• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ueventd.h"
18 
19 #include <ctype.h>
20 #include <fcntl.h>
21 #include <signal.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <sys/wait.h>
26 
27 #include <set>
28 #include <thread>
29 
30 #include <android-base/chrono_utils.h>
31 #include <android-base/logging.h>
32 #include <android-base/properties.h>
33 #include <fstab/fstab.h>
34 #include <selinux/android.h>
35 #include <selinux/selinux.h>
36 
37 #include "devices.h"
38 #include "firmware_handler.h"
39 #include "modalias_handler.h"
40 #include "selinux.h"
41 #include "uevent_handler.h"
42 #include "uevent_listener.h"
43 #include "ueventd_parser.h"
44 #include "util.h"
45 
46 // At a high level, ueventd listens for uevent messages generated by the kernel through a netlink
47 // socket.  When ueventd receives such a message it handles it by taking appropriate actions,
48 // which can typically be creating a device node in /dev, setting file permissions, setting selinux
49 // labels, etc.
50 // Ueventd also handles loading of firmware that the kernel requests, and creates symlinks for block
51 // and character devices.
52 
53 // When ueventd starts, it regenerates uevents for all currently registered devices by traversing
54 // /sys and writing 'add' to each 'uevent' file that it finds.  This causes the kernel to generate
55 // and resend uevent messages for all of the currently registered devices.  This is done, because
56 // ueventd would not have been running when these devices were registered and therefore was unable
57 // to receive their uevent messages and handle them appropriately.  This process is known as
58 // 'cold boot'.
59 
60 // 'init' currently waits synchronously on the cold boot process of ueventd before it continues
61 // its boot process.  For this reason, cold boot should be as quick as possible.  One way to achieve
62 // a speed up here is to parallelize the handling of ueventd messages, which consume the bulk of the
63 // time during cold boot.
64 
65 // Handling of uevent messages has two unique properties:
66 // 1) It can be done in isolation; it doesn't need to read or write any status once it is started.
67 // 2) It uses setegid() and setfscreatecon() so either care (aka locking) must be taken to ensure
68 //    that no file system operations are done while the uevent process has an abnormal egid or
69 //    fscreatecon or this handling must happen in a separate process.
70 // Given the above two properties, it is best to fork() subprocesses to handle the uevents.  This
71 // reduces the overhead and complexity that would be required in a solution with threads and locks.
72 // In testing, a racy multithreaded solution has the same performance as the fork() solution, so
73 // there is no reason to deal with the complexity of the former.
74 
75 // One other important caveat during the boot process is the handling of SELinux restorecon.
76 // Since many devices have child devices, calling selinux_android_restorecon() recursively for each
77 // device when its uevent is handled, results in multiple restorecon operations being done on a
78 // given file.  It is more efficient to simply do restorecon recursively on /sys during cold boot,
79 // than to do restorecon on each device as its uevent is handled.  This only applies to cold boot;
80 // once that has completed, restorecon is done for each device as its uevent is handled.
81 
82 // With all of the above considered, the cold boot process has the below steps:
83 // 1) ueventd regenerates uevents by doing the /sys traversal and listens to the netlink socket for
84 //    the generated uevents.  It writes these uevents into a queue represented by a vector.
85 //
86 // 2) ueventd forks 'n' separate uevent handler subprocesses and has each of them to handle the
87 //    uevents in the queue based on a starting offset (their process number) and a stride (the total
88 //    number of processes).  Note that no IPC happens at this point and only const functions from
89 //    DeviceHandler should be called from this context.
90 //
91 // 3) In parallel to the subprocesses handling the uevents, the main thread of ueventd calls
92 //    selinux_android_restorecon() recursively on /sys/class, /sys/block, and /sys/devices.
93 //
94 // 4) Once the restorecon operation finishes, the main thread calls waitpid() to wait for all
95 //    subprocess handlers to complete and exit.  Once this happens, it marks coldboot as having
96 //    completed.
97 //
98 // At this point, ueventd is single threaded, poll()'s and then handles any future uevents.
99 
100 // Lastly, it should be noted that uevents that occur during the coldboot process are handled
101 // without issue after the coldboot process completes.  This is because the uevent listener is
102 // paused while the uevent handler and restorecon actions take place.  Once coldboot completes,
103 // the uevent listener resumes in polling mode and will handle the uevents that occurred during
104 // coldboot.
105 
106 namespace android {
107 namespace init {
108 
109 class ColdBoot {
110   public:
ColdBoot(UeventListener & uevent_listener,std::vector<std::unique_ptr<UeventHandler>> & uevent_handlers)111     ColdBoot(UeventListener& uevent_listener,
112              std::vector<std::unique_ptr<UeventHandler>>& uevent_handlers)
113         : uevent_listener_(uevent_listener),
114           uevent_handlers_(uevent_handlers),
115           num_handler_subprocesses_(std::thread::hardware_concurrency() ?: 4) {}
116 
117     void Run();
118 
119   private:
120     void UeventHandlerMain(unsigned int process_num, unsigned int total_processes);
121     void RegenerateUevents();
122     void ForkSubProcesses();
123     void DoRestoreCon();
124     void WaitForSubProcesses();
125 
126     UeventListener& uevent_listener_;
127     std::vector<std::unique_ptr<UeventHandler>>& uevent_handlers_;
128 
129     unsigned int num_handler_subprocesses_;
130     std::vector<Uevent> uevent_queue_;
131 
132     std::set<pid_t> subprocess_pids_;
133 };
134 
UeventHandlerMain(unsigned int process_num,unsigned int total_processes)135 void ColdBoot::UeventHandlerMain(unsigned int process_num, unsigned int total_processes) {
136     for (unsigned int i = process_num; i < uevent_queue_.size(); i += total_processes) {
137         auto& uevent = uevent_queue_[i];
138 
139         for (auto& uevent_handler : uevent_handlers_) {
140             uevent_handler->HandleUevent(uevent);
141         }
142     }
143     _exit(EXIT_SUCCESS);
144 }
145 
RegenerateUevents()146 void ColdBoot::RegenerateUevents() {
147     uevent_listener_.RegenerateUevents([this](const Uevent& uevent) {
148         uevent_queue_.emplace_back(std::move(uevent));
149         return ListenerAction::kContinue;
150     });
151 }
152 
ForkSubProcesses()153 void ColdBoot::ForkSubProcesses() {
154     for (unsigned int i = 0; i < num_handler_subprocesses_; ++i) {
155         auto pid = fork();
156         if (pid < 0) {
157             PLOG(FATAL) << "fork() failed!";
158         }
159 
160         if (pid == 0) {
161             UeventHandlerMain(i, num_handler_subprocesses_);
162         }
163 
164         subprocess_pids_.emplace(pid);
165     }
166 }
167 
DoRestoreCon()168 void ColdBoot::DoRestoreCon() {
169     selinux_android_restorecon("/sys", SELINUX_ANDROID_RESTORECON_RECURSE);
170 }
171 
WaitForSubProcesses()172 void ColdBoot::WaitForSubProcesses() {
173     // Treat subprocesses that crash or get stuck the same as if ueventd itself has crashed or gets
174     // stuck.
175     //
176     // When a subprocess crashes, we fatally abort from ueventd.  init will restart ueventd when
177     // init reaps it, and the cold boot process will start again.  If this continues to fail, then
178     // since ueventd is marked as a critical service, init will reboot to bootloader.
179     //
180     // When a subprocess gets stuck, keep ueventd spinning waiting for it.  init has a timeout for
181     // cold boot and will reboot to the bootloader if ueventd does not complete in time.
182     while (!subprocess_pids_.empty()) {
183         int status;
184         pid_t pid = TEMP_FAILURE_RETRY(waitpid(-1, &status, 0));
185         if (pid == -1) {
186             PLOG(ERROR) << "waitpid() failed";
187             continue;
188         }
189 
190         auto it = std::find(subprocess_pids_.begin(), subprocess_pids_.end(), pid);
191         if (it == subprocess_pids_.end()) continue;
192 
193         if (WIFEXITED(status)) {
194             if (WEXITSTATUS(status) == EXIT_SUCCESS) {
195                 subprocess_pids_.erase(it);
196             } else {
197                 LOG(FATAL) << "subprocess exited with status " << WEXITSTATUS(status);
198             }
199         } else if (WIFSIGNALED(status)) {
200             LOG(FATAL) << "subprocess killed by signal " << WTERMSIG(status);
201         }
202     }
203 }
204 
Run()205 void ColdBoot::Run() {
206     android::base::Timer cold_boot_timer;
207 
208     RegenerateUevents();
209 
210     ForkSubProcesses();
211 
212     DoRestoreCon();
213 
214     WaitForSubProcesses();
215 
216     close(open(COLDBOOT_DONE, O_WRONLY | O_CREAT | O_CLOEXEC, 0000));
217     LOG(INFO) << "Coldboot took " << cold_boot_timer.duration().count() / 1000.0f << " seconds";
218 }
219 
ueventd_main(int argc,char ** argv)220 int ueventd_main(int argc, char** argv) {
221     /*
222      * init sets the umask to 077 for forked processes. We need to
223      * create files with exact permissions, without modification by
224      * the umask.
225      */
226     umask(000);
227 
228     android::base::InitLogging(argv, &android::base::KernelLogger);
229 
230     LOG(INFO) << "ueventd started!";
231 
232     SelinuxSetupKernelLogging();
233     SelabelInitialize();
234 
235     std::vector<std::unique_ptr<UeventHandler>> uevent_handlers;
236 
237     // Keep the current product name base configuration so we remain backwards compatible and
238     // allow it to override everything.
239     // TODO: cleanup platform ueventd.rc to remove vendor specific device node entries (b/34968103)
240     auto hardware = android::base::GetProperty("ro.hardware", "");
241 
242     auto ueventd_configuration = ParseConfig({"/ueventd.rc", "/vendor/ueventd.rc",
243                                               "/odm/ueventd.rc", "/ueventd." + hardware + ".rc"});
244 
245     uevent_handlers.emplace_back(std::make_unique<DeviceHandler>(
246             std::move(ueventd_configuration.dev_permissions),
247             std::move(ueventd_configuration.sysfs_permissions),
248             std::move(ueventd_configuration.subsystems), android::fs_mgr::GetBootDevices(), true));
249     uevent_handlers.emplace_back(std::make_unique<FirmwareHandler>(
250             std::move(ueventd_configuration.firmware_directories)));
251 
252     if (ueventd_configuration.enable_modalias_handling) {
253         uevent_handlers.emplace_back(std::make_unique<ModaliasHandler>());
254     }
255     UeventListener uevent_listener(ueventd_configuration.uevent_socket_rcvbuf_size);
256 
257     if (access(COLDBOOT_DONE, F_OK) != 0) {
258         ColdBoot cold_boot(uevent_listener, uevent_handlers);
259         cold_boot.Run();
260     }
261 
262     for (auto& uevent_handler : uevent_handlers) {
263         uevent_handler->ColdbootDone();
264     }
265 
266     // We use waitpid() in ColdBoot, so we can't ignore SIGCHLD until now.
267     signal(SIGCHLD, SIG_IGN);
268     // Reap and pending children that exited between the last call to waitpid() and setting SIG_IGN
269     // for SIGCHLD above.
270     while (waitpid(-1, nullptr, WNOHANG) > 0) {
271     }
272 
273     uevent_listener.Poll([&uevent_handlers](const Uevent& uevent) {
274         for (auto& uevent_handler : uevent_handlers) {
275             uevent_handler->HandleUevent(uevent);
276         }
277         return ListenerAction::kContinue;
278     });
279 
280     return 0;
281 }
282 
283 }  // namespace init
284 }  // namespace android
285