• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_PUBLIC_SESSION_H_
17 #define TENSORFLOW_CORE_PUBLIC_SESSION_H_
18 
19 #include <string>
20 #include <vector>
21 
22 #include "tensorflow/core/framework/device_attributes.pb.h"
23 #include "tensorflow/core/framework/graph.pb.h"
24 #include "tensorflow/core/framework/tensor.h"
25 #include "tensorflow/core/lib/core/status.h"
26 #include "tensorflow/core/platform/env.h"
27 #include "tensorflow/core/protobuf/config.pb.h"
28 #include "tensorflow/core/public/session_options.h"
29 
30 namespace tensorflow {
31 class DeviceMgr;
32 
33 /// \brief A Session instance lets a caller drive a TensorFlow graph
34 /// computation.
35 ///
36 /// When a Session is created with a given target, a new Session object
37 /// is bound to the universe of resources specified by that target.
38 /// Those resources are available to this session to perform
39 /// computation described in the GraphDef.  After extending the session
40 /// with a graph, the caller uses the Run() API to perform the
41 /// computation and potentially fetch outputs as Tensors.
42 ///
43 /// Example:
44 ///
45 /// ```c++
46 ///
47 ///     tensorflow::GraphDef graph;
48 ///     // ... Create or load graph into "graph".
49 ///
50 ///     // This example uses the default options which connects
51 ///     // to a local runtime.
52 ///     tensorflow::SessionOptions options;
53 ///     std::unique_ptr<tensorflow::Session>
54 ///     session(tensorflow::NewSession(options));
55 ///
56 ///     // Create the session with this graph.
57 ///     tensorflow::Status s = session->Create(graph);
58 ///     if (!s.ok()) { ... }
59 ///
60 ///     // Run the graph and fetch the first output of the "output"
61 ///     // operation, and also run to but do not return anything
62 ///     // for the "update_state" operation.
63 ///     std::vector<tensorflow::Tensor> outputs;
64 ///     s = session->Run({}, {"output:0"}, {"update_state"}, &outputs);
65 ///     if (!s.ok()) { ... }
66 ///
67 ///     // Map the output as a flattened float tensor, and do something
68 ///     // with it.
69 ///     auto output_tensor = outputs[0].flat<float>();
70 ///     if (output_tensor(0) > 0.5) { ... }
71 ///
72 ///     // Close the session to release the resources associated with
73 ///     // this session.
74 ///     session->Close();
75 ///
76 /// ```
77 ///
78 /// A Session allows concurrent calls to Run(), though a Session must
79 /// be created / extended by a single thread.
80 ///
81 /// Only one thread must call Close(), and Close() must only be called
82 /// after all other calls to Run() have returned.
83 class Session {
84  public:
85   Session();
86   virtual ~Session();
87 
88   /// \brief Create the graph to be used for the session.
89   ///
90   /// Returns an error if this session has already been created with a
91   /// graph. To re-use the session with a different graph, the caller
92   /// must Close() the session first.
93   virtual Status Create(const GraphDef& graph) = 0;
94 
95   /// \brief Adds operations to the graph that is already registered with the
96   /// Session.
97   ///
98   /// The names of new operations in "graph" must not exist in the
99   /// graph that is already registered.
100   virtual Status Extend(const GraphDef& graph) = 0;
101 
102   /// \brief Runs the graph with the provided input tensors and fills
103   /// `outputs` for the endpoints specified in `output_tensor_names`.
104   /// Runs to but does not return Tensors for the nodes in
105   /// `target_node_names`.
106   ///
107   /// The order of tensors in `outputs` will match the order provided
108   /// by `output_tensor_names`.
109   ///
110   /// If `Run` returns `OK()`, then `outputs->size()` will be equal to
111   /// `output_tensor_names.size()`.  If `Run` does not return `OK()`, the
112   /// state of `outputs` is undefined.
113   ///
114   /// REQUIRES: The name of each Tensor of the input or output must
115   /// match a "Tensor endpoint" in the `GraphDef` passed to `Create()`.
116   ///
117   /// REQUIRES: At least one of `output_tensor_names` and
118   /// `target_node_names` must be non-empty.
119   ///
120   /// REQUIRES: outputs is not nullptr if `output_tensor_names` is non-empty.
121   virtual Status Run(const std::vector<std::pair<string, Tensor> >& inputs,
122                      const std::vector<string>& output_tensor_names,
123                      const std::vector<string>& target_node_names,
124                      std::vector<Tensor>* outputs) = 0;
125 
126   /// \brief Implementations which support `RunOptions`.
127   //
128   /// NOTE: This API is still experimental and may change.
Create(const RunOptions & run_options,const GraphDef & graph)129   virtual Status Create(const RunOptions& run_options, const GraphDef& graph) {
130     return errors::Unimplemented(
131         "Create(const RunOptions& run_options, const GraphDef& graph) is not "
132         "supported for this session.");
133   }
Extend(const RunOptions & run_options,const GraphDef & graph)134   virtual Status Extend(const RunOptions& run_options, const GraphDef& graph) {
135     return errors::Unimplemented(
136         "Extend(const RunOptions& run_options, const GraphDef& graph) is not "
137         "supported for this session.");
138   }
Close(const RunOptions & run_options)139   virtual Status Close(const RunOptions& run_options) {
140     return errors::Unimplemented(
141         "Close(const RunOptions& run_options) is not supported for this "
142         "session.");
143   }
144 
145   /// \brief Like `Run`, but allows users to pass in a `RunOptions` proto and
146   /// to retrieve non-Tensor metadata output via a `RunMetadata` proto for this
147   /// step.  `run_metadata` may be nullptr, in which case any metadata output is
148   /// discarded.
149   /// NOTE: This API is still experimental and may change.
150   virtual Status Run(const RunOptions& run_options,
151                      const std::vector<std::pair<string, Tensor> >& inputs,
152                      const std::vector<string>& output_tensor_names,
153                      const std::vector<string>& target_node_names,
154                      std::vector<Tensor>* outputs, RunMetadata* run_metadata);
155 
156   /// \brief Sets up a graph for partial execution. All future feeds and
157   /// fetches are specified by `input_names` and `output_names`. Returns
158   /// `handle` that can be used to perform a sequence of partial feeds and
159   /// fetches.
160   /// NOTE: This API is still experimental and may change.
161   virtual Status PRunSetup(const std::vector<string>& input_names,
162                            const std::vector<string>& output_names,
163                            const std::vector<string>& target_nodes,
164                            string* handle);
165 
166   /// \brief Continues the pending execution specified by `handle` with the
167   /// provided input tensors and fills `outputs` for the endpoints specified
168   /// in `output_names`.
169   /// NOTE: This API is still experimental and may change.
170   virtual Status PRun(const string& handle,
171                       const std::vector<std::pair<string, Tensor> >& inputs,
172                       const std::vector<string>& output_names,
173                       std::vector<Tensor>* outputs);
174 
175   /// \brief List devices in the session.
176   ///
177   /// Retrieves the list of available devices within the session, and populates
178   /// *response. This API is optional. If it is unimplemented, Status will
179   /// return a corresponding error message, and *response will be unmodified.
180   virtual Status ListDevices(std::vector<DeviceAttributes>* response) = 0;
181 
182   /// \brief Closes this session.
183   ///
184   /// Closing a session releases the resources used by this session
185   /// on the TensorFlow runtime (specified during session creation by
186   /// the `SessionOptions::target` field).
187   virtual Status Close() = 0;
188 
189   // NOTE(ashankar): As of July 2017, this method was added to facilitate some
190   // experimentation. Reconsider/re-evaluate after September 2017.
191   //
192   // Sets `*output` to the `DeviceMgr` that owns accessible devices in the
193   // address-space of the caller.
LocalDeviceManager(const DeviceMgr ** output)194   virtual Status LocalDeviceManager(const DeviceMgr** output) {
195     return errors::Unimplemented(
196         "LocalDeviceManager is not supported for this session.");
197   }
198 
199   /// \brief A handle to a subgraph, created with `Session::MakeCallable()`.
200   typedef int64 CallableHandle;
201 
202   /// \brief Creates a `handle` for invoking the subgraph defined by
203   /// `callable_options`.
204   /// NOTE: This API is still experimental and may change.
MakeCallable(const CallableOptions & callable_options,CallableHandle * out_handle)205   virtual Status MakeCallable(const CallableOptions& callable_options,
206                               CallableHandle* out_handle) {
207     return errors::Unimplemented(
208         "MakeCallable is not supported for this session.");
209   }
210 
211   /// \brief Invokes the subgraph named by `handle` with the given options and
212   /// input tensors.
213   ///
214   /// The order of tensors in `feed_tensors` must and `fetch_tensors` will
215   /// match the order of names in `CallableOptions::feed()` and
216   /// `CallableOptions::fetch()` when this subgraph was created.
217   /// NOTE: This API is still experimental and may change.
RunCallable(CallableHandle handle,const std::vector<Tensor> & feed_tensors,std::vector<Tensor> * fetch_tensors,RunMetadata * run_metadata)218   virtual Status RunCallable(CallableHandle handle,
219                              const std::vector<Tensor>& feed_tensors,
220                              std::vector<Tensor>* fetch_tensors,
221                              RunMetadata* run_metadata) {
222     return errors::Unimplemented(
223         "RunCallable is not supported for this session.");
224   }
225 
226   /// \brief Releases resources associated with the given `handle` in this
227   /// session.
228   /// NOTE: This API is still experimental and may change.
ReleaseCallable(CallableHandle handle)229   virtual Status ReleaseCallable(CallableHandle handle) {
230     return errors::Unimplemented(
231         "ReleaseCallable is not supported for this session.");
232   }
233 };
234 
235 /// \brief Create a new session with the given options.
236 ///
237 /// If session creation succeeds, the new `Session` will be stored in
238 /// `*out_session`, the caller will take ownership of the returned
239 /// `*out_session`, and this function will return `OK()`. Otherwise, this
240 /// function will return an error status and set *out_session to nullptr.
241 Status NewSession(const SessionOptions& options, Session** out_session);
242 
243 /// \brief Resets resource containers associated with a target.
244 ///
245 /// Reset() allows misbehaving or slow sessions to be aborted and closed, and
246 /// causes their resources eventually to be released.  Reset() does not wait
247 /// for the computations in old sessions to cease; it merely starts the
248 /// process of tearing them down.  However, if a new session is started after
249 /// a Reset(), the new session is isolated from changes that old sessions
250 /// (started prior to the Reset()) may continue to make to resources, provided
251 /// all those resources are in containers listed in "containers".
252 ///
253 /// Old sessions may continue to have side-effects on resources not in
254 /// containers listed in "containers", and thus may affect future
255 /// sessions' results in ways that are hard to predict.  Thus, if well-defined
256 /// behavior is desired, it is recommended that all containers be listed in
257 /// "containers".
258 ///
259 /// `containers` is a vector of string representation of resource container
260 /// names. When a resource container is reset, the resources held by the
261 /// container will be released. In particular, all Variables in the container
262 /// will become undefined.  If the "containers" vector is empty, the default
263 /// container is assumed.  If the "containers" vector is non-empty, the
264 /// default container should be listed explicitly.
265 ///
266 /// If Reset succeeds, this function will return `OK()`. Otherwise, this
267 /// function will return an error status.
268 Status Reset(const SessionOptions& options,
269              const std::vector<string>& containers);
270 
271 /// \brief Create a new session with the given options.
272 ///
273 /// If a new `Session` object could not be created, this function will
274 /// return nullptr.
275 ///
276 /// *Strongly prefer* the version of NewSession that returns Status,
277 /// which contains more helpful error information.
278 Session* NewSession(const SessionOptions& options);
279 
280 }  // end namespace tensorflow
281 
282 #endif  // TENSORFLOW_CORE_PUBLIC_SESSION_H_
283