alpha = current_dual * example_label; // y \alpha 80 if (y_alpha < 0 || y_alpha > 1.0) { 81 return std::numeric_limits<double>::max(); 82 } 83 return -y_alpha * example_weight; 84 } 85 86 // Hinge loss for binary classification for a single example. Hinge loss 87 // equals max(0, 1 - y * wx) (see https://en.wikipedia.org/wiki/Hinge_loss). 88 // For weighted instances loss should be multiplied by the instance weight. ComputePrimalLoss(const double wx,const double example_label,const double example_weight)89 double ComputePrimalLoss(const double wx, const double example_label, 90 const double example_weight) const final { 91 const double y_wx = example_label * wx; 92 return std::max(0.0, 1 - y_wx) * example_weight; 93 } 94 PrimalLossDerivative(const double wx,const double label,const double example_weight)95 double PrimalLossDerivative(const double wx, const double label, 96 const double example_weight) const final { 97 if (label * wx < 1) { 98 return -label * example_weight; 99 } 100 return 0; 101 } 102 103 // The smoothness constant is 0 since the derivative of the loss is not 104 // Lipschitz SmoothnessConstant()105 double SmoothnessConstant() const final { return 0; } 106 107 // Converts binary example labels from 0.0 or 1.0 to -1.0 or 1.0 respectively 108 // as expected by hinge loss. ConvertLabel(float * const example_label)109 Status ConvertLabel(float* const example_label) const final { 110 if (*example_label == 0.0) { 111 *example_label = -1; 112 return Status::OK(); 113 } 114 if (*example_label == 1.0) { 115 return Status::OK(); 116 } 117 return errors::InvalidArgument( 118 "Only labels of 0.0 or 1.0 are supported right now. " 119 "Found example with label: ", 120 *example_label); 121 } 122 }; 123 124 } // namespace tensorflow 125 126 #endif // TENSORFLOW_CORE_KERNELS_HINGE_LOSS_H_ 127