• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_LIB_MONITORING_SAMPLER_H_
17 #define TENSORFLOW_CORE_LIB_MONITORING_SAMPLER_H_
18 
19 // We replace this implementation with a null implementation for mobile
20 // platforms.
21 #include "tensorflow/core/platform/platform.h"
22 #ifdef IS_MOBILE_PLATFORM
23 #include "tensorflow/core/lib/monitoring/mobile_sampler.h"
24 #else
25 
26 #include <float.h>
27 #include <map>
28 
29 #include "tensorflow/core/framework/summary.pb.h"
30 #include "tensorflow/core/lib/histogram/histogram.h"
31 #include "tensorflow/core/lib/monitoring/collection_registry.h"
32 #include "tensorflow/core/lib/monitoring/metric_def.h"
33 #include "tensorflow/core/platform/macros.h"
34 #include "tensorflow/core/platform/mutex.h"
35 #include "tensorflow/core/platform/thread_annotations.h"
36 
37 namespace tensorflow {
38 namespace monitoring {
39 
40 // SamplerCell stores each value of an Sampler.
41 //
42 // A cell can be passed off to a module which may repeatedly update it without
43 // needing further map-indexing computations. This improves both encapsulation
44 // (separate modules can own a cell each, without needing to know about the map
45 // to which both cells belong) and performance (since map indexing and
46 // associated locking are both avoided).
47 //
48 // This class is thread-safe.
49 class SamplerCell {
50  public:
SamplerCell(const std::vector<double> & bucket_limits)51   SamplerCell(const std::vector<double>& bucket_limits)
52       : histogram_(bucket_limits) {}
53 
~SamplerCell()54   ~SamplerCell() {}
55 
56   // Atomically adds a sample.
57   void Add(double sample);
58 
59   // Returns the current histogram value as a proto.
60   HistogramProto value() const;
61 
62  private:
63   histogram::ThreadSafeHistogram histogram_;
64 
65   TF_DISALLOW_COPY_AND_ASSIGN(SamplerCell);
66 };
67 
68 // Bucketing strategies for the samplers.
69 //
70 // We automatically add -DBL_MAX and DBL_MAX to the ranges, so that no sample
71 // goes out of bounds.
72 //
73 // WARNING: If you are changing the interface here, please do change the same in
74 // mobile_sampler.h.
75 class Buckets {
76  public:
77   virtual ~Buckets() = default;
78 
79   // Sets up buckets of the form:
80   // [-DBL_MAX, ..., scale * growth^i,
81   //   scale * growth_factor^(i + 1), ..., DBL_MAX].
82   //
83   // So for powers of 2 with a bucket count of 10, you would say (1, 2, 10)
84   static std::unique_ptr<Buckets> Exponential(double scale,
85                                               double growth_factor,
86                                               int bucket_count);
87 
88   // Sets up buckets of the form:
89   // [-DBL_MAX, ..., bucket_limits[i], bucket_limits[i + 1], ..., DBL_MAX].
90   static std::unique_ptr<Buckets> Explicit(
91       std::initializer_list<double> bucket_limits);
92 
93   virtual const std::vector<double>& explicit_bounds() const = 0;
94 };
95 
96 // A stateful class for updating a cumulative histogram metric.
97 //
98 // This class encapsulates a set of histograms (or a single histogram for a
99 // label-less metric) configured with a list of increasing bucket boundaries.
100 // Each histogram is identified by a tuple of labels. The class allows the
101 // user to add a sample to each histogram value.
102 //
103 // Sampler allocates storage and maintains a cell for each value. You can
104 // retrieve an individual cell using a label-tuple and update it separately.
105 // This improves performance since operations related to retrieval, like
106 // map-indexing and locking, are avoided.
107 //
108 // This class is thread-safe.
109 template <int NumLabels>
110 class Sampler {
111  public:
~Sampler()112   ~Sampler() {
113     // Deleted here, before the metric_def is destroyed.
114     registration_handle_.reset();
115   }
116 
117   // Creates the metric based on the metric-definition arguments and buckets.
118   //
119   // Example;
120   // auto* sampler_with_label = Sampler<1>::New({"/tensorflow/sampler",
121   //   "Tensorflow sampler", "MyLabelName"}, {10.0, 20.0, 30.0});
122   static Sampler* New(const MetricDef<MetricKind::kCumulative, HistogramProto,
123                                       NumLabels>& metric_def,
124                       std::unique_ptr<Buckets> buckets);
125 
126   // Retrieves the cell for the specified labels, creating it on demand if
127   // not already present.
128   template <typename... Labels>
129   SamplerCell* GetCell(const Labels&... labels) LOCKS_EXCLUDED(mu_);
130 
131  private:
132   friend class SamplerCell;
133 
Sampler(const MetricDef<MetricKind::kCumulative,HistogramProto,NumLabels> & metric_def,std::unique_ptr<Buckets> buckets)134   Sampler(const MetricDef<MetricKind::kCumulative, HistogramProto, NumLabels>&
135               metric_def,
136           std::unique_ptr<Buckets> buckets)
137       : metric_def_(metric_def),
138         buckets_(std::move(buckets)),
139         registration_handle_(CollectionRegistry::Default()->Register(
140             &metric_def_, [&](MetricCollectorGetter getter) {
141               auto metric_collector = getter.Get(&metric_def_);
142 
143               mutex_lock l(mu_);
144               for (const auto& cell : cells_) {
145                 metric_collector.CollectValue(cell.first, cell.second.value());
146               }
147             })) {}
148 
149   mutable mutex mu_;
150 
151   // The metric definition. This will be used to identify the metric when we
152   // register it for collection.
153   const MetricDef<MetricKind::kCumulative, HistogramProto, NumLabels>
154       metric_def_;
155 
156   // Bucket limits for the histograms in the cells.
157   std::unique_ptr<Buckets> buckets_;
158 
159   // Registration handle with the CollectionRegistry.
160   std::unique_ptr<CollectionRegistry::RegistrationHandle> registration_handle_;
161 
162   using LabelArray = std::array<string, NumLabels>;
163   // we need a container here that guarantees pointer stability of the value,
164   // namely, the pointer of the value should remain valid even after more cells
165   // are inserted.
166   std::map<LabelArray, SamplerCell> cells_ GUARDED_BY(mu_);
167 
168   TF_DISALLOW_COPY_AND_ASSIGN(Sampler);
169 };
170 
171 ////
172 //  Implementation details follow. API readers may skip.
173 ////
174 
Add(const double sample)175 inline void SamplerCell::Add(const double sample) { histogram_.Add(sample); }
176 
value()177 inline HistogramProto SamplerCell::value() const {
178   HistogramProto pb;
179   histogram_.EncodeToProto(&pb, true /* preserve_zero_buckets */);
180   return pb;
181 }
182 
183 template <int NumLabels>
New(const MetricDef<MetricKind::kCumulative,HistogramProto,NumLabels> & metric_def,std::unique_ptr<Buckets> buckets)184 Sampler<NumLabels>* Sampler<NumLabels>::New(
185     const MetricDef<MetricKind::kCumulative, HistogramProto, NumLabels>&
186         metric_def,
187     std::unique_ptr<Buckets> buckets) {
188   return new Sampler<NumLabels>(metric_def, std::move(buckets));
189 }
190 
191 template <int NumLabels>
192 template <typename... Labels>
GetCell(const Labels &...labels)193 SamplerCell* Sampler<NumLabels>::GetCell(const Labels&... labels)
194     LOCKS_EXCLUDED(mu_) {
195   // Provides a more informative error message than the one during array
196   // construction below.
197   static_assert(sizeof...(Labels) == NumLabels,
198                 "Mismatch between Sampler<NumLabels> and number of labels "
199                 "provided in GetCell(...).");
200 
201   const LabelArray& label_array = {{labels...}};
202   mutex_lock l(mu_);
203   const auto found_it = cells_.find(label_array);
204   if (found_it != cells_.end()) {
205     return &(found_it->second);
206   }
207   return &(cells_
208                .emplace(std::piecewise_construct,
209                         std::forward_as_tuple(label_array),
210                         std::forward_as_tuple(buckets_->explicit_bounds()))
211                .first->second);
212 }
213 
214 }  // namespace monitoring
215 }  // namespace tensorflow
216 
217 #endif  // IS_MOBILE_PLATFORM
218 #endif  // TENSORFLOW_CORE_LIB_MONITORING_SAMPLER_H_
219